Arithmetic function#Summation functions

{{list|date=July 2020}}

{{short description|Function whose domain is the positive integers}}

{{log(x)}}

In number theory, an arithmetic, arithmetical, or number-theoretic function{{harvtxt|Long|1972|p=151}}{{harvtxt|Pettofrezzo|Byrkit|1970|p=58}} is generally any function whose domain is the set of positive integers and whose range is a subset of the complex numbers.Niven & Zuckerman, 4.2.Nagell, I.9.Bateman & Diamond, 2.1. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".Hardy & Wright, intro. to Ch. XVI There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.

Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of Ramanujan's sum.

Multiplicative and additive functions

An arithmetic function a is

Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them.

Then an arithmetic function a is

  • additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n;
  • multiplicative if a(1) = 1 and a(mn) = a(m)a(n) for all coprime natural numbers m and n.

Notation

In this article, \sum_p f(p) and \prod_p f(p) mean that the sum or product is over all prime numbers:

\sum_p f(p) = f(2) + f(3) + f(5) + \cdots

and

\prod_p f(p)= f(2)f(3)f(5)\cdots.

Similarly, \sum_{p^k} f(p^k) and \prod_{p^k} f(p^k) mean that the sum or product is over all prime powers with strictly positive exponent (so {{math|1=k = 0}} is not included):

\sum_{p^k} f(p^k) = \sum_p\sum_{k > 0} f(p^k) = f(2) + f(3) + f(4) +f(5) +f(7)+f(8)+f(9)+\cdots.

The notations \sum_{d\mid n} f(d) and \prod_{d\mid n} f(d) mean that the sum or product is over all positive divisors of n, including 1 and n. For example, if {{math|1=n = 12}}, then

\prod_{d\mid 12} f(d) = f(1)f(2) f(3) f(4) f(6) f(12).

The notations can be combined: \sum_{p\mid n} f(p) and \prod_{p\mid n} f(p) mean that the sum or product is over all prime divisors of n. For example, if n = 18, then

\sum_{p\mid 18} f(p) = f(2) + f(3),

and similarly \sum_{p^k\mid n} f(p^k) and \prod_{p^k\mid n} f(p^k) mean that the sum or product is over all prime powers dividing n. For example, if n = 24, then

\prod_{p^k\mid 24} f(p^k) = f(2) f(3) f(4) f(8).

Ω(''n''), ''ω''(''n''), ''ν''<sub>''p''</sub>(''n'') – prime power decomposition

The fundamental theorem of arithmetic states that any positive integer n can be represented uniquely as a product of powers of primes: n = p_1^{a_1}\cdots p_k^{a_k} where p1 < p2 < ... < pk are primes and the aj are positive integers. (1 is given by the empty product.)

It is often convenient to write this as an infinite product over all the primes, where all but a finite number have a zero exponent. Define the p-adic valuation νp(n) to be the exponent of the highest power of the prime p that divides n. That is, if p is one of the pi then νp(n) = ai, otherwise it is zero. Then

n = \prod_p p^{\nu_p(n)}.

In terms of the above the prime omega functions ω and Ω are defined by

{{block indent | em = 1.5 | text = ω(n) = k,}}

{{block indent | em = 1.5 | text = Ω(n) = a1 + a2 + ... + ak.}}

To avoid repetition, formulas for the functions listed in this article are, whenever possible, given in terms of n and the corresponding pi, ai, ω, and Ω.

Multiplicative functions

= ''σ''<sub>''k''</sub>(''n''), ''τ''(''n''), ''d''(''n'') – divisor sums =

σk(n) is the sum of the kth powers of the positive divisors of n, including 1 and n, where k is a complex number.

σ1(n), the sum of the (positive) divisors of n, is usually denoted by σ(n).

Since a positive number to the zero power is one, σ0(n) is therefore the number of (positive) divisors of n; it is usually denoted by d(n) or τ(n) (for the German Teiler = divisors).

\sigma_k(n) = \prod_{i=1}^{\omega(n)} \frac{p_i^{(a_i+1)k}-1}{p_i^k-1}= \prod_{i=1}^{\omega(n)} \left(1 + p_i^k + p_i^{2k} + \cdots + p_i^{a_i k}\right).

Setting k = 0 in the second product gives

\tau(n) = d(n) = (1 + a_{1})(1+a_{2})\cdots(1+a_{\omega(n)}).

= ''φ''(''n'') – Euler totient function =

φ(n), the Euler totient function, is the number of positive integers not greater than n that are coprime to n.

\varphi(n) = n \prod_{p\mid n} \left(1-\frac{1}{p}\right)

= n \left(\frac{p_1 - 1}{p_1}\right)\left(\frac{p_2 - 1}{p_2}\right) \cdots \left(\frac{p_{\omega(n)} - 1}{p_{\omega(n)}}\right)

.

= ''J''<sub>''k''</sub>(''n'') – Jordan totient function =

Jk(n), the Jordan totient function, is the number of k-tuples of positive integers all less than or equal to n that form a coprime (k + 1)-tuple together with n. It is a generalization of Euler's totient, {{math|1=φ(n) = J1(n)}}.

J_k(n) = n^k \prod_{p\mid n} \left(1-\frac{1}{p^k}\right)

= n^k \left(\frac{p^k_1 - 1}{p^k_1}\right)\left(\frac{p^k_2 - 1}{p^k_2}\right) \cdots \left(\frac{p^k_{\omega(n)} - 1}{p^k_{\omega(n)}}\right)

.

= ''μ''(''n'') – Möbius function=

μ(n), the Möbius function, is important because of the Möbius inversion formula. See {{slink|#Dirichlet convolution}}, below.

\mu(n)=\begin{cases}

(-1)^{\omega(n)}=(-1)^{\Omega(n)} &\text{if }\; \omega(n) = \Omega(n)\\

0&\text{if }\;\omega(n) \ne \Omega(n).

\end{cases}

This implies that μ(1) = 1. (Because Ω(1) = ω(1) = 0.)

= ''τ''(''n'') – Ramanujan tau function =

τ(n), the Ramanujan tau function, is defined by its generating function identity:

\sum_{n\geq 1}\tau(n)q^n=q\prod_{n\geq 1}(1-q^n)^{24}.

Although it is hard to say exactly what "arithmetical property of n" it "expresses",Hardy, Ramanujan, § 10.2 (τ(n) is (2π)−12 times the nth Fourier coefficient in the q-expansion of the modular discriminant function)Apostol, Modular Functions ..., § 1.15, Ch. 4, and ch. 6 it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certain σk(n) and rk(n) functions (because these are also coefficients in the expansion of modular forms).

= ''c''<sub>''q''</sub>(''n'') – Ramanujan's sum =

cq(n), Ramanujan's sum, is the sum of the nth powers of the primitive qth roots of unity:

c_q(n) = \sum_{\stackrel{1\le a\le q}{ \gcd(a,q)=1}} e^{2 \pi i \tfrac{a}{q} n}.

Even though it is defined as a sum of complex numbers (irrational for most values of q), it is an integer. For a fixed value of n it is multiplicative in q:

: If q and r are coprime, then c_q(n)c_r(n)=c_{qr}(n).

= ''ψ''(''n'') – Dedekind psi function =

The Dedekind psi function, used in the theory of modular functions, is defined by the formula

\psi(n) = n \prod_{p|n}\left(1+\frac{1}{p}\right).

Completely multiplicative functions

= ''λ''(''n'') – Liouville function =

λ(n), the Liouville function, is defined by

\lambda (n) = (-1)^{\Omega(n)}.

= ''χ''(''n'') – characters =

All Dirichlet characters χ(n) are completely multiplicative. Two characters have special notations:

The principal character (mod n) is denoted by χ0(a) (or χ1(a)). It is defined as

\chi_0(a) = \begin{cases}

1 & \text{if } \gcd(a,n) = 1, \\

0 & \text{if } \gcd(a,n) \ne 1.

\end{cases}

The quadratic character (mod n) is denoted by the Jacobi symbol for odd n (it is not defined for even n):

\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{a_1}\left(\frac{a}{p_2}\right)^{a_2}\cdots \left(\frac{a}{p_{\omega(n)}}\right)^{a_{\omega(n)}}.

In this formula (\tfrac{a}{p}) is the Legendre symbol, defined for all integers a and all odd primes p by

\left(\frac{a}{p}\right) = \begin{cases}

\;\;\,0 & \text{if } a \equiv 0 \pmod p,

\\+1 & \text{if }a \not\equiv 0\pmod p \text{ and for some integer }x, \;a\equiv x^2\pmod p

\\-1 & \text{if there is no such } x. \end{cases}

Following the normal convention for the empty product, \left(\frac{a}{1}\right) = 1.

Additive functions

= ''ω''(''n'') – distinct prime divisors =

ω(n), defined above as the number of distinct primes dividing n, is additive (see Prime omega function).

Completely additive functions

= Ω(''n'') – prime divisors =

Ω(n), defined above as the number of prime factors of n counted with multiplicities, is completely additive (see Prime omega function).

= ''ν''<sub>''p''</sub>(''n'') – [[P-adic valuation|''p''-adic valuation]] of an integer ''n'' =

For a fixed prime p, νp(n), defined above as the exponent of the largest power of p dividing n, is completely additive.

=== Logarithmic derivative ===

\operatorname{ld}(n)=\frac{D(n)}{n} = \sum_{\stackrel{p\mid n}{p\text{ prime}}} \frac {v_p(n)} {p}, where D(n) is the arithmetic derivative.

Neither multiplicative nor additive

= ''π''(''x''), Π(''x''), ''ϑ''(''x''), ''ψ''(''x'') – prime-counting functions=

These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of the prime number theorem. They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.

π(x), the prime-counting function, is the number of primes not exceeding x. It is the summation function of the characteristic function of the prime numbers.

\pi(x) = \sum_{p \le x} 1

A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, etc. It is the summation function of the arithmetic function which takes the value 1/k on integers which are the kth power of some prime number, and the value 0 on other integers.

\Pi(x) = \sum_{p^k\le x}\frac{1}{k}.

ϑ(x) and ψ(x), the Chebyshev functions, are defined as sums of the natural logarithms of the primes not exceeding x.

\vartheta(x)=\sum_{p\le x} \log p,

\psi(x) = \sum_{p^k\le x} \log p.

The second Chebyshev function ψ(x) is the summation function of the von Mangoldt function just below.

= Λ(''n'') – von Mangoldt function =

Λ(n), the von Mangoldt function, is 0 unless the argument n is a prime power {{math|pk}}, in which case it is the natural logarithm of the prime p:

\Lambda(n) = \begin{cases}

\log p &\text{if } n = 2,3,4,5,7,8,9,11,13,16,\ldots=p^k \text{ is a prime power}\\

0&\text{if } n=1,6,10,12,14,15,18,20,21,\dots \;\;\;\;\text{ is not a prime power}.

\end{cases}

= ''p''(''n'') – partition function =

p(n), the partition function, is the number of ways of representing n as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different:

p(n) = \left|\left\{ (a_1, a_2,\dots a_k): 0 < a_1 \le a_2 \le \cdots \le a_k\; \land \;n=a_1+a_2+\cdots +a_k \right\}\right|.

= ''λ''(''n'') – Carmichael function =

λ(n), the Carmichael function, is the smallest positive number such that a^{\lambda(n)}\equiv 1 \pmod{n}   for all a coprime to n. Equivalently, it is the least common multiple of the orders of the elements of the multiplicative group of integers modulo n.

For powers of odd primes and for 2 and 4, λ(n) is equal to the Euler totient function of n; for powers of 2 greater than 4 it is equal to one half of the Euler totient function of n:

\lambda(n) = \begin{cases}

\;\;\phi(n) &\text{if }n = 2,3,4,5,7,9,11,13,17,19,23,25,27,\dots\\

\tfrac 1 2 \phi(n)&\text{if }n=8,16,32,64,\dots

\end{cases}

and for general n it is the least common multiple of λ of each of the prime power factors of n:

\lambda(p_1^{a_1}p_2^{a_2} \dots p_{\omega(n)}^{a_{\omega(n)}}) = \operatorname{lcm}[\lambda(p_1^{a_1}),\;\lambda(p_2^{a_2}),\dots,\lambda(p_{\omega(n)}^{a_{\omega(n)}}) ].

= ''h''(''n'') – class number =

h(n), the class number function, is the order of the ideal class group of an algebraic extension of the rationals with discriminant n. The notation is ambiguous, as there are in general many extensions with the same discriminant. See quadratic field and cyclotomic field for classical examples.

= ''r''<sub>''k''</sub>(''n'') – sum of ''k'' squares =

rk(n) is the number of ways n can be represented as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different.

r_k(n) = \left|\left\{(a_1, a_2,\dots,a_k):n=a_1^2+a_2^2+\cdots+a_k^2\right\}\right|

= ''D''(''n'') – Arithmetic derivative =

Using the Heaviside notation for the derivative, the arithmetic derivative D(n) is a function such that

  • D(n) = 1 if n prime, and
  • D(mn) = m D(n) + D(m) n (the product rule)

Summation functions

Given an arithmetic function a(n), its summation function A(x) is defined by

A(x) := \sum_{n \le x} a(n) .

A can be regarded as a function of a real variable. Given a positive integer m, A is constant along open intervals m < x < m + 1, and has a jump discontinuity at each integer for which a(m) ≠ 0.

Since such functions are often represented by series and integrals, to achieve pointwise convergence it is usual to define the value at the discontinuities as the average of the values to the left and right:

A_0(m) := \frac 1 2 \left(\sum_{n < m} a(n) +\sum_{n \le m} a(n)\right) = A(m) - \frac 1 2 a(m) .

Individual values of arithmetic functions may fluctuate wildly – as in most of the above examples. Summation functions "smooth out" these fluctuations. In some cases it may be possible to find asymptotic behaviour for the summation function for large x.

A classical example of this phenomenonHardy & Wright, §§ 18.1–18.2 is given by the divisor summatory function, the summation function of d(n), the number of divisors of n:

\liminf_{n\to\infty} d(n) = 2

\limsup_{n\to\infty}\frac{\log d(n) \log\log n}{\log n} = \log 2

\lim_{n\to\infty}\frac{d(1) + d(2)+ \cdots +d(n)}{\log(1) + \log(2)+ \cdots +\log(n)} = 1.

An average order of an arithmetic function is some simpler or better-understood function which has the same summation function asymptotically, and hence takes the same values "on average". We say that g is an average order of f if

\sum_{n \le x} f(n) \sim \sum_{n \le x} g(n)

as x tends to infinity. The example above shows that d(n) has the average order log(n).{{cite book | title=Introduction to Analytic and Probabilistic Number Theory | author=Gérald Tenenbaum | series=Cambridge studies in advanced mathematics | volume=46 | publisher=Cambridge University Press | pages=36–55 | year=1995 | isbn=0-521-41261-7 }}

Dirichlet convolution

Given an arithmetic function a(n), let Fa(s), for complex s, be the function defined by the corresponding Dirichlet series (where it converges):Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.

F_a(s) := \sum_{n=1}^\infty \frac{a(n)}{n^s} .

Fa(s) is called a generating function of a(n). The simplest such series, corresponding to the constant function a(n) = 1 for all n, is ζ(s) the Riemann zeta function.

The generating function of the Möbius function is the inverse of the zeta function:

\zeta(s)\,\sum_{n=1}^\infty\frac{\mu(n)}{n^s}=1, \;\;\Re s >1.

Consider two arithmetic functions a and b and their respective generating functions Fa(s) and Fb(s). The product Fa(s)Fb(s) can be computed as follows:

F_a(s)F_b(s) = \left( \sum_{m=1}^{\infty}\frac{a(m)}{m^s} \right)\left( \sum_{n=1}^{\infty}\frac{b(n)}{n^s} \right) .

It is a straightforward exercise to show that if c(n) is defined by

c(n) := \sum_{ij = n} a(i)b(j) = \sum_{i\mid n}a(i)b\left(\frac{n}{i}\right) ,

then F_c(s) = F_a(s) F_b(s).

This function c is called the Dirichlet convolution of a and b, and is denoted by a*b.

A particularly important case is convolution with the constant function a(n) = 1 for all n, corresponding to multiplying the generating function by the zeta function:

g(n) = \sum_{d \mid n}f(d).

Multiplying by the inverse of the zeta function gives the Möbius inversion formula:

f(n) = \sum_{d\mid n}\mu\left(\frac{n}{d}\right)g(d).

If f is multiplicative, then so is g. If f is completely multiplicative, then g is multiplicative, but may or may not be completely multiplicative.

Relations among the functions

There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The page divisor sum identities contains many more generalized and related examples of identities involving arithmetic functions.

Here are a few examples:

= Dirichlet convolutions =

:

\sum_{\delta\mid n}\mu(\delta)=

\sum_{\delta\mid n}\lambda\left(\frac{n}{\delta}\right)|\mu(\delta)|=

\begin{cases}

1 & \text{if } n=1\\

0 & \text{if } n\ne1

\end{cases}

    where λ is the Liouville function.Hardy & Wright, Thm. 263

: \sum_{\delta\mid n}\varphi(\delta) = n.      Hardy & Wright, Thm. 63

:: \varphi(n)

=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\delta

=n\sum_{\delta\mid n}\frac{\mu(\delta)}{\delta}.

      Möbius inversion

: \sum_{d \mid n } J_k(d) = n^k.      see references at Jordan's totient function

::

J_k(n)

=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\delta^k

=n^k\sum_{\delta\mid n}\frac{\mu(\delta)}{\delta^k}.

      Möbius inversion

: \sum_{\delta\mid n}\delta^sJ_r(\delta)J_s\left(\frac{n}{\delta}\right) = J_{r+s}(n)      Holden et al. in external links The formula is Gegenbauer's

: \sum_{\delta\mid n}\varphi(\delta)d\left(\frac{n}{\delta}\right) = \sigma(n).      Hardy & Wright, Thm. 288–290Dineva in external links, prop. 4

: \sum_{\delta\mid n}|\mu(\delta)| = 2^{\omega(n)}.      Hardy & Wright, Thm. 264

:: |\mu(n)|=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)2^{\omega(\delta)}.       Möbius inversion

: \sum_{\delta\mid n}2^{\omega(\delta)}=d(n^2).      

:: 2^{\omega(n)}=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)d(\delta^2).       Möbius inversion

: \sum_{\delta\mid n}d(\delta^2)=d^2(n).      

:: d(n^2)=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)d^2(\delta).       Möbius inversion

: \sum_{\delta\mid n}d\left(\frac{n}{\delta}\right)2^{\omega(\delta)}=d^2(n).      

: \sum_{\delta\mid n}\lambda(\delta)=\begin{cases}

&1\text{ if } n \text{ is a square }\\

&0\text{ if } n \text{ is not square.}

\end{cases}     where λ is the Liouville function.

: \sum_{\delta\mid n}\Lambda(\delta) = \log n.      Hardy & Wright, Thm. 296

:: \Lambda(n)=\sum_{\delta\mid n}\mu\left(\frac{n}{\delta}\right)\log(\delta).       Möbius inversion

= Sums of squares =

For all k \ge 4,\;\;\; r_k(n) > 0.     (Lagrange's four-square theorem).

:

r_2(n) = 4\sum_{d\mid n}\left(\frac{-4}{d}\right),

Hardy & Wright, Thm. 278

where the Kronecker symbol has the values

:

\left(\frac{-4}{n}\right) =

\begin{cases}

+1&\text{if }n\equiv 1 \pmod 4 \\

-1&\text{if }n\equiv 3 \pmod 4\\

\;\;\;0&\text{if }n\text{ is even}.\\

\end{cases}

There is a formula for r3 in the section on class numbers below.

r_4(n) =

8 \sum_{\stackrel{d\mid n}{ 4\, \nmid \,d}}d =

8 (2+(-1)^n)\sum_{\stackrel{d\mid n}{ 2\, \nmid \,d}}d =

\begin{cases}

8\sigma(n)&\text{if } n \text{ is odd }\\

24\sigma\left(\frac{n}{2^\nu}\right)&\text{if } n \text{ is even }

\end{cases},

where {{math|1=ν = ν2(n)}}.    Hardy & Wright, Thm. 386Hardy, Ramanujan, eqs 9.1.2, 9.1.3Koblitz, Ex. III.5.2

r_6(n) = 16 \sum_{d\mid n} \chi\left(\frac{n}{d}\right)d^2 - 4\sum_{d\mid n} \chi(d)d^2,

where \chi(n) = \left(\frac{-4}{n}\right).Hardy & Wright, § 20.13

Define the function {{math|1=σk*(n)}} asHardy, Ramanujan, § 9.7

\sigma_k^*(n) = (-1)^{n}\sum_{d\mid n}(-1)^d d^k=

\begin{cases}

\sum_{d\mid n} d^k=\sigma_k(n)&\text{if } n \text{ is odd }\\

\sum_{\stackrel{d\mid n}{ 2\, \mid \,d}}d^k -\sum_{\stackrel{d\mid n}{ 2\, \nmid \,d}}d^k&\text{if } n \text{ is even}.

\end{cases}

That is, if n is odd, {{math|1=σk*(n)}} is the sum of the kth powers of the divisors of n, that is, {{math|1=σk(n),}} and if n is even it is the sum of the kth powers of the even divisors of n minus the sum of the kth powers of the odd divisors of n.

: r_8(n) = 16\sigma_3^*(n).    Hardy, Ramanujan, § 9.13

Adopt the convention that Ramanujan's {{math|1=τ(x) = 0}} if x is not an integer.

:

r_{24}(n) = \frac{16}{691}\sigma_{11}^*(n) + \frac{128}{691}\left\{

(-1)^{n-1}259\tau(n)-512\tau\left(\frac{n}{2}\right)\right\}

   Hardy, Ramanujan, § 9.17

= Divisor sum convolutions =

Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the product of two power series:

: \left(\sum_{n=0}^\infty a_n x^n\right)\left(\sum_{n=0}^\infty b_n x^n\right)

= \sum_{i=0}^\infty \sum_{j=0}^\infty a_i b_j x^{i+j}

= \sum_{n=0}^\infty \left(\sum_{i=0}^n a_i b_{n-i}\right) x^n

= \sum_{n=0}^\infty c_n x^n

.

The sequence c_n = \sum_{i=0}^n a_i b_{n-i} is called the convolution or the Cauchy product of the sequences an and bn.

{{br}}These formulas may be proved analytically (see Eisenstein series) or by elementary methods.Williams, ch. 13; Huard, et al. (external links).

:

\sigma_3(n) = \frac{1}{5}\left\{6n\sigma_1(n)-\sigma_1(n) + 12\sum_{0

   Ramanujan, On Certain Arithmetical Functions, Table IV; Papers, p. 146

:

\sigma_5(n) = \frac{1}{21}\left\{10(3n-1)\sigma_3(n)+\sigma_1(n) + 240\sum_{0

   Koblitz, ex. III.2.8

:

\begin{align}

\sigma_7(n)

&=\frac{1}{20}\left\{21(2n-1)\sigma_5(n)-\sigma_1(n) + 504\sum_{0

&=\sigma_3(n) + 120\sum_{0

\end{align}

   Koblitz, ex. III.2.3

:

\begin{align}

\sigma_9(n)

&= \frac{1}{11}\left\{10(3n-2)\sigma_7(n)+\sigma_1(n) + 480\sum_{0

&= \frac{1}{11}\left\{21\sigma_5(n)-10\sigma_3(n) + 5040\sum_{0

\end{align}

   Koblitz, ex. III.2.2

:

\tau(n) = \frac{65}{756}\sigma_{11}(n) + \frac{691}{756}\sigma_{5}(n) - \frac{691}{3}\sum_{0

    where τ(n) is Ramanujan's function.    Koblitz, ex. III.2.4Apostol, Modular Functions ..., Ex. 6.10

Since σk(n) (for natural number k) and τ(n) are integers, the above formulas can be used to prove congruencesApostol, Modular Functions..., Ch. 6 Ex. 10 for the functions. See Ramanujan tau function for some examples.

Extend the domain of the partition function by setting {{math|1=p(0) = 1.}}

:

p(n)=\frac{1}{n}\sum_{1\le k\le n}\sigma(k)p(n-k).

   G.H. Hardy, S. Ramannujan, Asymptotic Formulæ in Combinatory Analysis, § 1.3; in Ramannujan, Papers p. 279   This recurrence can be used to compute p(n).

= Menon's identity =

In 1965 P Kesava Menon provedLászló Tóth, Menon's Identity and Arithmetical Sums ..., eq. 1

\sum_{\stackrel{1\le k\le n}{ \gcd(k,n)=1}} \gcd(k-1,n)=\varphi(n)d(n).

This has been generalized by a number of mathematicians. For example,

  • B. SuryTóth, eq. 5

\sum_{\stackrel{1\le k_1, k_2, \dots, k_s\le n}{ \gcd(k_1,n)=1}} \gcd(k_1-1,k_2,\dots,k_s,n)

= \varphi(n)\sigma_{s-1}(n).

  • N. RaoTóth, eq. 3

\sum_{\stackrel{1\le k_1, k_2, \dots, k_s\le n}{ \gcd(k_1,k_2,\dots,k_s,n)=1}} \gcd(k_1-a_1,k_2-a_2,\dots,k_s-a_s,n)^s

=J_s(n)d(n), where a1, a2, ..., as are integers, gcd(a1, a2, ..., as, n) = 1.

\sum_{\stackrel{1\le k\le m}{ \gcd(k,m)=1}} \gcd(k^2-1,m_1)\gcd(k^2-1,m_2)

=\varphi(n)\sum_{\stackrel{d_1\mid m_1} {d_2\mid m_2}} \varphi(\gcd(d_1, d_2))2^{\omega(\operatorname{lcm}(d_1, d_2))},

where m1 and m2 are odd, m = lcm(m1, m2).

In fact, if f is any arithmetical functionTóth, eq. 2Tóth states that Menon proved this for multiplicative f in 1965 and V. Sita Ramaiah for general f.

\sum_{\stackrel{1\le k\le n}{ \gcd(k,n)=1}} f(\gcd(k-1,n))

=\varphi(n)\sum_{d\mid n}\frac{(\mu*f)(d)}{\varphi(d)},

where * stands for Dirichlet convolution.

= Miscellaneous =

Let m and n be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of quadratic reciprocity:

\left(\frac{m}{n}\right) \left(\frac{n}{m}\right) = (-1)^{(m-1)(n-1)/4}.

Let D(n) be the arithmetic derivative. Then the logarithmic derivative \frac{D(n)}{n} = \sum_{\stackrel{p\mid n}{p\text{ prime}}} \frac {v_{p}(n)} {p}. See Arithmetic derivative for details.

Let λ(n) be Liouville's function. Then

: |\lambda(n)|\mu(n) =\lambda(n)|\mu(n)| = \mu(n),     and

: \lambda(n)\mu(n) = |\mu(n)| =\mu^2(n).    

Let λ(n) be Carmichael's function. Then

: \lambda(n)\mid \phi(n).     Further,

: \lambda(n)= \phi(n) \text{ if and only if }n=\begin{cases}

1,2, 4;\\

3,5,7,9,11, \ldots \text{ (that is, } p^k \text{, where }p\text{ is an odd prime)};\\

6,10,14,18,\ldots \text{ (that is, } 2p^k\text{, where }p\text{ is an odd prime)}.

\end{cases}

See Multiplicative group of integers modulo n and Primitive root modulo n.

 

: 2^{\omega(n)} \le d(n) \le 2^{\Omega(n)}.    Hardy Ramanujan, eq. 3.10.3Hardy & Wright, § 22.13

: \frac{6}{\pi^2}<\frac{\phi(n)\sigma(n)}{n^2} < 1.    Hardy & Wright, Thm. 329

: \begin{align}

c_q(n)

&=\frac{\mu\left(\frac{q}{\gcd(q, n)}\right)}{\phi\left(\frac{q}{\gcd(q, n)}\right)}\phi(q)\\

&=\sum_{\delta\mid \gcd(q,n)}\mu\left(\frac{q}{\delta}\right)\delta.

\end{align}    Hardy & Wright, Thms. 271, 272     Note that  \phi(q) = \sum_{\delta\mid q}\mu\left(\frac{q}{\delta}\right)\delta.    Hardy & Wright, eq. 16.3.1

: c_q(1) = \mu(q).

: c_q(q) = \phi(q).

: \sum_{\delta\mid n}d^{3}(\delta) = \left(\sum_{\delta\mid n}d(\delta)\right)^2.    Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (C); Papers p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.   Compare this with {{math|1=13 + 23 + 33 + ... + n3 = (1 + 2 + 3 + ... + n)2}}

: d(uv) = \sum_{\delta\mid \gcd(u,v)}\mu(\delta)d\left(\frac{u}{\delta}\right)d\left(\frac{v}{\delta}\right).

   Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (F); Papers p. 134

: \sigma_k(u)\sigma_k(v) = \sum_{\delta\mid \gcd(u,v)}\delta^k\sigma_k\left(\frac{uv}{\delta^2}\right).

   Apostol, Modular Functions ..., ch. 6 eq. 4

: \tau(u)\tau(v) = \sum_{\delta\mid \gcd(u,v)}\delta^{11}\tau\left(\frac{uv}{\delta^2}\right),

    where τ(n) is Ramanujan's function.    Apostol, Modular Functions ..., ch. 6 eq. 3

First 100 values of some arithmetic functions

class="wikitable" style="text-align:right;"

! n!!factorization !! φ(n) !! ω(n) !! Ω(n) !! λ(n) !! μ(n) !! Λ(n) !! π(n)!! σ0(n)!! σ1(n)!! σ2(n)!! r2(n)!! r3(n)!! r4(n)

1style='text-align:center;'| 11001100111468
style="background-color:#ddeeff;"

| 2

style='text-align:center;'| 2111−1−10.69123541224
style="background-color:#ddeeff;"

| 3

style='text-align:center;'| 3211−1−11.10224100832
4style='text-align:center;'| 22212100.69237214624
style="background-color:#ddeeff;"

| 5

style='text-align:center;'| 5411−1−11.613262682448
6style='text-align:center;'| 2 · 322211034125002496
style="background-color:#ddeeff;"

| 7

style='text-align:center;'| 7611−1−11.95428500064
8style='text-align:center;'| 23413−100.6944158541224
9style='text-align:center;'| 32612101.10431391430104
10style='text-align:center;'| 2 · 54221104418130824144
style="background-color:#ddeeff;"

| 11

style='text-align:center;'| 111011−1−12.40521212202496
12style='text-align:center;'| 22 · 3423−10056282100896
style="background-color:#ddeeff;"

| 13

style='text-align:center;'| 131211−1−12.566214170824112
14style='text-align:center;'| 2 · 76221106424250048192
15style='text-align:center;'| 3 · 5822110642426000192
16style='text-align:center;'| 24814100.6965313414624
style="background-color:#ddeeff;"

| 17

style='text-align:center;'| 171611−1−12.837218290848144
18style='text-align:center;'| 2 · 32623−1007639455436312
style="background-color:#ddeeff;"

| 19

style='text-align:center;'| 191811−1−12.948220362024160
20style='text-align:center;'| 22 · 5823−1008642546824144
21style='text-align:center;'| 3 · 712221108432500048256
22style='text-align:center;'| 2 · 1110221108436610024288
style="background-color:#ddeeff;"

| 23

style='text-align:center;'| 232211−1−13.14922453000192
24style='text-align:center;'| 23 · 3824100986085002496
25style='text-align:center;'| 522012101.6193316511230248
26style='text-align:center;'| 2 · 1312221109442850872336
27style='text-align:center;'| 331813−101.109440820032320
28style='text-align:center;'| 22 · 71223−1009656105000192
style="background-color:#ddeeff;"

| 29

style='text-align:center;'| 292811−1−13.3710230842872240
30style='text-align:center;'| 2 · 3 · 5833−1−10108721300048576
style="background-color:#ddeeff;"

| 31

style='text-align:center;'| 313011−1−13.431123296200256
32style='text-align:center;'| 251615−100.6911663136541224
33style='text-align:center;'| 3 · 112022110114481220048384
34style='text-align:center;'| 2 · 171622110114541450848432
35style='text-align:center;'| 5 · 72422110114481300048384
36style='text-align:center;'| 22 · 321224100119911911430312
style="background-color:#ddeeff;"

| 37

style='text-align:center;'| 373611−1−13.61122381370824304
38style='text-align:center;'| 2 · 191822110124601810072480
39style='text-align:center;'| 3 · 13242211012456170000448
40style='text-align:center;'| 23 · 51624100128902210824144
style="background-color:#ddeeff;"

| 41

style='text-align:center;'| 414011−1−13.71132421682896336
42style='text-align:center;'| 2 · 3 · 71233−1−10138962500048768
style="background-color:#ddeeff;"

| 43

style='text-align:center;'| 434211−1−13.76142441850024352
44style='text-align:center;'| 22 · 112023−100146842562024288
45style='text-align:center;'| 32 · 52423−100146782366872624
46style='text-align:center;'| 2 · 232222110144722650048576
style="background-color:#ddeeff;"

| 47

style='text-align:center;'| 474611−1−13.8515248221000384
48style='text-align:center;'| 24 · 31625−100151012434100896
49style='text-align:center;'| 724212101.95153572451454456
50style='text-align:center;'| 2 · 522023−1001569332551284744
51style='text-align:center;'| 3 · 173222110154722900048576
52style='text-align:center;'| 22 · 132423−100156983570824336
style="background-color:#ddeeff;"

| 53

style='text-align:center;'| 535211−1−13.97162542810872432
54style='text-align:center;'| 2 · 3318241001681204100096960
55style='text-align:center;'| 5 · 11402211016472317200576
56style='text-align:center;'| 23 · 724241001681204250048192
57style='text-align:center;'| 3 · 193622110164803620048640
58style='text-align:center;'| 2 · 292822110164904210824720
style="background-color:#ddeeff;"

| 59

style='text-align:center;'| 595811−1−14.08172603482072480
60style='text-align:center;'| 22 · 3 · 516341001712168546000576
style="background-color:#ddeeff;"

| 61

style='text-align:center;'| 616011−1−14.11182623722872496
62style='text-align:center;'| 2 · 313022110184964810096768
63style='text-align:center;'| 32 · 73623−100186104455000832
64style='text-align:center;'| 263216100.6918712754614624
65style='text-align:center;'| 5 · 1348221101848444201696672
66style='text-align:center;'| 2 · 3 · 112033−1−1018814461000961152
style="background-color:#ddeeff;"

| 67

style='text-align:center;'| 676611−1−14.20192684490024544
68style='text-align:center;'| 22 · 173223−1001961266090848432
69style='text-align:center;'| 3 · 234422110194965300096768
70style='text-align:center;'| 2 · 5 · 72433−1−1019814465000481152
style="background-color:#ddeeff;"

| 71

style='text-align:center;'| 717011−1−14.2620272504200576
72style='text-align:center;'| 23 · 322425−10020121957735436312
style="background-color:#ddeeff;"

| 73

style='text-align:center;'| 737211−1−14.29212745330848592
74style='text-align:center;'| 2 · 37362211021411468508120912
75style='text-align:center;'| 3 · 524023−1002161246510056992
76style='text-align:center;'| 22 · 193623−1002161407602024480
77style='text-align:center;'| 7 · 116022110214966100096768
78style='text-align:center;'| 2 · 3 · 132433−1−1021816885000481344
style="background-color:#ddeeff;"

| 79

style='text-align:center;'| 797811−1−14.3722280624200640
80style='text-align:center;'| 24 · 53225−10022101868866824144
81style='text-align:center;'| 345414101.1022512173814102968
82style='text-align:center;'| 2 · 41402211022412684108481008
style="background-color:#ddeeff;"

| 83

style='text-align:center;'| 838211−1−14.42232846890072672
84style='text-align:center;'| 22 · 3 · 72434100231222410500048768
85style='text-align:center;'| 5 · 17642211023410875401648864
86style='text-align:center;'| 2 · 434222110234132925001201056
87style='text-align:center;'| 3 · 295622110234120842000960
88style='text-align:center;'| 23 · 11402410023818010370024288
style="background-color:#ddeeff;"

| 89

style='text-align:center;'| 898811−1−14.492429079228144720
90style='text-align:center;'| 2 · 32 · 5243410024122341183081201872
91style='text-align:center;'| 7 · 1372221102441128500048896
92style='text-align:center;'| 22 · 234423−1002461681113000576
93style='text-align:center;'| 3 · 31602211024412896200481024
94style='text-align:center;'| 2 · 474622110244144110500961152
95style='text-align:center;'| 5 · 197222110244120941200960
96style='text-align:center;'| 25 · 3322610024122521365002496
style="background-color:#ddeeff;"

| 97

style='text-align:center;'| 979611−1−14.57252989410848784
98style='text-align:center;'| 2 · 724223−1002561711225541081368
99style='text-align:center;'| 32 · 116023−100256156111020721248
100style='text-align:center;'| 22 · 524024100259217136711230744
nfactorizationφ(n)ω(n)Ω(n){{lambda}}(n){{mu}}(n)Λ(n)π(n)σ0(n)σ1(n)σ2(n)r2(n)r3(n)r4(n)

Notes

{{reflist|30em}}

References

  • {{citation

|title=Introduction to Analytic Number Theory

|author=Tom M. Apostol |author-link=Tom M. Apostol

|year=1976

|publisher=Springer Undergraduate Texts in Mathematics

|isbn=0-387-90163-9

|url-access=registration

|url=https://archive.org/details/introductiontoan00apos_0

}}

  • {{citation

|last = Apostol |first = Tom M. |author-link = Tom M. Apostol

|title = Modular Functions and Dirichlet Series in Number Theory (2nd Edition)

|publisher = Springer

|location = New York

|year = 1989

|isbn = 0-387-97127-0

|url-access = registration

|url = https://archive.org/details/modularfunctions0000apos

}}

  • {{citation | first1 = Paul T. | last1 = Bateman |author-link1=Paul T. Bateman | first2 = Harold G. | last2 = Diamond | year = 2004 | title = Analytic number theory, an introduction | publisher = World Scientific | isbn = 978-981-238-938-1 }}
  • {{citation

| last1 = Cohen | first1 = Henri |author-link=Henri Cohen (number theorist)

| title = A Course in Computational Algebraic Number Theory

| publisher = Springer

| location = Berlin

| year = 1993

| isbn = 3-540-55640-0

}}

  • {{cite book

| last = Edwards

| first = Harold

| author-link = Harold Edwards (mathematician)

| title = Fermat's Last Theorem

| publisher = Springer

| location = New York

| year = 1977

| isbn = 0-387-90230-9

}}

  • {{citation

| author1-link = G. H. Hardy

| last1 = Hardy | first1 = G. H.

| title = Ramanujan: Twelve Lectures on Subjects Suggested by his Life and work

| publisher = AMS / Chelsea

| location = Providence RI

| year = 1999

| isbn = 978-0-8218-2023-0| hdl = 10115/1436

}}

  • {{Hardy and Wright|edition=5th}}
  • {{citation

|title=The Prime Number Theorem

|first=G. J. O. | last=Jameson

|year=2003

|publisher=Cambridge University Press

|isbn=0-521-89110-8

}}

  • {{citation

| last1 = Koblitz | first1 = Neal

| title = Introduction to Elliptic Curves and Modular Forms

| publisher = Springer

| location = New York

| year = 1984

| isbn = 0-387-97966-2

}}

  • {{citation

| last1 = Landau | first1 = Edmund |author-link=Edmund Landau

| title = Elementary Number Theory

| publisher = Chelsea

| location = New York

| year = 1966

}}

  • {{citation

|title=Fundamentals of Number Theory

|author=William J. LeVeque |author-link=William J. LeVeque

|year=1996

|publisher=Courier Dover Publications

|isbn=0-486-68906-9

}}

  • {{citation | first1 = Calvin T. | last1 = Long | year = 1972 | title = Elementary Introduction to Number Theory | edition = 2nd | publisher = D. C. Heath and Company | location = Lexington | lccn = 77-171950 }}
  • {{citation

|title=Introduction to Mathematical Logic

|author=Elliott Mendelson

|year=1987

|publisher=CRC Press

|isbn=0-412-80830-7}}

  • {{citation

| last = Nagell | first = Trygve |author-link=Trygve Nagell

| title = Introduction to number theory (2nd Edition)

| publisher = Chelsea

| year = 1964

| isbn = 978-0-8218-2833-5

}}

  • {{citation | first1 = Ivan M. | last1 = Niven|author-link1=Ivan M. Niven | first2 = Herbert S. | last2 = Zuckerman | year = 1972 | title = An introduction to the theory of numbers (3rd Edition) | publisher = John Wiley & Sons | isbn = 0-471-64154-5 }}
  • {{citation | first1 = Anthony J. | last1 = Pettofrezzo | first2 = Donald R. | last2 = Byrkit | year = 1970 | title = Elements of Number Theory | publisher = Prentice Hall | location = Englewood Cliffs | lccn = 77-81766 }}
  • {{citation

| last1 = Ramanujan | first1 = Srinivasa

| title = Collected Papers

| publisher = AMS / Chelsea

| location = Providence RI

| year = 2000

| isbn = 978-0-8218-2076-6

}}

  • {{citation | last=Williams | first=Kenneth S. | title=Number theory in the spirit of Liouville | zbl=1227.11002 | series=London Mathematical Society Student Texts | volume=76 | location=Cambridge | publisher=Cambridge University Press | isbn=978-0-521-17562-3 | year=2011 }}

Further reading

  • {{citation | first1=Wolfgang | last1=Schwarz | first2=Jürgen | last2=Spilker | title=Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties | year=1994 | publisher=Cambridge University Press | isbn=0-521-42725-8 | zbl=0807.11001 | series=London Mathematical Society Lecture Note Series | volume=184 }}