Androdioecy

{{Short description|Presence of males and hermaphrodites in a population}}

Androdioecy {{IPAc-en|,|ae|n|d|r|oU|d|aI|'|i:|s|i}} is a reproductive system characterized by the coexistence of males and hermaphrodites. Androdioecy is rare in comparison with the other major reproductive systems: dioecy, gynodioecy and hermaphroditism.{{cite journal|author =Pannell, JR. |title=The evolution and maintenance of androdioecy|journal=Annual Review of Ecology and Systematics|volume=33| pages=397–425|year=2002 | doi=10.1146/annurev.ecolsys.33.010802.150419}} In animals, androdioecy has been considered a stepping stone in the transition from dioecy to hermaphroditism, and vice versa.{{cite journal | last1 = Weeks | first1 = SC | year = 2012 | title = The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the Animalia | journal = Evolution | volume = 66 | issue = 12| pages = 3670–3686 | doi = 10.1111/j.1558-5646.2012.01714.x | pmid=23206127| s2cid = 3198554 | doi-access = }}

Androdioecy, trioecy and gynodioecy are sometimes referred to as a mixed mating systems.{{Cite book|last1=Fusco|first1=Giuseppe|url=https://books.google.com/books?id=AKGsDwAAQBAJ&q=Caenorhabditis+elegans+gonochoric|title=The Biology of Reproduction|last2=Minelli|first2=Alessandro|date=2019-10-10|publisher=Cambridge University Press|isbn=978-1-108-49985-9|pages=134|language=en}} Androdioecy is a dimorphic sexual system in plants comparable with gynodioecy and dioecy.{{Cite journal|last1=Torices|first1=Rubén|last2=Méndez|first2=Marcos|last3=Gómez|first3=José María|date=2011|title=Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms|journal=New Phytologist|language=en|volume=190|issue=1|pages=234–248|doi=10.1111/j.1469-8137.2010.03609.x|pmid=21219336|issn=1469-8137|doi-access=free}}

Evolution of androdioecy

The fitness requirements for androdioecy to arise and sustain itself are theoretically so improbable that it was long considered that such systems do not exist.{{cite journal | last1 = Charlesworth | first1 = D | year = 1984 | title = Androdioecy and the evolution of dioecy | journal = Biological Journal of the Linnean Society | volume = 22 | issue = 4| pages = 333–348 | doi=10.1111/j.1095-8312.1984.tb01683.x}}Darwin C. 1877. The different forms of flowers and plants of the same species. New York: Appleton. Particularly, males and hermaphrodites have to have the same fitness, in other words produce the same number of offspring, in order to be maintained. However, males only have offspring by fertilizing eggs or ovules of hermaphrodites, while hermaphrodites have offspring both through fertilizing eggs or ovules of other hermaphrodites and their own ovules. This means that all else being equal, males have to fertilize twice as many eggs or ovules as hermaphrodites to make up for the lack of female reproduction.{{cite journal | last1 = Lloyd | first1 = DG | year = 1975 | title = The maintenance of gynodioecy and androdioecy in angiosperms | journal = Genetica | volume = 45 | issue = 3| pages = 325–339 | doi=10.1007/bf01508307| s2cid = 20410507 }}{{cite journal | last1 = Charlesworth | first1 = B | last2 = Charlesworth | first2 = D | year = 1978 | title = A Model for the Evolution of Dioecy and Gynodioecy | journal = The American Naturalist | volume = 112 | issue = 988| pages = 975–997 | doi=10.1086/283342| s2cid = 83907227 }}

Androdioecy can evolve either from hermaphroditic ancestors through the invasion of males or from dioecious ancestors through the invasion of hermaphrodites. The ancestral state is important because conditions under which androdioecy can evolve differ significantly.{{citation needed|date=August 2021}}

=Androdioecy with dioecious ancestry=

In roundworms, clam shrimp, tadpole shrimp and cancrid shrimps, androdioecy has evolved from dioecy. In these systems, hermaphrodites can only fertilize their own eggs (self-fertilize) and do not mate with other hermaphrodites. Males are the only means of outcrossing. Hermaphrodites may be beneficial in colonizing new habitats, because a single hermaphrodite can generate many other individuals.{{cite journal | last1 = Pannell | first1 = J | s2cid = 38050756 | year = 2000 | title = A hypothesis for the evolution of androdioecy: the joint influence of reproductive assurance and local mate competition in a metapopulation | doi = 10.1023/A:1011082827809 | journal = Evolutionary Ecology | volume = 14 | issue = 3| pages = 195–211 }}

In the well-studied roundworm Caenorhabditis elegans, males are very rare and only occur in populations that are in bad condition or stressed.{{cite journal | last1 = Stewart | first1 = AD | last2 = Phillips | first2 = PC | year = 2002 | title = Selection and maintenance of androdioecy in Caenorhabditis elegans | journal = Genetics | volume = 160 | issue = 3| pages = 975–982 | doi = 10.1093/genetics/160.3.975 | pmid = 11901115 | pmc = 1462032 }} In Caenorhabditis elegans androdioecy is thought to have evolved from dioecy, through a trioecous intermediate.{{Cite journal|last1=Kanzaki|first1=Natsumi|last2=Kiontke|first2=Karin|last3=Tanaka|first3=Ryusei|last4=Hirooka|first4=Yuuri|last5=Schwarz|first5=Anna|last6=Müller-Reichert|first6=Thomas|last7=Chaudhuri|first7=Jyotiska|last8=Pires-daSilva|first8=Andre|date=2017-09-11|title=Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution|journal=Scientific Reports|language=en|volume=7|issue=1|pages=11135|doi=10.1038/s41598-017-09871-1|pmid=28894108|issn=2045-2322|pmc=5593846|bibcode=2017NatSR...711135K}}

=Androdioecy with hermaphroditic ancestry=

In barnacles, androdioecy evolved from hermaphroditism. Many plants self-fertilize, and males may be sustained in a population when inbreeding depression is severe because males guarantee outcrossing.{{citation needed|date=September 2021}}

Types of androdioecy

The most common form of androdioecy in animals involves hermaphrodites that can reproduce by autogamy or allogamy through ovum with males. However, this type does not involve outcrossing with sperm. This type of androdioecy generally occurs in predominantly gonochoric taxonomy groups.{{Cite book |last=Leonard |first=Janet L. |url=https://books.google.com/books?id=0rWZDwAAQBAJ&dq=trioecy+in+animals&pg=PA23 |title=Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems |date=2019-05-21 |publisher=Springer |isbn=978-3-319-94139-4 |language=en}}{{Rp|page=21}}

One type of androdioecy contains outcrossing hermaphrodites which is present in some angiosperms.{{Rp|page=21}}

Another type of androdioecy has males and simultaneous hermaphrodites in a population due to developmental or conditional sex allocation. Like in some fish species small individuals are hermaphrodites and under circumstances of high density, large individuals become male.{{Rp|page=21}}

Androdioecious species

Despite their unlikely evolution, 115 androdioecious animal and about 50 androdioecious plant species are known.{{cite journal | last1 = Weeks | first1 = SC | last2 = Benvenuto | first2 = C | last3 = Reed | first3 = SK | year = 2006 | title = When males and hermaphrodites coexist: a review of androdioecy in animals | journal = Integrative and Comparative Biology | volume = 46 | issue = 4| pages = 449–464 | doi=10.1093/icb/icj048| pmid = 21672757 | doi-access = free }} These species include

=[[Anthozoa]] (Corals)=

=[[nematode|Nematoda]] (Roundworms)=

Rhabditidae (Order Rhabditida)

Diplogastridae (Order Rhabditida)

  • Allodiplogaster sudhausi{{cite journal |author =Fürst von Lieven A |year=2008 |title=Koerneria sudhausi n. sp. (Nematoda: Diplogastridae); a hermaphroditic diplogastrid with an egg shell formed by zygote and uterine components |journal=Nematology |volume=10 |issue=1 |pages=27–45 |doi=10.1163/156854108783360087}}
  • Diplogasteroides magnus{{cite journal |vauthors=Kiontke K, Manegold A, Sudhaus W |year=2001 |title=Redescription of Diplogasteroides nasuensis Takaki, 1941 and D. magnus Völk, 1950 (Nematoda: Diplogastrina) associated with Scarabaeidae (Coleoptera) |journal=Nematology |volume=3 |issue=8 |pages=817–832 |doi=10.1163/156854101753625317}}
  • Levipalatum texanum{{cite journal |vauthors=Ragsdale EJ, Kanzaki N, Sommer RJ |year=2014 |title=Levipalatum texanum n. gen., n. sp. (Nematoda: Diplogastridae), an androdioecious species from the south-eastern USA |journal=Nematology |volume=16 |issue=6 |pages=695–709 |doi=10.1163/15685411-00002798|s2cid=17802237 }}
  • Pristionchus boliviae{{cite journal |vauthors=Kanzaki N, Ragsdale EJ, Herrmann M, Susoy V, Sommer RJ |year=2013 |title=Two androdioecious and one dioecious new species of Pristionchus (Nematoda: Diplogastridae): new reference points for the evolution of reproductive mode |journal=Journal of Nematology |volume=45 |issue=3 |pages=172–194 |pmc=3792836 |pmid=24115783}}
  • Pristionchus fissidentatus{{cite journal |vauthors=Kanzaki N, Ragsdale EJ, Herrmann M, Sommer RJ |year=2012 |title=Two new species of Pristionchus (Rhabditida: Diplogastridae): P. fissidentatus n. sp. from Nepal and La Réunion Island and P. elegans n. sp. from Japan |journal=Journal of Nematology |volume=44 |issue=1 |pages=80–91 |pmc=3593256 |pmid=23483847}}
  • Pristionchus maupasi{{cite journal |author =Potts FA |year=1908 |title=Sexual phenomena in the free-living nematodes |journal=Proceedings of the Cambridge Philosophical Society |volume=14 |pages=373–375}}
  • Pristionchus mayeri
  • Pristionchus pacificus
  • Pristionchus triformis{{cite journal |vauthors=Ragsdale EJ, Kanzaki N, Röseler W, Herrmann M, Sommer RJ |year=2013 |title=Three new species of Pristionchus (Nematoda: Diplogastridae) show morphological divergence through evolutionary intermediates of a novel feeding-structure polymorphism |journal=Zoological Journal of the Linnean Society |volume=168 |issue=4 |pages=671–698 |doi=10.1111/zoj.12041|s2cid=4484091 |doi-access= }}
  • Sudhausia aristotokia{{cite journal |vauthors=Hermmann M, Ragsdale EJ, Kanzaki N, Sommer RJ |year=2013 |title=Sudhausia aristotokia n. gen., n. sp. and S. crassa n. gen., n. sp. (Nematoda: Diplogastridae): viviparous new species with precocious gonad development |journal=Nematology |volume=15 |issue=8 |pages=1001–1020|doi=10.1163/15685411-00002738 |s2cid=4505014 }}
  • Sudhausia crassa

Steinernematidae (Order Rhabditida)

Allanotnematidae (Order Rhabditida)

Dorylaimida

=[[Nemertea]] (Ribbon worms)=

=[[Arthropoda]]=

Clam shrimp

Tadpole shrimp

  • Triops cancriformis{{cite journal | last1 = Zierold | first1 = T | last2 = Hanfling | first2 = B | last3 = Gómez | first3 = A | year = 2007 | title = Recent evolution of alternative reproductive modes in the'living fossil'Triops cancriformis | journal = BMC Evolutionary Biology | volume = 7 | issue = 1| page = 161 | doi=10.1186/1471-2148-7-161 | pmid=17854482 | pmc=2075510 | doi-access = free }}
  • Triops newberryi
  • Triops longicaudatus

Barnacles

Lysmata

Insects

=[[Annelida]] (Ringed worms)=

=[[Chordata]]=

  • Kryptolebias marmoratus{{cite journal|author =Mackiewicz |title=Extensive outcrossing and androdioecy in a vertebrate species that otherwise reproduces as a self-fertilizing hermaphrodite|journal=Proc Natl Acad Sci USA|volume=103| pages=9924–9928|year=2006 | doi= 10.1073/pnas.0603847103|pmid=16785430|last2=Tatarenkov|first2=A|last3=Taylor|first3=DS|last4=Turner|first4=BJ|last5=Avise|first5=JC|issue=26|pmc=1502555|bibcode=2006PNAS..103.9924M|display-authors=etal|doi-access=free}}
  • Serranus fasciatus
  • Serranus baldwini

=[[Flowering plant|Angiosperms]] (Flowering plants)=

  • Some Acer (maple) speciesGleiser G, Verdú M. 2005. Repeated evolution of dioecy from androdioecy in Acer" New Phytologist 165(2):633-640. doi=10.1111/j.1469-8137.2004.01242.x
  • Castilla elastica{{cite journal | last1 = Sakai | first1 = S | year = 2001 | title = Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest | journal = American Journal of Botany | volume = 88 | issue = 9| pages = 1527–1534 | doi=10.2307/3558396 | pmid=21669685| jstor = 3558396 | doi-access = free }}
  • Culcita macrocarpa
  • Datisca cannabina (false hemp)
  • Datisca glomerata (Durango root)
  • Fraxinus lanuginosa (Japanese ash)
  • Fraxinus ornus
  • Fuchsia microphylla
  • Gagea serotina
  • Mercurialis annua (Annual mercury){{cite journal|author =Pannell J |title=Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae)|journal=Biological Journal of the Linnean Society|volume=61| pages=95–116|year=1997 | doi= 10.1111/j.1095-8312.1997.tb01779.x|doi-access=free}}
  • Neobuxbaumia mezcalaensis{{cite journal | last1 = Valiente-Banuet | first1 = A | last2 = Rojas-Martínez | first2 = A | last3 = Del Coro | first3 = Arizmendi M | last4 = Dávila | first4 = P | year = 1997 | title = Pollination biology of two columnar Cacti (Neobuxbaumia mezcalaensis and Neobuxbaumia macrocephala) in the Tehuacan Valley, central Mexico | journal = American Journal of Botany | volume = 84 | issue = 4| pages = 452–455 | doi=10.2307/2446020| jstor = 2446020 }}
  • Nephelium lappaceum (Rambutan)
  • Panax trifolius (Ginseng)
  • Oxalis suksdorfii
  • Phillyrea angustifolia
  • Phillyrea latifolia
  • Ricinocarpos pinifoliusThomson JD, Shivanna KR, Kenrick J and Knox RB. 1989" American Journal of Botany 76 (7):1048-1059
  • Sagittaria lancifolia (sub-androdioecy){{cite journal | last1 = Muenchow | first1 = G | year = 1998 | title = Subandrodioecy and male fitness in Sagittaria lancifolia subsp. lancifolia (Alismataceae) | journal = American Journal of Botany | volume = 85 | issue = 4| pages = 513–520 | doi=10.2307/2446435| jstor = 2446435 | pmid = 21684934 }}
  • Saxifraga cernua
  • Schizopepon bryoniaefolius
  • Spinifex littoreus
  • Ulmus minor{{cite journal | last1 = López-Almansa | first1 = JC | last2 = Pannell | first2 = JR | last3 = Gil | first3 = L | year = 2003 | title = Female sterility in Ulmus minor (Ulmaceae): a hypothesis invoking the cost of sex in a clonal plant | journal = American Journal of Botany | volume = 90 | issue = 4| pages = 603–609 | doi=10.3732/ajb.90.4.603 | pmid=21659155| doi-access = free }}

See also

References

{{Reflist}}