class="wikitable sortable sort-under" style="text-align: center; font-size: 85%; width: auto; table-layout: fixed;" |
style="width: 12em" | Software
! Creator
! Initial release
! Software license{{efn|name="license"|Licenses here are a summary, and are not taken to be complete statements of the licenses. Some libraries may use other libraries internally under different licenses}}
! {{verth|va=middle|Open source}}
! Platform
! Written in
! Interface
! OpenMP support
! OpenCL support
! CUDA support
! {{verth|va=middle|ROCm support[{{cite web |url=https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html |title=Deep Learning — ROCm 4.5.0 documentation |access-date=2022-09-27 |archive-date=2022-12-05 |archive-url=https://web.archive.org/web/20221205102733/https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html |url-status=dead}}]}}
! Automatic differentiation[{{cite arXiv |author1=Atilim Gunes Baydin |author2=Barak A. Pearlmutter |author3=Alexey Andreyevich Radul |author4=Jeffrey Mark Siskind |eprint=1502.05767 |title=Automatic differentiation in machine learning: a survey |class=cs.LG |date=20 February 2015}}]
! Has pretrained models
! {{verth|va=middle|Recurrent nets}}
! {{verth|va=middle|Convolutional nets}}
! {{verth|va=middle|RBM/DBNs}}
! {{verth|va=middle|Parallel execution (multi node)}}
! {{verth|va=middle|Actively developed}} |
---|
BigDL
|Jason Dai (Intel)
|2016
|{{free|Apache 2.0}}
|{{Yes}}
|Apache Spark
|Scala
|Scala, Python
|
|
|{{No}}
| {{No}}
|
|{{Yes}}
|{{Yes}}
|{{Yes}}
|
|
|{{Yes}} |
Caffe
| Berkeley Vision and Learning Center
| 2013
| {{BSD-lic}}
| {{Yes}}
| Linux, macOS, Windows[{{cite web|url=https://github.com/Microsoft/caffe|title=Microsoft/caffe|work=GitHub|date=30 October 2021}}]
| C++
| Python, MATLAB, C++
| {{Yes}}
| {{Depends|Under development[{{Cite web|url=https://github.com/BVLC/caffe|title=Caffe: a fast open framework for deep learning.|date=July 19, 2019|via=GitHub}}]}}
| {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}}[{{Cite web|url=http://caffe.berkeleyvision.org/model_zoo.html|title=Caffe | Model Zoo|website=caffe.berkeleyvision.org}}]
| {{Yes}}
| {{Yes}}
| {{No}}
| {{Dunno}}
|{{No}}[{{Citation|title=GitHub - BVLC/caffe: Caffe: a fast open framework for deep learning.|date=2019-09-25|url=https://github.com/BVLC/caffe|publisher=Berkeley Vision and Learning Center|access-date=2019-09-25}}] |
Chainer
| Preferred Networks
| 2015
| {{BSD-lic}}
| {{Yes}}
| Linux, macOS
| Python
| Python
| {{No}}
| {{No}}
| {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{No}}
| {{Yes}}
|{{No}}[{{Citation|url=https://preferred.jp/en/news/pr20191205/|title=Preferred Networks Migrates its Deep Learning Research Platform to PyTorch|date=2019-12-05|access-date=2019-12-27}}] |
Deeplearning4j
| Skymind engineering team; Deeplearning4j community; originally Adam Gibson
| 2014
| {{Free|Apache 2.0}}
| {{Yes}}
| Linux, macOS, Windows, Android (Cross-platform)
| C++, Java
| Java, Scala, Clojure, Python (Keras), Kotlin
| {{Yes}}
| {{No}}[{{cite web|url=https://github.com/deeplearning4j/nd4j/issues/27|title=Support for Open CL · Issue #27 · deeplearning4j/nd4j|work=GitHub}}]
| {{Yes}}[{{cite web|url=http://nd4j.org/gpu_native_backends.html|title=N-Dimensional Scientific Computing for Java|access-date=2016-02-05|archive-date=2016-10-16|archive-url=https://web.archive.org/web/20161016094035/http://nd4j.org/gpu_native_backends.html|url-status=dead}}][{{cite web|url=https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch|title=Comparing Top Deep Learning Frameworks|publisher=Deeplearning4j|access-date=2017-10-31|archive-url=https://web.archive.org/web/20171107011631/https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch|archive-date=2017-11-07|url-status=dead}}]
| {{No}}
| {{Yes|Computational Graph}}
| {{Yes}}[{{cite web|url=http://deeplearning4j.org/model-zoo|title=Deeplearning4j Models|author1=Chris Nicholson|author2=Adam Gibson|access-date=2016-03-02|archive-url=https://web.archive.org/web/20170211020819/https://deeplearning4j.org/model-zoo|archive-date=2017-02-11|url-status=dead}}]
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}[{{cite web|url=http://deeplearning4j.org/spark|title=Deeplearning4j on Spark|author=Deeplearning4j|publisher=Deeplearning4j|access-date=2016-09-01|archive-url=https://web.archive.org/web/20170713012632/https://deeplearning4j.org/spark|archive-date=2017-07-13|url-status=dead}}]
| {{Yes}} |
Dlib
|Davis King
|2002
| {{Free|Boost Software License}}
| {{Yes}}
|Cross-platform
|C++
|C++, Python
| {{Yes}}
| {{No}}
| {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}} |
Flux
|Mike Innes
|2017
| {{Free|MIT license}}
| {{Yes}}
|Linux, MacOS, Windows (Cross-platform)
|Julia
|Julia
| | | {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}}[{{cite web|url=http://github.com/FluxML/Metalhead.jl|title=Metalhead|date=29 October 2021|publisher=FluxML}}]
| {{Yes}}
| {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}} |
Intel Data Analytics Acceleration Library
| Intel
| 2015
| {{free|Apache 2.0}}
| {{Yes}}
| Linux, macOS, Windows on Intel CPU[{{Cite web|url=https://software.intel.com/en-us/intel-daal|title=Intel® Data Analytics Acceleration Library (Intel® DAAL)|date=November 20, 2018|website=software.intel.com}}]
| C++, Python, Java
| C++, Python, Java
| {{Yes}}
| {{No}}
| {{No}}
| {{No}}
| {{Yes}}
| {{No}}
|
| {{Yes}}
|
| {{Yes}}
| {{Yes}} |
Intel Math Kernel Library 2017 [{{cite web|title=Intel® Math Kernel Library Release Notes and New Features|url=https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-math-kernel-library-release-notes-and-new-features.html|website=Intel}}] and later
| Intel
| 2017
| {{Proprietary}}
| {{No}}
| Linux, macOS, Windows on Intel CPU[{{Cite web|url=https://software.intel.com/en-us/mkl|title=Intel® Math Kernel Library (Intel® MKL)|date=September 11, 2018|website=software.intel.com}}]
| C/C++, DPC++, Fortran
| C[{{Cite web|url=https://software.intel.com/en-us/mkl-developer-reference-c-deep-neural-network-functions|title=Deep Neural Network Functions|date=May 24, 2019|website=software.intel.com}}]
| {{Yes}}[{{Cite web|url=https://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-using-intel-mkl-with-threaded-applications|title=Using Intel® MKL with Threaded Applications|date=June 1, 2017|website=software.intel.com}}]
| {{No}}
| {{No}}
| {{No}}
| {{Yes}}
| {{No}}
| {{Yes}}[{{Cite web|url=https://software.intel.com/en-us/articles/intel-xeon-phi-delivers-competitive-performance-for-deep-learning-and-getting-better-fast|title=Intel® Xeon Phi™ Delivers Competitive Performance For Deep Learning—And Getting Better Fast|date=March 21, 2019|website=software.intel.com}}]
| {{Yes}}
|
| {{No}}
| {{Yes}} |
Google JAX
| Google
| 2018
| {{free|Apache 2.0}}
| {{Yes}}
| Linux, macOS, Windows
| Python
| Python
|
|
| {{Depends|Only on Linux}}
| {{No}}
| {{Yes}}
| {{No}}
|
|
|
| {{Yes}}
| {{Yes}} |
Keras
| François Chollet
| 2015
| {{Free|MIT license}}
| {{Yes}}
| Linux, macOS, Windows
| Python
| Python, R
| {{Depends|Only if using Theano as backend}}
| {{Depends|Can use Theano, Tensorflow or PlaidML as backends}}
| {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}}[{{Cite web|url=https://keras.io/applications/|title=Applications - Keras Documentation|website=keras.io}}]
| {{Yes}}
| {{Yes}}
| {{No}}[{{Cite web|url=https://github.com/keras-team/keras/issues/461|title=Is there RBM in Keras? · Issue #461 · keras-team/keras|website=GitHub}}]
| {{Yes}}[{{Cite web|url=https://github.com/keras-team/keras/issues/2436|title=Does Keras support using multiple GPUs? · Issue #2436 · keras-team/keras|website=GitHub}}]
| {{Yes}} |
MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox)
| MathWorks
| 1992
| {{Proprietary}}
| {{No}}
| Linux, macOS, Windows
| C, C++, Java, MATLAB
| MATLAB
| {{No}}
| {{No}}
| {{Yes|Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder}}[{{cite web|title=GPU Coder - MATLAB & Simulink|url=https://www.mathworks.com/products/gpu-coder.html|website=MathWorks|accessdate=13 November 2017}}]
| {{No}}
| {{Yes}}[{{cite web |title=Automatic Differentiation Background - MATLAB & Simulink |website=MathWorks |date=September 3, 2019 |url=https://www.mathworks.com/help/deeplearning/ug/deep-learning-with-automatic-differentiation-in-matlab.html |access-date=November 19, 2019}}]
| {{Yes}}[{{cite web|title=Neural Network Toolbox - MATLAB|url=https://www.mathworks.com/products/neural-network.html|website=MathWorks|accessdate=13 November 2017}}][{{cite web|title=Deep Learning Models - MATLAB & Simulink|url=https://www.mathworks.com/solutions/deep-learning/models.html|website=MathWorks|accessdate=13 November 2017}}]
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes|With Parallel Computing Toolbox}}[{{cite web|title=Parallel Computing Toolbox - MATLAB|url=https://www.mathworks.com/products/parallel-computing.html|website=MathWorks|accessdate=13 November 2017}}]
| {{Yes}} |
Microsoft Cognitive Toolkit (CNTK)
| Microsoft Research
| 2016
| {{Free|MIT license}}[{{cite web |url=https://github.com/Microsoft/CNTK/blob/master/LICENSE.md |title=CNTK/LICENSE.md at master · Microsoft/CNTK |work=GitHub}}]
| {{Yes}}
| Windows, Linux[{{cite web|url=https://github.com/Microsoft/CNTK/wiki/Setup-CNTK-on-your-machine|title=Setup CNTK on your machine|work=GitHub}}] (macOS via Docker on roadmap)
| C++
| Python (Keras), C++, Command line,[{{cite web|url=https://github.com/Microsoft/CNTK/wiki/CNTK-usage-overview|title=CNTK usage overview|work=GitHub}}] BrainScript[{{cite web|url=https://github.com/Microsoft/CNTK/wiki/BrainScript-Network-Builder|title=BrainScript Network Builder|work=GitHub}}] (.NET on roadmap[{{cite web|url=https://github.com/Microsoft/CNTK/issues/960|title=.NET Support · Issue #960 · Microsoft/CNTK|work=GitHub}}])
| {{Yes}}[{{cite web|url=https://github.com/Microsoft/CNTK/issues/59#issuecomment-178104505|title=How to train a model using multiple machines? · Issue #59 · Microsoft/CNTK|work=GitHub}}]
| {{No}}
| {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}}[{{Cite web|url=https://github.com/microsoft/CNTK/issues/140|title=Prebuilt models for image classification · Issue #140 · microsoft/CNTK|website=GitHub}}]
| {{Yes}}[{{cite web|url=http://www.cntk.ai/|title=CNTK - Computational Network Toolkit|publisher=Microsoft Corporation}}]
| {{Yes}}
| {{No}}[{{cite web| title= Restricted Boltzmann Machine with CNTK #534| url=https://github.com/Microsoft/CNTK/issues/534| publisher=GitHub, Inc.| date=27 May 2016| access-date=30 October 2023}}]
| {{Yes}}[{{cite web|url=https://github.com/Microsoft/CNTK/wiki/Multiple-GPUs-and-machines|title=Multiple GPUs and machines|publisher=Microsoft Corporation}}]
| {{No}}[{{cite web|url=https://github.com/Microsoft/CNTK#disclaimer|title=Disclaimer|date=6 November 2021|publisher=CNTK TEAM}}] |
MindSpore
| Huawei
| 2020
| {{free|Apache 2.0}}
| {{Yes}}
| Linux, Windows, macOS, EulerOS, openEuler, OpenHarmony, Oniro OS, HarmonyOS, Android
| C++, Rust, Julia, Python, ArkTS, Cangjie, Java (Lite)
|
|
|
|
|
|
|
|
|
|
|
| |
ML.NET
|Microsoft
|2018
|{{Free|MIT license}}
|{{Yes}}
|Windows, Linux, macOS
|C#, C++
|C#, F#
|
|
|
|
|
|
|
|
|
|
|{{Yes}} |
Apache MXNet
| Apache Software Foundation
| 2015
| {{Free|Apache 2.0}}
| {{Yes}}
| Linux, macOS, Windows,[{{cite web|url=https://github.com/dmlc/mxnet/releases|title=Releases · dmlc/mxnet|work=Github}}][{{cite web|url=https://mxnet.readthedocs.io/en/latest/how_to/build.html#building-on-windows|title=Installation Guide — mxnet documentation|work=Readthdocs}}] AWS, Android,[{{cite web|url=https://mxnet.readthedocs.io/en/latest/how_to/smart_device.html|title=MXNet Smart Device|work=ReadTheDocs|access-date=2016-05-19|archive-url=https://web.archive.org/web/20160921205959/http://mxnet.readthedocs.io/en/latest/how_to/smart_device.html|archive-date=2016-09-21|url-status=dead}}] iOS, JavaScript[{{cite web|url=https://github.com/dmlc/mxnet.js|title=MXNet.js|work=Github|date=28 October 2021}}]
| Small C++ core library
| C++, Python, Julia, MATLAB, JavaScript, Go, R, Scala, Perl, Clojure
| {{Yes}}
| {{No}}
| {{Yes}}
| {{No}}
| {{Yes}}[{{Cite web|url=https://mxnet.readthedocs.io/en/latest/|title=— Redirecting to mxnet.io|website=mxnet.readthedocs.io}}]
| {{Yes}}[{{cite web|url=https://github.com/dmlc/mxnet-model-gallery|title=Model Gallery|work=GitHub|date=29 October 2022}}]
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}[{{cite web|url=https://mxnet.readthedocs.io/en/latest/how_to/multi_devices.html|title=Run MXNet on Multiple CPU/GPUs with Data Parallel|work=GitHub}}]
| {{No}} |
Neural Designer
| Artelnics
| 2014
| {{Proprietary}}
| {{No}}
| Linux, macOS, Windows
| C++
| Graphical user interface
| {{Yes}}
| {{No}}
| {{Yes}}
| {{No}}
| {{No|Analytical differentiation}}
| {{No}}
| {{No}}
| {{No}}
| {{No}}
| {{Yes}}
| {{Yes}} |
OpenNN
| Artelnics
| 2003
| {{LGPL-lic}}
| {{Yes}}
| Cross-platform
| C++
| C++
| {{Yes}}
| {{No}}
| {{Yes}}
| {{No}}
| {{Dunno}}
| {{Dunno}}
| {{No}}
| {{No}}
| {{No}}
| {{Dunno}}
| {{Yes}} |
PlaidML
| Vertex.AI, Intel
| 2017
| {{Free|Apache 2.0}}
| {{Yes}}
| Linux, macOS, Windows
| Python, C++, OpenCL
| Python, C++
| {{Dunno}}
| {{Yes|Some OpenCL ICDs are not recognized}}
| {{No}}
| {{No}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
|
| {{Yes}}
| {{Yes}} |
PyTorch
| Meta AI
| 2016
| {{BSD-lic}}
| {{Yes}}
| Linux, macOS, Windows, Android[{{Cite web|url=https://pytorch.org/mobile/android/|title=PyTorch|date=Dec 17, 2021}}]
| Python, C, C++, CUDA
| Python, C++, Julia, R[{{Cite web |title=Falbel D, Luraschi J (2023). torch: Tensors and Neural Networks with 'GPU' Acceleration.|url=https://torch.mlverse.org/ |access-date=2023-11-28 |website=torch.mlverse.org |language=en-us}}]
| {{Yes}}
| {{Depends|Via separately maintained package}}[{{Cite web|url=https://github.com/hughperkins/pytorch-coriander|title=OpenCL build of pytorch: (in-progress, not useable) - hughperkins/pytorch-coriander|date=July 14, 2019|via=GitHub}}][{{Cite web|url=https://github.com/artyom-beilis/pytorch_dlprim|title=DLPrimitives/OpenCL out of tree backend for pytorch - artyom-beilis/pytorch_dlprim|date=Jan 21, 2022|via=GitHub}}][{{Cite web|url=https://github.com/pytorch/pytorch/issues/488|title=OpenCL Support · Issue #488 · pytorch/pytorch|website=GitHub}}]
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}[{{Cite web|url=https://github.com/GabrielBianconi/pytorch-rbm/blob/master/rbm.py|title=Restricted Boltzmann Machines (RBMs) in PyTorch|website=GitHub|date=14 November 2022}}]
| {{Yes}}
| {{Yes}} |
Apache SINGA
| Apache Software Foundation
| 2015
| {{Free|Apache 2.0}}
| {{Yes}}
| Linux, macOS, Windows
| C++
| Python, C++, Java
| {{No}}
| {{Depends|Supported in V1.0}}
| {{Yes}}
| {{No}}
| {{Dunno}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}} |
TensorFlow
| Google Brain
| 2015
| {{Free|Apache 2.0}}
| {{Yes}}
| Linux, macOS, Windows,[{{Cite web|url=https://www.tensorflow.org/install/pip|title=Install TensorFlow with pip}}][{{Cite web|url=https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html|title=TensorFlow 0.12 adds support for Windows}}] Android
| C++, Python, CUDA
| Python (Keras), C/C++, Java, Go, JavaScript, R,[{{cite web |title=tensorflow: R Interface to 'TensorFlow' |author1=Allaire, J.J. |author2=Kalinowski, T. |author3=Falbel, D. |author4=Eddelbuettel, D. |author5=Yuan, T. |author6=Golding, N. |url=https://cran.r-project.org/web/packages/tensorflow/ |publisher=The Comprehensive R Archive Network |date=28 September 2023 |access-date=30 October 2023}}] Julia, Swift
| {{No}}
| {{Depends|On roadmap}}[{{cite web |url=https://github.com/tensorflow/tensorflow/blob/master/tensorflow/docs_src/about/roadmap.md |title=tensorflow/roadmap.md at master |work=GitHub |date=January 23, 2017 |access-date=May 21, 2017}}] but already with SYCL[{{cite web|url=https://github.com/tensorflow/tensorflow/issues/22|title=OpenCL support |issue=22 |work=GitHub}}] support
| {{Yes}}
| {{Yes}}
| {{Yes}}[{{Cite web|url=https://www.tensorflow.org/|title=TensorFlow|website=TensorFlow}}]
| {{Yes}}[{{Cite web|url=https://github.com/tensorflow/models|title=Models and examples built with TensorFlow|date=July 19, 2019|via=GitHub}}]
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}} |
Theano
| Université de Montréal
| 2007
| {{BSD-lic}}
| {{Yes}}
| Cross-platform
| Python
| Python (Keras)
| {{Yes}}
| {{Depends|Under development[{{cite web|url=http://deeplearning.net/software/theano/tutorial/using_gpu.html|title=Using the GPU: Theano 0.8.2 documentation|access-date=2016-01-21|archive-date=2017-04-01|archive-url=https://web.archive.org/web/20170401163303/http://deeplearning.net/software/theano/tutorial/using_gpu.html|url-status=dead}}]}}
| {{Yes}}
| {{No}}
| {{Yes}}[{{Cite web|url=http://deeplearning.net/software/theano/library/gradient.html|title=gradient – Symbolic Differentiation — Theano 1.0.0 documentation|website=deeplearning.net}}][{{Cite web|url=https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ|title=Automatic vs. Symbolic differentiation}}]
| {{Depends|Through Lasagne's model zoo[{{cite web|url=https://github.com/Lasagne/Recipes/tree/master/modelzoo|title=Recipes/modelzoo at master · Lasagne/Recipes |work=GitHub}}]}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}[{{Cite web|url=http://deeplearning.net/software/theano/tutorial/using_multi_gpu.html|title=Using multiple GPUs — Theano 1.0.0 documentation|website=deeplearning.net}}]
| {{No}} |
Torch
| Ronan Collobert, Koray Kavukcuoglu, Clement Farabet
| 2002
| {{BSD-lic}}
| {{Yes}}
| Linux, macOS, Windows,[{{Cite web|url=https://github.com/torch/torch7|title=torch/torch7|date=July 18, 2019|via=GitHub}}] Android,[{{cite web|url=https://github.com/soumith/torch-android|title=GitHub - soumith/torch-android: Torch-7 for Android|work=GitHub|date=13 October 2021}}] iOS
| C, Lua
| Lua, LuaJIT,[{{Cite web|url=http://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf|title=Torch7: A MATLAB-like Environment for Machine Learning}}] C, utility library for C++/OpenCL[{{cite web|url=https://github.com/jonathantompson/jtorch|title=GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library|work=GitHub|date=18 November 2020}}]
| {{Yes}}
| {{Depends|Third party implementations[{{cite web|url=https://github.com/torch/torch7/wiki/Cheatsheet#opencl|title=Cheatsheet|work=GitHub}}][{{cite web|url=https://github.com/hughperkins/distro-cl|title=cltorch|work=GitHub}}]}}
| {{Yes}}[{{cite web|url=https://github.com/torch/cutorch|title=Torch CUDA backend|work=GitHub}}][{{cite web|url=https://github.com/torch/cunn|title=Torch CUDA backend for nn|work=GitHub}}]
| {{No}}
| {{Yes|Through Twitter's Autograd[{{Cite web|url=https://github.com/twitter/torch-autograd|title=Autograd automatically differentiates native Torch code: twitter/torch-autograd|date=July 9, 2019|via=GitHub}}]}}
| {{Yes}}[{{cite web|url=https://github.com/torch/torch7/wiki/ModelZoo|title=ModelZoo|work=GitHub}}]
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{No}} |
Wolfram Mathematica 10[{{cite web|title=Launching Mathematica 10|url=https://blog.wolfram.com/2014/07/09/launching-mathematica-10-with-700-new-functions-and-a-crazy-amount-of-rd|website=Wolfram}}] and later
| Wolfram Research
| 2014
| {{Proprietary}}
| {{No}}
| Windows, macOS, Linux, Cloud computing
| C++, Wolfram Language, CUDA
| Wolfram Language
| {{Yes}}
| {{No}}
| {{Yes}}
| {{No}}
| {{Yes}}
| {{Yes}}[{{Cite web|url=http://resources.wolframcloud.com/NeuralNetRepository|title=Wolfram Neural Net Repository of Neural Network Models|website=resources.wolframcloud.com}}]
| {{Yes}}
| {{Yes}}
| {{Yes}}
| {{Yes}}[{{Cite web|url=https://reference.wolfram.com/language/guide/ParallelComputing.html.en|title=Parallel Computing—Wolfram Language Documentation|website=reference.wolfram.com}}]
| {{Yes}} |
style="width: 12em" | Software
! Creator
! Initial release
! Software license{{efn|name="license"|Licenses here are a summary, and are not taken to be complete statements of the licenses. Some libraries may use other libraries internally under different licenses}}
! {{verth|va=middle|Open source}}
! Platform
! Written in
! Interface
! OpenMP support
! OpenCL support
! CUDA support
! {{verth|va=middle|ROCm support[{{cite web |url=https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html |title=Deep Learning — ROCm 4.5.0 documentation |access-date=2022-09-27 |archive-date=2022-12-05 |archive-url=https://web.archive.org/web/20221205102733/https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html |url-status=dead}}]}}
! Automatic differentiation
! Has pretrained models
! {{verth|va=middle|Recurrent nets}}
! {{verth|va=middle|Convolutional nets}}
! {{verth|va=middle|RBM/DBNs}}
! {{verth|va=middle|Parallel execution (multi node)}}
! {{verth|va=middle|Actively developed}} |
---|