Flowering plant

{{Short description|Clade of seed plants that produce flowers}}

{{Redirect|Flowering Plants|the book by G. Ledyard Stebbins|Flowering Plants: Evolution Above the Species Level{{!}}Flowering Plants: Evolution Above the Species Level}}

{{good article}}

{{Use dmy dates|date=November 2021}}

{{Automatic taxobox

| name =

| fossil_range = {{fossilrange|Valanginian|Recent|earliest=132|latest=0|Early Cretaceous (Valanginian)-Recent}}

| image = {{Multiple image

|perrow = 2

|total_width = 270

|image1 = Ranunculus repens 1 (cropped).JPG

|caption1 = Terrestrial: buttercup

|image2 = Nymphaea alba flower-and-leaves-DSC 3326w.jpg

|caption2 = Aquatic: water lily

|image3 = Meadow Foxtail head.jpg

|caption3 = Wind-pollinated: grass

|image4 = Apple blossom. Eastern Siberia.jpg

|caption4 = Insect-pollinated: apple

|image5 = Quercus robur 4 RF (cropped).jpg

|caption5 = Tree: oak

|image6 = Orchis simia Saarland 01.jpg

|caption6 = Forb: orchid

|border = infobox

|footer = Diversity of angiosperms

}}

| taxon = Angiosperms

| authority =

| subdivision_ranks = Groups (APG IV){{sfn|APG|2016}}

| subdivision = Basal angiosperms

Core angiosperms

| synonyms = *Anthophyta Cronquist{{sfn|Cronquist|1960}}

  • Angiospermae Lindl.
  • Magnoliophyta Cronquist, Takht. & W.Zimm.{{Cite web |last= Reveal |first=James L. |date=2011 |orig-date=or later |title=Indices Nominum Supragenericorum Plantarum Vascularium – M |url=https://www.plantsystematics.org/reveal/pbio/fam/allspgfileM.html |access-date=28 August 2017 |archive-url=https://web.archive.org/web/20130827073817/https://www.plantsystematics.org/reveal/pbio/fam/allspgfileM.html |archive-date=27 August 2013 }}
  • Magnolicae Takht.{{sfn|Takhtajan|1964}}

}}

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae ({{IPAc-en|ˌ|æ|n|dʒ|i|ə|ˈ|s|p|ər|m|i:}}).{{cite book |last=Lindley |first=J. |year=1830 |url=https://www.biodiversitylibrary.org/item/31944#page/21/mode/1up |title=Introduction to the Natural System of Botany |location=London |publisher=Longman, Rees, Orme, Brown, and Green |pages=xxxvi |no-pp=true |access-date=29 January 2018 |archive-date=27 August 2017 |archive-url=https://web.archive.org/web/20170827171755/http://www.biodiversitylibrary.org/item/31944#page/21/mode/1up |url-status=live }}{{cite journal |last1=Cantino |first1=Philip D. |last2=Doyle |first2=James A. |last3=Graham |first3=Sean W. |last4=Judd |first4=Walter S. |last5=Olmstead |first5=Richard G. |last6=Soltis |first6=Douglas E. |author-link6=Douglas E. Soltis |last7=Soltis |first7=Pamela S. |author-link7=Pamela S. Soltis |last8=Donoghue |first8=Michael J. |display-authors=3 |year=2007 |title= Towards a phylogenetic nomenclature of Tracheophyta |journal=Taxon |volume=56 |issue=3 |pages=E1–E44 |doi=10.2307/25065865|jstor=25065865 }} The term 'angiosperm' is derived from the Greek words ἀγγεῖον / {{lang|grc-Latn|angeion}} ('container, vessel') and σπέρμα / {{lang|grc-Latn|sperma}} ('seed'), meaning that the seeds are enclosed within a fruit. The group was formerly called Magnoliophyta.{{sfn|Takhtajan|1980}}

Angiosperms are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species.{{cite journal |last1=Christenhusz |first1=M. J. M. |last2=Byng |first2=J. W. |year=2016 |title=The number of known plants species in the world and its annual increase |journal=Phytotaxa |volume=261 |pages=201–217 |url=https://biotaxa.org/Phytotaxa/article/download/phytotaxa.261.3.1/20598 |doi=10.11646/phytotaxa.261.3.1 |issue=3 |doi-access=free |bibcode=2016Phytx.261..201C |access-date=21 February 2022 |archive-date=6 April 2017 |archive-url=https://web.archive.org/web/20170406045346/http://biotaxa.org/Phytotaxa/article/download/phytotaxa.261.3.1/20598 |url-status=live }} They include all forbs (flowering plants without a woody stem), grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. Angiosperms are distinguished from the other major seed plant clade, the gymnosperms, by having flowers, xylem consisting of vessel elements instead of tracheids, endosperm within their seeds, and fruits that completely envelop the seeds. The ancestors of flowering plants diverged from the common ancestor of all living gymnosperms before the end of the Carboniferous, over 300 million years ago. In the Cretaceous, angiosperms diversified explosively, becoming the dominant group of plants across the planet.

Agriculture is almost entirely dependent on angiosperms, and a small number of flowering plant families supply nearly all plant-based food and livestock feed. Rice, maize and wheat provide half of the world's staple calorie intake, and all three plants are cereals from the Poaceae family (colloquially known as grasses). Other families provide important industrial plant products such as wood, paper and cotton, and supply numerous ingredients for beverages, sugar production, traditional medicine and modern pharmaceuticals. Flowering plants are also commonly grown for decorative purposes, with certain flowers playing significant cultural roles in many societies.

Out of the "Big Five" extinction events in Earth's history, only the Cretaceous–Paleogene extinction event had occurred while angiosperms dominated plant life on the planet. Today, the Holocene extinction affects all kingdoms of complex life on Earth, and conservation measures are necessary to protect plants in their habitats in the wild (in situ), or failing that, ex situ in seed banks or artificial habitats like botanic gardens. Otherwise, around 40% of plant species may become extinct due to human actions such as habitat destruction, introduction of invasive species, unsustainable logging, land clearing and overharvesting of medicinal or ornamental plants. Further, climate change is starting to impact plants and is likely to cause many species to become extinct by 2100.

Distinguishing features

Angiosperms are terrestrial vascular plants; like the gymnosperms, they have roots, stems, leaves, and seeds. They differ from other seed plants in several ways.

class="wikitable"

! Feature !! Description !! Image

FlowersThe reproductive organs of flowering plants, not found in any other seed plants.{{cite web |title=Angiosperms {{!}} OpenStax Biology 2e |url=https://courses.lumenlearning.com/suny-osbiology2e/chapter/angiosperms/ |access-date=19 July 2021 |website=courses.lumenlearning.com |archive-date=19 July 2021|archive-url=https://web.archive.org/web/20210719225359/https://courses.lumenlearning.com/suny-osbiology2e/chapter/angiosperms/ |url-status=live}}File:Daffodil flower in section, labelled.svg flower in section. Petals and sepals are replaced here by a fused tube, the corona, and tepals.]]
Reduced gametophytes, three cells in male, seven cells with eight nuclei in female (except for basal angiosperms){{cite journal |last1=Friedman |first1=William E. |last2=Ryerson |first2=Kirsten C. |title=Reconstructing the ancestral female gametophyte of angiosperms: Insights from Amborella and other ancient lineages of flowering plants |journal=American Journal of Botany |volume=96 |issue=1 |date=2009 |doi=10.3732/ajb.0800311 |pages=129–143|pmid=21628180 }}The gametophytes are smaller than those of gymnosperms.{{cite book |author1=Raven, Peter H. |author2=Evert, Ray F. |author3=Eichhorn, Susan E. |title=Biology of Plants |url=https://archive.org/details/biologyofplants00rave_0 |url-access=registration |year=2005 |publisher=W. H. Freeman |isbn=978-0-7167-1007-3 |pages=[https://archive.org/details/biologyofplants00rave_0/page/376 376]–}} The smaller size of the pollen reduces the time between pollination and fertilization, which in gymnosperms is up to a year.{{cite journal |last=Williams |first=Joseph H. |title=The evolution of pollen germination timing in flowering plants: Austrobaileya scandens (Austrobaileyaceae) |journal=AoB Plants |volume=2012 |pages=pls010 |date=2012 |pmid=22567221 |pmc=3345124 |doi=10.1093/aobpla/pls010 }}

|rowspan=2 | File:Angiosperm embryo sac with female gametophyte.JPG is a reduced female gametophyte.]]

EndospermEndosperm forms after fertilization but before the zygote divides. It provides food for the developing embryo, the cotyledons, and sometimes the seedling.{{cite journal |last1=Baroux |first1=C. |last2=Spillane |first2=C. |last3=Grossniklaus |first3=U. |title=Evolutionary origins of the endosperm in flowering plants |journal=Genome Biology |volume=3 |article-number=reviews1026.1 |year=2002 |issue=9 |pages=reviews1026.1 |doi=10.1186/gb-2002-3-9-reviews1026 |pmid=12225592 |pmc=139410 |doi-access=free }}
Closed carpel enclosing the ovules.Once the ovules are fertilised, the carpels, often with surrounding tissues, develop into fruits. Gymnosperms have unenclosed seeds.{{cite journal |last=Gonçalves |first=Beatriz |title=Case not closed: the mystery of the origin of the carpel |journal=EvoDevo |volume=12 |issue=1 |date=2021-12-15 |page=14 |issn=2041-9139 |doi=10.1186/s13227-021-00184-z |pmid=34911578 |pmc=8672599 |doi-access=free }}File:Alternating peas in peapod (cropped).jpg
Xylem made of vessel elementsOpen vessel elements are stacked end to end to form continuous tubes, whereas gymnosperm xylem is made of tapered tracheids connected by small pits.{{cite book | last=Baas | first=Pieter | title=New Perspectives in Wood Anatomy | chapter=Systematic, phylogenetic, and ecological wood anatomy — History and perspectives | series=Forestry Sciences | publisher=Springer Netherlands | publication-place=Dordrecht | year=1982 | volume=1 | isbn=978-90-481-8269-5 | issn=0924-5480 | doi=10.1007/978-94-017-2418-0_2 | pages=23–58}}File:Herbaceous Dicot Stem Xylem Vessels Cucurbita (35463815631).jpg vessels (long tubes).]]

Diversity

= Ecological diversity =

{{further|Plant ecology}}

File:MountainAshWithCars.jpg|Eucalyptus regnans,
a tree almost 100 m tall

File:WolffiaArrhiza2.jpg|Wolffia arrhiza, a rootless floating freshwater plant under 2 mm across

The largest angiosperms are Eucalyptus gum trees of Australia, and Shorea faguetiana, dipterocarp rainforest trees of Southeast Asia, both of which can reach almost {{convert|100|m|ft}} in height.{{cite web |title=Menara, yellow meranti, Shorea |url=https://www.guinnessworldrecords.com/world-records/572236-tallest-flowering-plant-angiosperm |website=Guinness World Records |date=6 January 2019 |access-date=8 May 2023 |quote=yellow meranti (Shorea faguetiana) ... 98.53 m (323 ft 3.1 in) tall ... swamp gum (Eucalyptus regnans) ... In 2014, it had a tape-drop height of 99.82 m (327 ft 5.9 in)}} The smallest are Wolffia duckweeds which float on freshwater, each plant less than {{convert|2|mm|in|2}} across.{{Cite web |date=2009-11-25 |title=The Charms of Duckweed |url=http://www.mobot.org/jwcross/duckweed/duckweed.htm |access-date=2022-07-05 |publisher=Missouri Botanical Garden |archive-url=https://web.archive.org/web/20091125213317/http://www.mobot.org/jwcross/duckweed/duckweed.htm |url-status=dead |archive-date=25 November 2009 }}

File:Sunlight on a gunnera leaf, 'Quarry Garden', Belsay estate - geograph.org.uk - 1384733.jpg|Gunnera captures sunlight for photosynthesis over the large surfaces of its leaves, which are supported by strong veins.

File:Orobanche purpurea.jpg|Orobanche purpurea, a parasitic broomrape with no leaves, obtains all its food from other plants.

Considering their method of obtaining energy, some 99% of flowering plants are photosynthetic autotrophs, deriving their energy from sunlight and using it to create molecules such as sugars. The remainder are parasitic, whether on fungi like the orchids for part or all of their life-cycle,{{cite journal |last=Leake |first=J.R. |year=1994 |title=The biology of myco-heterotrophic ('saprophytic') plants |journal=New Phytologist |volume=127 |issue=2 |pages=171–216 |doi=10.1111/j.1469-8137.1994.tb04272.x |pmid=33874520 |bibcode=1994NewPh.127..171L |s2cid=85142620 }} or on other plants, either wholly like the broomrapes, Orobanche, or partially like the witchweeds, Striga.{{cite journal |last1=Westwood |first1=James H. |last2=Yoder |first2=John I. |last3=Timko |first3=Michael P. |last4=dePamphilis |first4=Claude W. |title=The evolution of parasitism in plants |journal=Trends in Plant Science |volume=15 |issue=4 |year=2010 |issn=1360-1385 |doi=10.1016/j.tplants.2010.01.004 |pages=227–235|pmid=20153240 |bibcode=2010TPS....15..227W }}

File:Carnegiea gigantea Saguaro cactus plant (cropped).jpg|Carnegiea gigantea, the saguaro cactus, grows in hot dry deserts in Mexico and the southern United States.

File:Dryas octopetala (Colorado, USA).jpg|Dryas octopetala, the mountain avens, lives in cold arctic and montane habitats in the far north of America and Eurasia.

File:Nelumbo nucifera Gaertn. (47502598342).jpg|Nelumbo nucifera, the sacred lotus, grows in warm freshwater across tropical and subtropical Asia.

File:Zostera.jpg|Zostera seagrass grows on the seabed in sheltered coastal waters.

In terms of their environment, flowering plants are cosmopolitan, occupying a wide range of habitats on land, in fresh water and in the sea. On land, they are the dominant plant group in every habitat except for frigid moss-lichen tundra and coniferous forest.{{cite web |title=Angiosperms |url=http://landau.faculty.unlv.edu//angiosperms.htm |publisher=University of Nevada, Las Vegas |access-date=6 May 2023}} The seagrasses in the Alismatales grow in marine environments, spreading with rhizomes that grow through the mud in sheltered coastal waters.{{cite book |last1=Kendrick |first1=Gary A. |last2=Orth |first2=Robert J. |last3=Sinclair |first3=Elizabeth A. |last4=Statton |first4=John |title=Plant Regeneration from Seeds |chapter=Effect of climate change on regeneration of seagrasses from seeds |year=2022 |doi=10.1016/b978-0-12-823731-1.00011-1 |pages=275–283 |isbn=978-0-1282-3731-1 }}

File:Drosera anglica ne2.jpg|Drosera anglica, a sundew, lives in nutrient-poor acid bogs, deriving nutrients from trapped insects.

File:Gentiana verna.jpg|Gentiana verna, the spring gentian, flourishes in dry limestone habitats.

Some specialised angiosperms are able to flourish in extremely acid or alkaline habitats. The sundews, many of which live in nutrient-poor acid bogs, are carnivorous plants, able to derive nutrients such as nitrate from the bodies of trapped insects.{{cite journal |last1=Karlsson |first1=P. S. |last2=Pate |first2=J. S. |title=Contrasting effects of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorous economy of pygmy species of Drosera. |journal=Oecologia |date=1992 |volume=92 |issue=1 |pages=8–13 |doi=10.1007/BF00317256 |pmid=28311806 |bibcode=1992Oecol..92....8K |s2cid=13038192 }} Other flowers such as Gentiana verna, the spring gentian, are adapted to the alkaline conditions found on calcium-rich chalk and limestone, which give rise to often dry topographies such as limestone pavement.{{cite book |last=Pardoe |first=H. S. |title=Mountain Plants of the British Isles |year=1995 |publisher=National Museum of Wales |page=24 |isbn=978-0-7200-0423-6 |url=https://books.google.com/books?id=bRHwm1F15S0C&pg=PA24}}

File:GT Herb Robert.jpg|Geranium robertianum, herb-Robert, is an annual or biennial herb of Europe and North America.

File:Betula_pendula_001.jpg|Betula pendula, the silver birch, is a perennial deciduous tree of Eurasia.

File:Lianas.jpg|Lianas Austrosteenisia, Parsonsia, and Sarcopetalum climbing trees in Australia

As for their growth habit, the flowering plants range from small, soft herbaceous plants, often living as annuals or biennials that set seed and die after one growing season,{{cite journal |last1=Hart |first1=Robin |title=Why are Biennials so Few? |journal=The American Naturalist |date=1977 |volume=111 |issue=980 |pages=792–799 |doi=10.1086/283209 |jstor=2460334 |bibcode=1977ANat..111..792H |s2cid=85343835 }} to large perennial woody trees that may live for many centuries and grow to many metres in height. Some species grow tall without being self-supporting like trees by climbing on other plants in the manner of vines or lianas.{{cite journal |last1=Rowe |first1=Nick |last2=Speck |first2=Thomas |title=Plant growth forms: an ecological and evolutionary perspective |journal=New Phytologist |volume=166 |issue=1 |date=2005-01-12 |issn=0028-646X |doi=10.1111/j.1469-8137.2004.01309.x |pages=61–72 |pmid=15760351 |doi-access=free |bibcode=2005NewPh.166...61R }}

= Taxonomic diversity =

The number of species of flowering plants is estimated to be in the range of 250,000 to 400,000.{{cite journal |last=Thorne |first=R.F. |title=How many species of seed plants are there?|journal=Taxon|volume=51 |pages=511–522 |year=2002|doi=10.2307/1554864 |issue=3 |jstor=1554864|bibcode=2002Taxon..51..511T }}{{cite journal |last1=Scotland |first1=R. W. |last2=Wortley |first2=A. H. |title=How many species of seed plants are there? |journal=Taxon |volume=52 |pages=101–104|year=2003 |doi=10.2307/3647306 |issue=1 |jstor=3647306|bibcode=2003Taxon..52..101S }}{{cite journal |last=Govaerts |first=R. |title=How many species of seed plants are there? – a response |journal=Taxon |volume=52 |issue=3 |pages=583–584 |year=2003 |doi=10.2307/3647457 |jstor=3647457|doi-access=free |bibcode=2003Taxon..52..583G }} This compares to around 12,000 species of moss{{cite journal |last1=Goffinet |first1=Bernard |last2=Buck |first2=William R. |year=2004 |title=Systematics of the Bryophyta (Mosses): From molecules to a revised classification |journal=Monographs in Systematic Botany |volume=98 |pages=205–239 }} and 11,000 species of pteridophytes.{{cite book |last1=Raven |first1=Peter H. |last2=Evert |first2=Ray F. |last3=Eichhorn |first3=Susan E. |date=2005 |title=Biology of Plants |edition=7th |location=New York |publisher=W. H. Freeman and Company |isbn=0-7167-1007-2 }} The APG system seeks to determine the number of families, mostly by molecular phylogenetics. In the 2009 APG III there were 415 families.{{sfn|APG|2009}} The 2016 APG IV added five new orders (Boraginales, Dilleniales, Icacinales, Metteniusales and Vahliales), along with some new families, for a total of 64 angiosperm orders and 416 families.{{sfn|APG|2016}}

The diversity of flowering plants is not evenly distributed. Nearly all species belong to the eudicot (75%), monocot (23%), and magnoliid (2%) clades. The remaining five clades contain a little over 250 species in total; i.e. less than 0.1% of flowering plant diversity, divided among nine families. The 25 most species-rich of 443 families,{{cite web |last=Stevens |first=P. F. |year=2011 |url=https://www.mobot.org/MOBOT/Research/APweb/welcome.html |title=Angiosperm Phylogeny Website (at Missouri Botanical Garden) |access-date=21 February 2022 |archive-date=20 January 2022 |archive-url=https://web.archive.org/web/20220120065914/http://www.mobot.org/mobot/research/apweb/welcome.html |url-status=live}} containing over 166,000 species between them in their APG circumscriptions, are:

class="wikitable sortable"

|+ The 25 largest angiosperm families

GroupFamilyEnglish nameNo. of spp.
1EudicotAsteraceae or Compositaedaisy22,750
2MonocotOrchidaceaeorchid21,950
3EudicotFabaceae or Leguminosaepea, legume19,400
4EudicotRubiaceaemadder13,150{{cite web|title=Kew Scientist 30|date=October 2006|url=https://www.kew.org/kewscientist/ks_30.pdf|archive-url=https://web.archive.org/web/20070927005410/https://www.kew.org/kewscientist/ks_30.pdf|archive-date=27 September 2007}}
5MonocotPoaceae or Gramineaegrass10,035
6EudicotLamiaceae or Labiataemint7,175
7EudicotEuphorbiaceaespurge5,735
8EudicotMelastomataceaemelastome5,005
9EudicotMyrtaceaemyrtle4,625
10EudicotApocynaceaedogbane4,555
11MonocotCyperaceaesedge4,350
12EudicotMalvaceaemallow4,225
13MonocotAraceaearum4,025
14EudicotEricaceaeheath3,995
15EudicotGesneriaceaegesneriad3,870
16EudicotApiaceae or Umbelliferaeparsley3,780
17EudicotBrassicaceae or Cruciferaecabbage3,710
18Magnoliid dicotPiperaceaepepper3,600
19MonocotBromeliaceaebromeliad3,540
20EudicotAcanthaceaeacanthus3,500
21EudicotRosaceaerose2,830
22EudicotBoraginaceaeborage2,740
23EudicotUrticaceaenettle2,625
24EudicotRanunculaceaebuttercup2,525
25Magnoliid dicotLauraceaelaurel2,500

Evolution

= History of classification =

{{main|Plant taxonomy}}

File:Ehret-Methodus Plantarum Sexualis.jpg

The botanical term "angiosperm", from Greek words {{lang|grc-Latn|angeíon}} ({{wikt-lang|grc|ἀγγεῖον}} 'bottle, vessel') and {{lang|grc-Latn|spérma}} ({{wikt-lang|grc|σπέρμα}} 'seed'), was coined in the form "Angiospermae" by Paul Hermann in 1690, including only flowering plants whose seeds were enclosed in capsules.{{sfn|Balfour|Rendle|1911|p=9}} The term angiosperm fundamentally changed in meaning in 1827 with Robert Brown, when angiosperm came to mean a seed plant with enclosed ovules.{{cite book |last=Brown |first=Robert |chapter=Character and description of Kingia, a new genus of plants found on the southwest coast of New Holland: with observations on the structure of its unimpregnated ovulum; and on the female flower of Cycadeae and Coniferae |pages=534–565 |chapter-url={{Google books|RjdCAAAAIAAJ|page=534|plainurl=yes}} |editor=King, Philip Parker |title=Narrative of a Survey of the Intertropical and Western Coasts of Australia: Performed Between the Years 1818 and 1822 |date=1827 |publisher=J. Murray |oclc=185517977 }}{{Cite journal |last=Buggs |first=Richard J.A. |date=January 2021 |title=The origin of Darwin's "abominable mystery" |journal=American Journal of Botany |volume=108 |issue=1 |pages=22–36 |doi=10.1002/ajb2.1592 |pmid=33482683 |s2cid=231689158 |doi-access=free }} In 1851, with Wilhelm Hofmeister's work on embryo-sacs, Angiosperm came to have its modern meaning of all the flowering plants including Dicotyledons and Monocotyledons.{{sfn|Balfour|Rendle|1911|p=10}} The APG system{{sfn|APG|2009}} treats the flowering plants as an unranked clade without a formal Latin name (angiosperms). A formal classification was published alongside the 2009 revision in which the flowering plants rank as the subclass Magnoliidae.{{sfn|Chase|Reveal|2009}} From 1998, the Angiosperm Phylogeny Group (APG) has reclassified the angiosperms, with updates in the APG II system in 2003,{{sfn|APG|2003}} the APG III system in 2009,{{sfn|APG|2009}}{{cite press release |title=As easy as APG III – Scientists revise the system of classifying flowering plants |publisher=The Linnean Society of London |url=https://www.linnean.org/index.php?id=448 |access-date=2 October 2009 |date=8 October 2009 |archive-url=https://web.archive.org/web/20101126092206/https://www.linnean.org/index.php?id=448 |archive-date=26 November 2010}} and the APG IV system in 2016.{{sfn|APG|2016}}

= Phylogeny =

== External ==

In 2019, a molecular phylogeny of plants placed the flowering plants in their evolutionary context:{{cite journal |last1=Leebens-Mack |first1=M. |last2=Barker |first2=M. |last3=Carpenter |first3=E. |author4-link=Michael Deyholos |last4=Deyholos |first4=M. K. |last5=Gitzendammer |first5=M. A. |last6=Graham |first6=S.W. |last7=Grosse |first7=I. |last8=Li |first8=Zheng |display-authors=3 |title=One thousand plant transcriptomes and the phylogenomics of green plants |journal=Nature |volume=574 |issue=7780 |year=2019 |pages=679–685 |doi=10.1038/s41586-019-1693-2 |pmid=31645766 |pmc=6872490 |doi-access=free }}

{{clade

|label1= Embryophytes

|sublabel1= land plants

|1={{clade

|1={{clade

|1= Bryophytes 20px

|label2= Tracheophytes

|sublabel2= vascular plants

|2={{clade

|1=Lycophytes 50px

|2={{clade

|1=Ferns 40px

|label2= Spermatophytes

|sublabel2= seed plants

|2={{clade

|label1= Gymnosperms

|sublabel1= conifers and allies

|1= 50px

|label2= Angiosperms

|sublabel2= flowering plants

|2= 50px

}}

}}

}}

}}

}}

}}

== Internal ==

The main groups of living angiosperms are:{{cite journal |last=Guo |first=Xing |title=Chloranthus genome provides insights into the early diversification of angiosperms |journal=Nature Communications |date=26 November 2021 |volume=12 |issue=1 |page=6930 |doi=10.1038/s41467-021-26922-4 |pmid=34836973 |pmc=8626473 |bibcode=2021NatCo..12.6930G |doi-access=free }}{{sfn|APG|2016}}

{{barlabel |size=20

|at1=4 |label1=Basal angiosperms

|at2=14 |label2=Core angiosperms

|cladogram={{clade|style=font-size:100%;line-height:100%

|label1= Angiosperms

|1={{clade

|1=Amborellales 70px 1 sp. New Caledonia shrub |barbegin1=red

|2={{clade

|1=Nymphaeales 70px c. 80 spp.{{cite journal |last1=Palmer |first1=Jeffrey D. |last2=Soltis |first2=Douglas E. |last3=Chase |first3=Mark W. |title=The plant tree of life: an overview and some points of view |journal=American Journal of Botany |volume=91 |issue=10 |pages=1437–45 |date=October 2004 |pmid=21652302 |doi=10.3732/ajb.91.10.1437 |doi-access=free }}, [https://www.amjbot.org/cgi/content/full/91/10/1437/F2 Figure 2] {{Webarchive|url=https://web.archive.org/web/20110202073937/http://www.amjbot.org/cgi/content/full/91/10/1437/F2 |date=2 February 2011 }} water lilies & allies |bar1=red

|2={{clade

|1=Austrobaileyales 70px c. 100 spp. woody plants |barend1=red

|2={{clade

|1={{clade

|1=Magnoliids 70px c. 10,000 spp. 3-part flowers, 1-pore pollen, usu. branch-veined leaves |barbegin1=green

|2=Chloranthales 70px 77 spp.{{cite book |last1=Christenhusz |first1=Maarten J. M. |last2=Fay |first2=Michael F. |last3=Chase |first3=Mark W. |url=https://books.google.com/books?id=LLo7DwAAQBAJ&pg=PA114 |title=Plants of the World: An Illustrated Encyclopedia of Vascular Plants |isbn=978-0-226-52292-0 |page=114 |date=2017 |publisher=University of Chicago Press }} Woody, apetalous |bar2=green

}}

|2={{clade

|1=Monocots 45px c. 70,000 spp.{{Cite journal |last1=Massoni |first1=Julien |last2=Couvreur |first2=Thomas L.P. |last3=Sauquet |first3=Hervé |date=2015-03-18 |title=Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms) |journal=BMC Evolutionary Biology |volume=15 |issue=1 |pages=49 |doi=10.1186/s12862-015-0320-6 |pmc=4377182 |pmid=25887386 |bibcode=2015BMCEE..15...49M |doi-access=free }} 3-part flowers, 1 cotyledon, 1-pore pollen, usu. parallel-veined leaves   |bar1=green

|2={{clade

|1=Ceratophyllales 70px c. 6 spp. aquatic plants |bar1=green

|2=Eudicots 70px c. 175,000 spp. 4- or 5-part flowers, 3-pore pollen, usu. branch-veined leaves |barend2=green

}}

}}

}}

}}

}}

}}

}}

}}

class="collapsible collapsed" style="width:100%; border:solid 1px #aaa"
style="background:#F0F2F5" |Detailed cladogram of the 2016 Angiosperm Phylogeny Group (APG) IV classification.{{sfn|APG|2016}}
{{clade|style=font-size:80%;line-height:80%

|label1=Angiosperms

|1={{clade

|1=Amborellales Melikyan, Bobrov & Zaytzeva 1999

|2={{clade

|1=Nymphaeales Salisbury ex von Berchtold & Presl 1820

|2={{clade

|1=Austrobaileyales Takhtajan ex Reveal 1992

|label2=Mesangiosperms

|2={{clade

|1=Chloranthales Mart. 1835

|2={{clade

|label1=Magnoliids

|1={{clade

|1={{clade

|1=Canellales Cronquist 1957

|2=Piperales von Berchtold & Presl 1820

}}

|2={{clade

|1=Magnoliales de Jussieu ex von Berchtold & Presl 1820

|2=Laurales de Jussieu ex von Berchtold & Presl 1820

}}

}}

}}

|3={{clade

|1={{clade

|label1=Monocots

|1={{clade

|1=Acorales Link 1835

|2={{clade

|1=Alismatales Brown ex von Berchtold & Presl 1820

|2={{clade

|1=Petrosaviales Takhtajan 1997

|2={{clade

|1={{clade

|1=Dioscoreales Brown 1835

|2=Pandanales Brown ex von Berchtold & Presl 1820

}}

|2={{clade

|1=Liliales Perleb 1826

|2={{clade

|1=Asparagales Link 1829

|label2=Commelinids

|2={{clade

|1=Arecales Bromhead 1840

|2={{clade

|1=Poales Small 1903

|2={{clade

|1=Zingiberales Grisebach 1854

|2=Commelinales de Mirbel ex von Berchtold & Presl 1820

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

|2={{clade

|1=Ceratophyllales Link 1829

|label2=Eudicots

|2=EUDICOTS

}}

}}

}}

}}

}}

}}

|targetA=EUDICOTS

|subcladeA= {{clade

|1=Ranunculales de Jussieu ex von Berchtold & Presl 1820

|2={{clade

|1=Proteales de Jussieu ex von Berchtold & Presl 1820

|2={{clade

|1=Trochodendrales Takhtajan ex Cronquist 1981

|2={{clade

|1=Buxales Takhtajan ex Reveal 1996

|label2=Core eudicots

|2={{clade

|1=Gunnerales Takhtajan ex Reveal 1992

|2={{clade

|1=Dilleniales de Candolle ex von Berchtold & Presl 1820

|label2=Superrosids

|2=SUPERROSIDS

|label3=Superasterids

|3=SUPERASTERIDS

}}

}}

}}

}}

}}

}}

|targetB=SUPERROSIDS

|subcladeB= {{clade

|1=Saxifragales von Berchtold & Presl 1820

|label2=Rosids

|2={{clade

|1=Vitales de Jussieu ex von Berchtold & Presl 1820

|2={{clade

|label1=Fabids |sublabel1=(eurosids I)

|1={{clade

|1=Zygophyllales Link 1829

|2={{clade

|1={{clade

|1=Celastrales Link 1829

|2={{clade

|1=Oxalidales von Berchtold & Presl 1820

|2=Malpighiales de Jussieu ex von Berchtold & Presl 1820

}}

}}

|2={{clade

|1=Fabales Bromhead 1838

|2={{clade

|1=Rosales von Berchtold & Presl 1820

|2={{clade

|1=Cucurbitales de Jussieu ex von Berchtold & Presl 1820

|2=Fagales Engler 1892

}}

}}

}}

}}

}}

|label2=Malvids |sublabel2=(eurosids II)

|2={{clade

|1={{clade

|1=Geraniales de Jussieu ex von Berchtold & Presl 1820

|2=Myrtales de Jussieu ex von Berchtold & Presl 1820

}}

|2={{clade

|1=Crossosomatales Takhtajan ex Reveal 1993

|2={{clade

|1=Picramniales Doweld 2001

|2={{clade

|1=Sapindales de Jussieu ex von Berchtold & Presl 1820

|2={{clade

|1=Huerteales Doweld 2001

|2={{clade

|1=Malvales de Jussieu ex von Berchtold & Presl 1820

|2=Brassicales Bromhead 1838

}}

}}

}}

}}

}}

}}

}}

}}

}}

|targetC=SUPERASTERIDS

|subcladeC= {{clade

|1=Berberidopsidales Doweld 2001

|2={{clade

|1=Santalales Brown ex von Berchtold & Presl 1820

|2={{clade

|1=Caryophyllales

|label2=Asterids

|2={{clade

|1=Cornales Link 1829

|2={{clade

|1=Ericales von Berchtold & Presl 1820

|2={{clade

|label1=Lamiids |sublabel1=(euasterids I)

|1={{clade

|1=Icacinales Van Tieghem 1900

|2={{clade

|1=Metteniusales Takhtajan 1997

|2={{clade

|1=Garryales Mart. 1835

|2={{clade

|1=Gentianales de Jussieu ex von Berchtold & Presl 1820

|2=Solanales de Jussieu ex von Berchtold & Presl 1820

|3=Boraginales de Jussieu ex von Berchtold & Presl 1820

|4=Vahliales Doweld 2001

|5=Lamiales Bromhead 1838

}}

}}

}}

}}

|label2=Campanulids |sublabel2=(euasterids II)

|2={{clade

|1=Aquifoliales Senft 1856

|2={{clade

|1=Escalloniales Mart. 1835

|2=Asterales Link 1829

|3={{clade

|1=Bruniales Dumortier 1829

|2={{clade

|1=Apiales Nakai 1930

|2={{clade

|1=Paracryphiales Takhtajan ex Reveal 1992

|2=Dipsacales de Jussieu ex von Berchtold & Presl 1820

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

In 2024, Alexandre R. Zuntini and colleagues constructed a tree of some 6,000 flowering plant genera, representing some 60% of the existing genera, on the basis of analysis of 353 nuclear genes in each specimen. Much of the existing phylogeny is confirmed; the rosid phylogeny is revised.{{cite journal |last1=Zuntini |first1=Alexandre R. |last2=Carruthers |first2=Tom |last3=Maurin |first3=Olivier |last4=Bailey |first4=Paul C. |last5=Leempoel |first5=Kevin |last6=Brewer |first6=Grace E. |display-authors=etal |title=Phylogenomics and the rise of the angiosperms |journal=Nature |date=24 April 2024 |volume=629 |issue=8013 |pages=843–850 |issn=0028-0836 |doi=10.1038/s41586-024-07324-0|pmid=38658746 |pmc=11111409 |bibcode=2024Natur.629..843Z }}

File:Tree of Angiosperm Phylogeny 2024.jpg

= Fossil history =

{{main|Fossil history of flowering plants}}

File:Sagaria cilentana (cropped).jpg in the Cretaceous created many flowering plants, such as Sagaria in the Ranunculaceae.]]

Fossilised spores suggest that land plants (embryophytes) have existed for at least 475 million years.{{cite journal |last=Edwards |first=D. |title=The role of mid-palaeozoic mesofossils in the detection of early bryophytes |journal=Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences |volume=355 |issue=1398 |pages=733–54; discussion 754–5 |date=June 2000 |pmid=10905607 |pmc=1692787 |doi=10.1098/rstb.2000.0613 }} However, angiosperms appear suddenly and in great diversity in the fossil record in the Early Cretaceous (~130 mya).{{Cite journal |last1=Herendeen |first1=Patrick S. |last2=Friis |first2=Else Marie |last3=Pedersen |first3=Kaj Raunsgaard |last4=Crane |first4=Peter R. |date=2017-03-03 |title=Palaeobotanical redux: revisiting the age of the angiosperms |url=https://rdcu.be/c0Zhm |journal=Nature Plants |volume=3 |issue=3 |pages=17015 |doi=10.1038/nplants.2017.15 |pmid=28260783 |bibcode=2017NatPl...317015H |s2cid=205458714 |issn=2055-0278}}{{Cite journal |last=Friedman |first=William E. |date=January 2009 |title=The meaning of Darwin's "abominable mystery" |url=https://onlinelibrary.wiley.com/doi/10.3732/ajb.0800150 |journal=American Journal of Botany |volume=96 |issue=1 |pages=5–21 |doi=10.3732/ajb.0800150 |pmid=21628174}} Claimed records of flowering plants prior to this are not widely accepted.{{Cite journal |last=Bateman |first=Richard M |date=2020-01-01 |editor-last=Ort |editor-first=Donald |title=Hunting the Snark: the flawed search for mythical Jurassic angiosperms |url=https://academic.oup.com/jxb/article/71/1/22/5571867 |journal=Journal of Experimental Botany |language=en |volume=71 |issue=1 |pages=22–35 |doi=10.1093/jxb/erz411 |pmid=31538196 |issn=0022-0957}} Molecular evidence suggests that the ancestors of angiosperms diverged from the gymnosperms during the late Devonian, about 365 million years ago.{{Cite journal |last1=Stull |first1=Gregory W. |last2=Qu |first2=Xiao-Jian |last3=Parins-Fukuchi |first3=Caroline |last4=Yang |first4=Ying-Ying |last5=Yang |first5=Jun-Bo |last6=Yang |first6=Zhi-Yun |last7=Hu |first7=Yi |last8=Ma |first8=Hong |last9=Soltis |first9=Pamela S. |last10=Soltis |first10=Douglas E. |last11=Li |first11=De-Zhu |display-authors=3 |date=19 July 2021 |title=Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms |url=https://www.nature.com/articles/s41477-021-00964-4 |journal=Nature Plants |volume=7|issue=8 |pages=1015–1025 |doi=10.1038/s41477-021-00964-4 |pmid=34282286 |bibcode=2021NatPl...7.1015S |s2cid=236141481 |access-date=10 January 2022 |archive-date=10 January 2022 |archive-url=https://web.archive.org/web/20220110174725/https://www.nature.com/articles/s41477-021-00964-4/ |url-status=live}} The origin time of the crown group of flowering plants remains contentious.{{Cite journal |last1=Sauquet |first1=Hervé |last2=Ramírez-Barahona |first2=Santiago |last3=Magallón |first3=Susana |date=2022-06-24 |editor-last=Melzer |editor-first=Rainer |title=What is the age of flowering plants? |url=https://academic.oup.com/jxb/article/73/12/3840/6570702 |journal=Journal of Experimental Botany |language=en |volume=73 |issue=12 |pages=3840–3853 |doi=10.1093/jxb/erac130 |pmid=35438718 |issn=0022-0957}} By the Late Cretaceous, angiosperms appear to have dominated environments formerly occupied by ferns and gymnosperms. Large canopy-forming trees replaced conifers as the dominant trees close to the end of the Cretaceous, 66 million years ago.{{cite book |last1=Sadava |first1=David |last2=Heller |first2=H. Craig |last3=Orians |first3=Gordon H. |last4=Purves |first4=William K. |last5=Hillis |first5=David M. |display-authors=3 |title=Life: the science of biology |url=https://books.google.com/books?id=1m0_FLEjd-cC&pg=PA477 |access-date=4 August 2010 |date=December 2006 |publisher=Macmillan |isbn=978-0-7167-7674-1 |pages=477– |archive-date=23 December 2011 |archive-url=https://web.archive.org/web/20111223082952/http://books.google.com/books?id=1m0_FLEjd-cC&pg=PA477|url-status=live}} The radiation of herbaceous angiosperms occurred much later.{{cite book |last1=Stewart |first1=Wilson Nichols |last2=Rothwell |first2=Gar W. |title=Paleobotany and the evolution of plants |edition=2nd |publisher=Cambridge University Press |year=1993 |page=498 |isbn=978-0-521-23315-6 }}

Reproduction

= Flowers =

{{main|Flower|Plant reproductive morphology}}

File:Angiosperm life cycle diagram-en.svg showing reproductive parts and life cycle]]

The characteristic feature of angiosperms is the flower. Its function is to ensure fertilization of the ovule and development of fruit containing seeds.{{Cite journal |last=Willson |first=Mary F. |date=1 June 1979 |title=Sexual Selection in Plants |url=https://www.journals.uchicago.edu/doi/10.1086/283437 |journal=The American Naturalist |volume=113 |issue=6 |pages=777–790 |doi=10.1086/283437 |bibcode=1979ANat..113..777W |s2cid=84970789 |access-date=9 November 2021 |archive-date=9 November 2021 |archive-url=https://web.archive.org/web/20211109164204/https://www.journals.uchicago.edu/doi/10.1086/283437|url-status=live}} It may arise terminally on a shoot or from the axil of a leaf.{{cite book |last=Bredmose |first=N. |title=Encyclopedia of Rose Science |chapter=Growth Regulation: Axillary Bud Growth |publisher=Elsevier |year=2003 |doi=10.1016/b0-12-227620-5/00017-3 |pages=374–381|isbn=9780122276200 }} The flower-bearing part of the plant is usually sharply distinguished from the leaf-bearing part, and forms a branch-system called an inflorescence.{{sfn|Balfour|Rendle|1911|p=10}}

Flowers produce two kinds of reproductive cells. Microspores, which divide to become pollen grains, are the male cells; they are borne in the stamens.{{cite book |last1=Salisbury |first1=Frank B. |chapter=Sexual Reproduction |date=1970 |title=Vascular Plants: Form and Function |pages=185–195 |editor-last=Salisbury |editor-first=Frank B. |series=Fundamentals of Botany Series |location=London |publisher=Macmillan Education |doi=10.1007/978-1-349-00364-8_13 |isbn=978-1-349-00364-8 |last2=Parke |first2=Robert V. |doi-broken-date=22 January 2025 |editor2-last=Parke |editor2-first=Robert V.}} The female cells, megaspores, divide to become the egg cell. They are contained in the ovule and enclosed in the carpel; one or more carpels form the pistil.

The flower may consist only of these parts, as in wind-pollinated plants like the willow, where each flower comprises only a few stamens or two carpels.{{sfn|Balfour|Rendle|1911|p=10}} In insect- or bird-pollinated plants, other structures protect the sporophylls and attract pollinators. The individual members of these surrounding structures are known as sepals and petals (or tepals in flowers such as Magnolia where sepals and petals are not distinguishable from each other). The outer series (calyx of sepals) is usually green and leaf-like, and functions to protect the rest of the flower, especially the bud.{{Sfn|De Craene|P.|2010|p=7}}{{Sfn|D. Mauseth|2016|p=225}} The inner series (corolla of petals) is, in general, white or brightly colored, is more delicate in structure, and attracts pollinators by colour, scent, and nectar.{{Sfn|De Craene|P.|2010|p=8}}{{Sfn|D. Mauseth|2016|p=226}}

Most flowers are hermaphroditic, producing both pollen and ovules in the same flower, but some use other devices to reduce self-fertilization. Heteromorphic flowers have carpels and stamens of differing lengths, so animal pollinators cannot easily transfer pollen between them. Homomorphic flowers may use a biochemical self-incompatibility to discriminate between self and non-self pollen grains. Dioecious plants such as holly have male and female flowers on separate plants.{{Cite journal |last=Ainsworth |first=C. |date=August 2000 |title=Boys and Girls Come Out to Play: The Molecular Biology of Dioecious Plants |journal=Annals of Botany |volume=86 |issue=2 |pages=211–221 |doi=10.1006/anbo.2000.1201 |doi-access=free|bibcode=2000AnBot..86..211A }} Monoecious plants have separate male and female flowers on the same plant; these are often wind-pollinated,{{Cite book |last=Batygina |first=T.B. |url=https://books.google.com/books?id=4VOWDwAAQBAJ&q=monoecy&pg=PA43 |title=Embryology of Flowering Plants: Terminology and Concepts, Vol. 3: Reproductive Systems |date=2019 |publisher=CRC Press |isbn=978-1-4398-4436-6 |page=43}} as in maize,{{cite journal | last1=Bortiri | first1=E. | last2=Hake | first2=S. | title=Flowering and determinacy in maize | journal=Journal of Experimental Botany | publisher=Oxford University Press (OUP) | volume=58 | issue=5 | date=2007-01-13 | issn=0022-0957 | doi=10.1093/jxb/erm015 | pages=909–916| pmid=17337752 }} but include some insect-pollinated plants such as Cucurbita squashes.{{cite book |last=Mabberley |first=D. J. |year=2008 |title=The Plant Book: A Portable Dictionary of the Vascular Plants |publisher=Cambridge University Press |location=Cambridge |isbn=978-0-521-82071-4 |page=235}}{{efloras|2|108644 |access-date=21 February 2015}}

= Fertilisation and embryogenesis =

{{main|Fertilization|Plant embryogenesis}}

Double fertilization requires two sperm cells to fertilise cells in the ovule. A pollen grain sticks to the stigma at the top of the pistil, germinates, and grows a long pollen tube. A haploid generative cell travels down the tube behind the tube nucleus. The generative cell divides by mitosis to produce two haploid (n) sperm cells. The pollen tube grows from the stigma, down the style and into the ovary. When it reaches the micropyle of the ovule, it digests its way into one of the synergids, releasing its contents including the sperm cells. The synergid that the cells were released into degenerates; one sperm makes its way to fertilise the egg cell, producing a diploid (2n) zygote. The second sperm cell fuses with both central cell nuclei, producing a triploid (3n) cell. The zygote develops into an embryo; the triploid cell develops into the endosperm, the embryo's food supply. The ovary develops into a fruit and each ovule into a seed.{{cite journal |last=Berger |first=F. |date=January 2008 |title=Double-fertilization, from myths to reality |journal=Sexual Plant Reproduction |volume=21 |issue=1 |pages=3–5 |doi=10.1007/s00497-007-0066-4 |s2cid=8928640 }}

= Fruit and seed =

File:Aesculus hippocastanum fruit.jpg tree, showing the large seed inside the fruit, which is dehiscing or splitting open. ]]

{{main|Fruit|Seed}}

As the embryo and endosperm develop, the wall of the embryo sac enlarges and combines with the nucellus and integument to form the seed coat. The ovary wall develops to form the fruit or pericarp, whose form is closely associated with type of seed dispersal system.{{cite journal |last=Eriksson |first=O. |title=Evolution of Seed Size and Biotic Seed Dispersal in Angiosperms: Paleoecological and Neoecological Evidence |journal=International Journal of Plant Sciences |volume=169 |issue=7 |pages=863–870 |year=2008 |doi=10.1086/589888 |bibcode=2008IJPlS.169..863E |s2cid=52905335 }}

Other parts of the flower often contribute to forming the fruit. For example, in the apple, the hypanthium forms the edible flesh, surrounding the ovaries which form the tough cases around the seeds.{{cite web |title=Fruit Anatomy |url=https://ucanr.edu/sites/btfnp/generaltopics/AnatomyPollination/Fruit_Anatomy/ |publisher=University of California |work=Fruit & Nut Research & Information Center |access-date=|url-status = live |archive-url=https://web.archive.org/web/20230502175636/https://ucanr.edu/sites/btfnp/generaltopics/AnatomyPollination/Fruit_Anatomy/ |archive-date=2 May 2023}}

Apomixis, setting seed without fertilization, is found naturally in about 2.2% of angiosperm genera.{{cite journal |last1=Hojsgaard |first1=D. |last2=Klatt |first2=S. |last3=Baier |first3=R. |last4=Carman |first4=J.G. |last5=Hörandl |first5=E. |display-authors=3 |title=Taxonomy and Biogeography of Apomixis in Angiosperms and Associated Biodiversity Characteristics |journal=Critical Reviews in Plant Sciences |volume=33 |issue=5 |pages=414–427 |date=September 2014 |pmid=27019547 |pmc=4786830 |doi=10.1080/07352689.2014.898488 |bibcode=2014CRvPS..33..414H }} Some angiosperms, including many citrus varieties, are able to produce fruits through a type of apomixis called nucellar embryony.{{cite book |last=Gentile |first=Alessandra |title=The Citrus Genome |url=https://books.google.com/books?id=hsPXDwAAQBAJ |date=18 March 2020 |publisher=Springer Nature |isbn=978-3-030-15308-3 |page=171 |access-date=13 December 2020 |archive-date=14 April 2021 |archive-url=https://web.archive.org/web/20210414224058/https://books.google.com/books?id=hsPXDwAAQBAJ |url-status=live}}

= Sexual selection =

{{Excerpt|Sexual selection in flowering plants}}

=Adaptive function of flowers=

Charles Darwin in his 1878 book The Effects of Cross and Self-Fertilization in the Vegetable Kingdom{{cite book |last=Darwin |first=Charles R. |author-link=Charles Darwin |year=1878 |title=The effects of cross and self fertilisation in the vegetable kingdom |location=London |publisher=John Murray |url=https://darwin-online.org.uk/converted/pdf/1878_Fertilisation_F1251.pdf}} in the initial paragraph of chapter XII noted "The first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross-fertilisation is beneficial and self-fertilisation often injurious, at least with the plants on which I experimented." Flowers emerged in plant evolution as an adaptation for the promotion of cross-fertilisation (outcrossing), a process that allows the masking of deleterious mutations in the genome of progeny. The masking effect is known as genetic complementation.{{cite journal |last1=Bernstein |first1=Harris |last2=Byerly |first2=Henry C. |last3=Hopf |first3=Frederic A. |last4=Michod |first4=Richard E. |title=Genetic Damage, Mutation, and the Evolution of Sex |journal=Science |volume=229 |issue=4719 |date=20 September 1985 |doi=10.1126/science.3898363 |pages=1277–1281|pmid=3898363 |bibcode=1985Sci...229.1277B }} Meiosis in flowering plants provides a direct mechanism for repairing DNA through genetic recombination in reproductive tissues.{{cite journal |last=Hörandl |first=Elvira |title=Apomixis and the paradox of sex in plants |journal=Annals of Botany |volume=134 |issue=1 |date=7 June 2024 |pmid=38497809 |pmc=11161571 |doi=10.1093/aob/mcae044 |doi-access=free |pages=1–18 |url=https://academic.oup.com/aob/advance-article-pdf/doi/10.1093/aob/mcae044/57132588/mcae044.pdf |access-date=17 January 2025}} Sexual reproduction appears to be required for maintaining long-term genomic integrity and only infrequent combinations of extrinsic and intrinsic factors permit shifts to asexuality. Thus the two fundamental aspects of sexual reproduction in flowering plants, cross-fertilization (outcrossing) and meiosis appear to be maintained respectively by the advantages of genetic complementation and recombinational repair.

Human uses

{{main|Human uses of plants}}

= Practical uses =

File:Rice Harvest 2020 - 50248478521.jpg in Arkansas, 2020]]

File:Daal_after_Tadka_Pulse_Soup_India.jpg, Indian lentil soup]]

Agriculture is almost entirely dependent on angiosperms, which provide virtually all plant-based food and fodder for livestock. Much of this food derives from a small number of flowering plant families.{{cite web |last1=Dilcher |first1=David L. |last2=Cronquist |first2=Arthur |last3=Zimmermann |first3=Martin Huldrych |last4=Stevens |first4=Peter |last5=Stevenson |first5=Dennis William |last6=Berry |first6=Paul E. |author-link2=Arthur Cronquist |author-link4=Peter F. Stevens |title=Angiosperm: Significance to Humans |url=https://www.britannica.com/plant/angiosperm/Significance-to-humans |website=Encyclopedia Britannica |date=8 March 2016}} For instance, half of the world's calorie intake is supplied by just three plants – wheat, rice and maize.{{Cite news |last=McKie |first=Robin |date=16 July 2017 |title=Maize, rice, wheat: alarm at rising climate risk to vital crops |newspaper=The Observer |url=https://www.theguardian.com/environment/2017/jul/15/climate-change-food-famine-study |access-date=30 July 2023 }}

class="wikitable"

|+ Major food-providing families

FamilyEnglishExample foods from that family
PoaceaeGrasses, cerealsMost feedstocks, inc. rice, maize, wheat, barley, rye, oats, pearl millet, sugar cane, sorghum
FabaceaeLegumes, pea familyPeas, beans, lentils; for animal feed, clover, alfalfa
SolanaceaeNightshade familyPotatoes, tomatoes, peppers, aubergines
CucurbitaceaeGourd familySquashes, cucumbers, pumpkins, melons
BrassicaceaeCabbage familyCabbage and its varieties, e.g. Brussels sprout, broccoli; mustard; oilseed rape
ApiaceaeParsley familyParsnip, carrot, parsley, coriander, fennel, cumin, caraway
RutaceaeRue family{{cite web |title=Rutaceae |url=https://www.botanical-dermatology-database.info/BotDermFolder/RUTA.html |url-status=live |archive-url=https://web.archive.org/web/20190719224511/https://www.botanical-dermatology-database.info/BotDermFolder/RUTA.html |archive-date=19 July 2019 |website=Botanical Dermatology Database}}Oranges, lemons, grapefruits
RosaceaeRose family{{cite journal |last1=Zhang |first1=Shu-Dong |last2=Jin |first2=Jian-Jun |last3=Chen |first3=Si-Yun |last4=Chase |first4=Mark W. |last5=Soltis |first5=Douglas E. |last6=Li |first6=Hong-Tao |last7=Yang |first7=Jun-Bo |last8=Li |first8=De-Zhu |last9=Yi |first9=Ting-Shuang |display-authors=3 |date=2017 |title=Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics |journal=New Phytologist |volume=214 |issue=3 |pages=1355–1367 |doi=10.1111/nph.14461 |pmid=28186635 |issn=1469-8137|doi-access=free |bibcode=2017NewPh.214.1355Z }}Apples, pears, cherries, apricots, plums, peaches

Flowering plants provide a diverse range of materials in the form of wood, paper, fibers such as cotton, flax, and hemp, medicines such as digoxin and opioids, and decorative and landscaping plants. Coffee and hot chocolate are beverages from flowering plants (in the Rubiaceae and Malvaceae respectively).

= Cultural uses =

File:Kingfisher-iris.jpg: Kingfisher and iris kachō-e woodblock print by Ohara Koson (late 19th century)]]

Both real and fictitious plants play a wide variety of roles in literature and film.{{cite journal |title=Literary Plants |journal=Nature Plants |date=2015 |volume=1 |issue=11 |page=15181 |doi=10.1038/nplants.2015.181 |pmid=27251545 |doi-access=free |bibcode=2015NatPl...115181. }} Flowers are the subjects of many poems by poets such as William Blake, Robert Frost, and Rabindranath Tagore.{{cite web |title=Flower Poems |url=http://www.poemhunter.com/poems/flower/ |website=Poem Hunter |access-date=21 June 2016}} Bird-and-flower painting ({{Transliteration|zh|Huaniaohua}}) is a kind of Chinese painting that celebrates the beauty of flowering plants.{{Cite web |title=Nature's Song: Chinese Bird and Flower Paintings |url=https://museum.wales/cardiff/whatson/9245/Natures-Song-Traditional-Chinese-Bird-and-Flower-Paintings-/ |access-date=2022-08-04 |website=Museum Wales |language=en |archive-date=4 August 2022 |archive-url=https://web.archive.org/web/20220804231344/https://museum.wales/cardiff/whatson/9245/Natures-Song-Traditional-Chinese-Bird-and-Flower-Paintings-/ |url-status=dead }} Flowers have been used in literature to convey meaning by authors including William Shakespeare.{{cite web |title=The Language of Flowers |url=http://www.folger.edu/template.cfm?cid=3192 |publisher=Folger Shakespeare Library |access-date=2013-05-31 |archive-url=https://web.archive.org/web/20140919185926/http://www.folger.edu/template.cfm?cid=3192 |archive-date=2014-09-19 |url-status=dead}}

Flowers are used in a variety of art forms which arrange cut or living plants, such as bonsai, ikebana, and flower arranging. Ornamental plants have sometimes changed the course of history, as in tulipomania.{{cite web |last=Lambert |first=Tim |title=A Brief History of Gardening |url=http://www.localhistories.org/gardening.html |publisher=British Broadcasting Corporation |access-date=21 June 2016 |date=2014}} Many countries and regions have floral emblems; a survey of 70 of these found that the most popular flowering plant family for such emblems is Orchidaceae at 15.7% (11 emblems), followed by Fabaceae at 10% (7 emblems), and Asparagaceae, Asteraceae, and Rosaceae all at 5.7% (4 emblems each).{{cite book |last1=Lim |first1=Reuben |last2=Tan |first2=Heok |last3=Tan |first3=Hugh |year=2013 |title=Official Biological Emblems of the World |publisher=Raffles Museum of Biodiversity Research |location=Singapore |isbn=978-9-8107-4147-1 |url=https://www.researchgate.net/publication/283008038}}

= Conservation =

{{further|Conservation biology|Effects of climate change on plant biodiversity}}

File:Viola_calcarata20052002fleur2.JPG, a species highly vulnerable to climate change.{{Cite journal |last1=Block |first1=Sebastián |last2=Maechler |first2=Marc-Jacques |last3=Levine |first3=Jacob I. |last4=Alexander |first4=Jake M. |last5=Pellissier |first5=Loïc |last6=Levine |first6=Jonathan M. |date=26 August 2022 |title=Ecological lags govern the pace and outcome of plant community responses to 21st-century climate change |journal=Ecology Letters |volume=25 |issue=10 |pages=2156–2166 |doi=10.1111/ele.14087 |pmid=36028464 |pmc=9804264 |bibcode=2022EcolL..25.2156B }}]]

Human impact on the environment has driven a range of species extinct and is threatening even more today. Multiple organizations such as IUCN and Royal Botanic Gardens, Kew suggest that around 40% of plant species are threatened with extinction.{{Cite journal |last1=Lughadha |first1=Eimear Nic|last2=Bachman |first2=Steven P. |last3=Leão |first3=Tarciso C. C. |last4=Forest |first4=Félix |last5=Halley |first5=John M. |last6=Moat |first6=Justin |last7=Acedo|first7=Carmen |last8=Bacon |first8=Karen L. |last9=Brewer |first9=Ryan F. A. |last10=Gâteblé |first10=Gildas |last11=Gonçalves |first11=Susana C.|last12=Govaerts |first12=Rafaël |last13=Hollingsworth |first13=Peter M. |last14=Krisai-Greilhuber |first14=Irmgard |last15=de Lirio |first15=Elton J. |last16=Moore |first16=Paloma G. P. |last17=Negrão |first17=Raquel |last18=Onana |first18=Jean Michel |last19=Rajaovelona |first19=Landy R. |last20=Razanajatovo |first20=Henintsoa |last21=Reich |first21=Peter B. |last22=Richards |first22=Sophie L. |last23=Rivers |first23=Malin C. |last24=Cooper |first24=Amanda |last25=Iganci |first25=João |last26=Lewis |first26=Gwilym P. |last27=Smidt |first27=Eric C. |last28=Antonelli |first28=Alexandre |last29=Mueller |first29=Gregory M. |last30=Walker |first30=Barnaby E. |date=29 September 2020 |title=Extinction risk and threats to plants and fungi |journal=Plants People Planet |volume=2 |issue=5 |pages=389–408 |doi=10.1002/ppp3.10146 |s2cid=225274409 |doi-access=free |bibcode=2020PlPP....2..389N |hdl=10316/101227 |hdl-access=free }} The majority are threatened by habitat loss, but activities such as logging of wild timber trees and collection of medicinal plants, or the introduction of non-native invasive species, also play a role.{{cite journal |last1=Wiens |first1=John J. |title=Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species |journal=PLOS Biology |date=2016 |volume=14 |issue=12 |pages=e2001104 |doi=10.1371/journal.pbio.2001104 |doi-access=free |pmid=27930674 |pmc=5147797 |hdl=10150/622757 |hdl-access=free }}{{cite book |last=Shivanna |first=K. R. |title=Biodiversity and Chemotaxonomy |chapter=The 'Sixth Mass Extinction Crisis' and Its Impact on Flowering Plants |series=Sustainable Development and Biodiversity |publisher=Springer International Publishing |publication-place=Cham |volume=24 |date=2019 |pages=15–42 |isbn=978-3-030-30745-5 |doi=10.1007/978-3-030-30746-2_2}}

Relatively few plant diversity assessments currently consider climate change, yet it is starting to impact plants as well. About 3% of flowering plants are very likely to be driven extinct within a century at {{convert|2|C-change|F-change}} of global warming, and 10% at {{convert|3.2|C-change|F-change}}.Parmesan, C., M.D. Morecroft, Y. Trisurat et al. (2022) [https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter02.pdf Chapter 2: Terrestrial and Freshwater Ecosystems and Their Services] in {{cite book | title=Climate Change 2022 – Impacts, Adaptation and Vulnerability | chapter=Terrestrial and Freshwater Ecosystems and Their Services | publisher=Cambridge University Press | date=2023 | isbn=978-1-009-32584-4 | doi=10.1017/9781009325844.004 | pages=197–378 |url=https://www.ipcc.ch/report/ar6/wg2/}} In worst-case scenarios, half of all tree species may be driven extinct by climate change over that timeframe.

Conservation in this context is the attempt to prevent extinction, whether in situ by protecting plants and their habitats in the wild, or ex situ in seed banks or as living plants.{{cite web |title=Botanic Gardens and Plant Conservation |url=https://www.bgci.org/about/botanic-gardens-and-plant-conservation/ |website=Botanic Gardens Conservation International |access-date=19 July 2023}} Some 3000 botanic gardens around the world maintain living plants, including over 40% of the species known to be threatened, as an "insurance policy against extinction in the wild."{{cite web |title=Plant Conservation Around the World |url=https://www.botanic.cam.ac.uk/festival-of-plants-2020/fop-day3-conservation/plant-conservation-around-the-world/ |website=Cambridge University Botanic Garden |access-date=19 July 2023 |date=2020}} The United Nations' Global Strategy for Plant Conservation asserts that "without plants, there is no life". It aims to "halt the continuing loss of plant diversity" throughout the world.{{cite web |title=Updated Global Strategy for Plant Conservation 2011–2020 |url=https://www.cbd.int/gspc/ |website=Convention on Biological Diversity |access-date=19 July 2023 |date=3 July 2023}}{{Clear}}

References

{{Reflist|30em}}

Bibliography

= Articles, books and chapters =

{{Refbegin|30em}}

  • {{EB1911 |wstitle=Angiosperms |volume=2 |pages=9–14 |first1=Isaac Bayley |last1=Balfour |author-link1=Isaac Bayley Balfour |first2=Alfred Barton |last2=Rendle |author-link2=Alfred Barton Rendle}}
  • {{cite journal |last=APG |author-link=Angiosperm Phylogeny Group |journal=Botanical Journal of the Linnean Society |volume=141 |pages=399–436 |year=2003 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II |doi=10.1046/j.1095-8339.2003.t01-1-00158.x |issue=4 |doi-access=free}}
  • {{cite journal |last=APG |author-link=Angiosperm Phylogeny Group |year=2009 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III |journal=Botanical Journal of the Linnean Society |volume=161 |issue=2 |pages=105–121 |doi=10.1111/j.1095-8339.2009.00996.x |doi-access=free|hdl=10654/18083 |hdl-access=free }}
  • {{Cite journal |last=APG |author-link=Angiosperm Phylogeny Group |year=2016 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV |journal=Botanical Journal of the Linnean Society |volume=181 |issue=1 |pages=1–20 |doi= 10.1111/boj.12385 |doi-access=free }}
  • {{cite journal |last1=Becker |first1=Kenneth M. |title=A Comparison of Angiosperm Classification Systems |journal=Taxon |date=February 1973 |volume=22 |issue=1 |pages=19–50 |doi=10.2307/1218032 |jstor=1218032 |bibcode=1973Taxon..22...19B |ref=none}}
  • {{cite book |last1=Bell |first1=Adrian D. |title=Plant Form. An Illustrated Guide to Flowering Plant Morphology |date=2008 |orig-date=1991 |publisher=Timber Press |location=Portland, Oregon |isbn=978-0-88192-850-1 |url=https://books.google.com/books?id=SM3khPHXhKEC |ref=none}}
  • [https://archive.org/details/plantform00adri 1st edition published by Oxford University Press in 1991] {{ISBN |978-0-19854-219-3}}
  • {{cite journal |last1=Bell |first1=C.D. |last2=Soltis |first2=D.E. |last3=Soltis |first3=P.S. |author-link3=Pamela S. Soltis |author-link2=Douglas Soltis |year=2010 |title=The Age and Diversification of the Angiosperms Revisited |journal=American Journal of Botany |volume=97 |issue=8 |pages=1296–1303 |doi=10.3732/ajb.0900346 |pmid=21616882 |s2cid=207613985 |ref=none}}
  • {{cite journal |last1=Chase |first1=Mark W. |last2=Reveal |first2=James L. |year=2009 |title=A phylogenetic classification of the land plants to accompany APG III |journal=Botanical Journal of the Linnean Society |volume=161 |issue=2 |pages=122–127 |doi=10.1111/j.1095-8339.2009.01002.x |doi-access=free}}
  • {{Cite book |last1=De Craene |first1=Ronse |last2=P.|first2=Louis|title=Floral Diagrams |date=2010 |publisher=Cambridge University Press |isbn=978-0-511-80671-1 |location=Cambridge|doi=10.1017/cbo9780511806711 }}
  • Cromie, William J. (16 December 1999). [https://web.archive.org/web/20030714120417/http://www.news.harvard.edu/gazette/1999/12.16/angiosperms.html "Oldest Known Flowering Plants Identified By Genes"]. Harvard University Gazette.
  • {{cite journal |last1=Cronquist |first1=Arthur |author-link=Arthur Cronquist |title=The divisions and classes of plants |journal=The Botanical Review |date=October 1960 |volume=26 |issue=4 |pages=425–482 |doi=10.1007/BF02940572 |bibcode=1960BotRv..26..425C |s2cid=43144314}}
  • {{cite book |last=Cronquist |first= Arthur |author-link=Arthur Cronquist |year=1981 |title=An Integrated System of Classification of Flowering Plants |url=https://archive.org/details/integratedsystem0000cron |url-access=registration |publisher=Columbia Univ. Press |location= New York |isbn= 978-0-231-03880-5 |ref=none}}
  • {{cite journal |last1=Dahlgren |first1=R. M. T. |author-link=Rolf Dahlgren |title=A revised system of classification of the angiosperms |journal=Botanical Journal of the Linnean Society |date=February 1980 |volume=80 |issue=2 |pages=91–124 |doi=10.1111/j.1095-8339.1980.tb01661.x |ref=none}}
  • {{cite journal |last1=Dahlgren |first1=Rolf |author-link=Rolf Dahlgren |title=General aspects of angiosperm evolution and macrosystematics |journal=Nordic Journal of Botany |date=February 1983 |volume=3 |issue=1 |pages=119–149 |doi=10.1111/j.1756-1051.1983.tb01448.x |bibcode=1983NorJB...3..119D |ref=none}}
  • {{cite journal |last1=Dilcher |first1=D. |doi=10.1073/pnas.97.13.7030 |pmid=10860967 |title=Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record |year=2000 |journal=Proceedings of the National Academy of Sciences |volume=97 |issue=13 |pages=7030–7036 |pmc=34380 |bibcode=2000PNAS...97.7030D |doi-access=free |ref=none}}
  • {{cite book |last1=Heywood |first1=V. H. |author2=Brummitt, R. K. |author3=Culham, A. |author4=Seberg, O. |title=Flowering Plant Families of the World |publisher=Firefly Books |year=2007 |location=Richmond Hill, Ontario, Canada |isbn=978-1-55407-206-4 |ref=none}}
  • {{cite encyclopedia |last1=Hill |first1=Christopher |last2=Crane |first2=Peter |editor-last1=Joysey |editor-first1=Kenneth Alan |editor-last2=Friday |editor-first2=A.E. |encyclopedia=Problems of Phylogenetic Reconstruction |title=Evolutionary Cladistics and the origin of Angiosperms |url=https://www.researchgate.net/publication/275374707 |date=January 1982 |publisher=Systematics Association |series=Special Volumes |volume=21 |location=London |isbn=978-0-12-391250-3 |pages=269–361 |ref=none}}
  • {{cite book |last1=Lersten |first1=Nels R. |title=Flowering plant embryology with emphasis on economic species |date=2004 |publisher=Blackwell Pub. |location=Ames, Iowa |isbn=978-0-470-75267-8 |url=https://books.google.com/books?id=2YbwF7tH6dUC |ref=none}}
  • {{cite book|last=D. Mauseth|first=James|title=Botany: An Introduction to Plant Biology|publisher=Jones & Bartlett Learning|year=2016|isbn=978-1-284-07753-7|edition=6th }}
  • {{cite book |last1=Pooja |first1= |title=Angiosperms |date=2004 |publisher=Discovery |location=New Delhi |isbn=978-81-7141-788-9 |url=https://books.google.com/books?id=3pZxuyUllJIC |ref=none}}
  • {{cite book |last1=Raven |first1=P.H. |last2=Evert |first2=R.F. |last3=Eichhorn |first3=S.E. |title=Biology of Plants |edition=7th |publisher=W.H. Freeman |year=2004 |ref=none}}
  • {{cite book |last=Sattler |first=R. |year=1973 |title=Organogenesis of Flowers. A Photographic Text-Atlas |publisher=University of Toronto Press |ref=none}}
  • {{cite book |last=Simpson |first=Michael G. |title=Plant Systematics |year=2010 |publisher=Academic Press |isbn=978-0-08-092208-9 |url=https://books.google.com/books?id=dj8KRImgyf4C |edition=2nd |ref=none}}
  • {{cite journal |last1=Soltis |first1=Pamela S |last2=Soltis |first2=Douglas E |author-link1=Pamela Soltis |author-link2=Douglas Soltis |title=Ancient WGD events as drivers of key innovations in angiosperms |journal=Current Opinion in Plant Biology |date=April 2016 |volume=30 |pages=159–165 |doi=10.1016/j.pbi.2016.03.015 |pmid=27064530 |doi-access=free |bibcode=2016COPB...30..159S |ref=none}}
  • {{cite journal |last1=Takhtajan |first1=A. |author-link=Takhtajan |title=The Taxa of the Higher Plants above the Rank of Order |journal=Taxon |date=June 1964 |volume=13 |issue=5 |pages=160–164 |doi=10.2307/1216134 |jstor=1216134|bibcode=1964Taxon..13..160T }}
  • {{cite journal |last1=Takhtajan |first1=A. |author-link=Takhtajan |title=Outline of the Classification of Flowering Plants (Magnoliophyta) |journal=Botanical Review |date=July–September 1980 |volume=46 |issue=3 |pages=225–359 |jstor=4353970 |doi=10.1007/bf02861558 |bibcode=1980BotRv..46..225T |s2cid=30764910}}
  • {{cite journal |last1=Zeng |first1=Liping |last2=Zhang |first2=Qiang |last3=Sun |first3=Renran |last4=Kong |first4=Hongzhi |last5=Zhang |first5=Ning |last6=Ma |first6=Hong |title=Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times |journal=Nature Communications |date=24 September 2014 |volume=5 |issue=4956 |pages=4956 |doi=10.1038/ncomms5956 |pmid=25249442 |pmc=4200517 |bibcode=2014NatCo...5.4956Z |ref=none}}

{{Refend}}

= Websites =

{{Refbegin|30em}}

  • {{cite web |last1=Cole |first1=Theodor C.H. |last2=Hilger |first2=Harmut H. |first3=Peter F. |last3=Stevens |date=2017 |url=http://www.biologie.fu-berlin.de/sysbot/poster/poster1.pdf |title=Angiosperm Phylogeny Poster{{spaced ndash}} Flowering Plant Systematics |ref=none}}
  • {{cite web |last1=Watson |first1=L. |last2=Dallwitz |first2=M.J. |date=1992 |url=http://www.biologie.uni-hamburg.de/b-online/delta/angio |title=The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval |version=14 December 2000 |archive-url=https://web.archive.org/web/20140802080838/http://www.biologie.uni-hamburg.de/b-online/delta/angio |archive-date=2014-08-02 |ref=none}}
  • {{EOL|282}}

{{Refend}}

{{Plant classification}}

{{Botany}}

{{Angiosperm orders}}

{{Lists of angiosperm families}}

{{Life on Earth}}

{{Subject bar|Plants|c=Angiosperms|commonscat=y|species=Magnoliophyta|b=Magnoliophyta|auto=1}}

{{Taxonbar|from=Q25314}}

{{Authority control}}

{{DEFAULTSORT:Flowering Plant}}

Angiosperms

Category:Plant sexuality

Category:Plants

Category:Pollination