Dimensionless numbers in fluid mechanics

{{Short description|none}}

Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena.{{cite web|title=ISO 80000-1:2009|url=https://www.iso.org/standard/30669.html|publisher=International Organization for Standardization|access-date=2019-09-15}} They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

To compare a real situation (e.g. an aircraft) with a small-scale model it is necessary to keep the important characteristic numbers the same. Names and formulation of these numbers were standardized in ISO 31-12 and in ISO 80000-11.

Diffusive numbers in transport phenomena

class="wikitable floatright"

|+ Dimensionless numbers in transport phenomena

! vs.

! Inertial

! Viscous

! Thermal

! Mass

Inertial

| style="background:silver;"| vd

| Re

| Pe

| PeAB

Viscous

| Re−1

| style="background:silver;"| μ/ρ, ν

| Pr

| Sc

Thermal

| Pe−1

| Pr−1

| style="background:silver;"| α

| Le

Mass

| PeAB−1

| Sc−1

| Le−1

| style="background:silver;"| D

As a general example of how dimensionless numbers arise in fluid mechanics, the classical numbers in transport phenomena of mass, momentum, and energy are principally analyzed by the ratio of effective diffusivities in each transport mechanism. The six dimensionless numbers give the relative strengths of the different phenomena of inertia, viscosity, conductive heat transport, and diffusive mass transport. (In the table, the diagonals give common symbols for the quantities, and the given dimensionless number is the ratio of the left column quantity over top row quantity; e.g. Re = inertial force/viscous force = vd/ν.) These same quantities may alternatively be expressed as ratios of characteristic time, length, or energy scales. Such forms are less commonly used in practice, but can provide insight into particular applications.

{{clear}}

Droplet formation

class="wikitable floatright"

|+ Dimensionless numbers in droplet formation

! vs.

! Momentum

! Viscosity

! Surface tension

! Gravity

! Kinetic energy

Momentum

| style="background:silver;"| ρvd

| Re

|

| Fr

|

Viscosity

| Re−1

| style="background:silver;"| ρν, μ

| Oh, Ca, La−1

| Ga−1

|

Surface tension

|

| Oh−1, Ca−1, La

| style="background:silver;"| σ

| Je

| We−1

Gravity

| Fr−1

| Ga

| Bo

| style="background:silver;"| g

|

Kinetic energy

|

|

| We

|

| style="background:silver;"| ρv{{i sup|2}}d

Droplet formation mostly depends on momentum, viscosity and surface tension.{{cite book |last1=Dijksman |first1=J. Frits |last2=Pierik |first2=Anke |editor1-last=Hutchings |editor1-first=Ian M. |editor2-last=Martin |editor2-first=Graham D. |title=Inkjet Technology for Digital Fabrication |publisher=John Wiley & Sons |isbn=9780470681985 |pages=45–86 |chapter=Dynamics of Piezoelectric Print-Heads |year=2012 |doi=10.1002/9781118452943.ch3}} In inkjet printing for example, an ink with a too high Ohnesorge number would not jet properly, and an ink with a too low Ohnesorge number would be jetted with many satellite drops.{{cite journal|last1=Derby|first1=Brian|author-link=Brian Derby|title=Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution|journal=Annual Review of Materials Research|volume=40|issue=1|year=2010|pages=395–414|issn=1531-7331|doi=10.1146/annurev-matsci-070909-104502|bibcode=2010AnRMS..40..395D |s2cid=138001742 |url=https://pure.manchester.ac.uk/ws/files/174918681/DERBYwithfigures_2017_02_22_19_00_59_UTC_.pdf }} Not all of the quantity ratios are explicitly named, though each of the unnamed ratios could be expressed as a product of two other named dimensionless numbers.

{{Clear}}

List

All numbers are dimensionless quantities. See other article for extensive list of dimensionless quantities. Certain dimensionless quantities of some importance to fluid mechanics are given below:

class="wikitable sortable"
scope="col" | Name

! scope="col" | Standard symbol

! scope="col" class="unsortable" | Definition

!Named after

! scope="col" | Field of application

Archimedes numberAr \mathrm{Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2}

|Archimedes

fluid mechanics (motion of fluids due to density differences)
Atwood numberA\mathrm{A} = \frac{\rho_1 - \rho_2} {\rho_1 + \rho_2}

| George Atwood{{cn|date=March 2025}}

fluid mechanics (onset of instabilities in fluid mixtures due to density differences)
Bagnold number

|Ba

|\mathrm{Ba}=\frac{\rho d^2 \lambda^{1/2} \dot{\gamma}}{\mu }

|Ralph Bagnold

|Granular flow (grain collision stresses to viscous fluid stresses)

Bejan numberBe\mathrm{Be} = \frac{\Delta P L^2} {\mu \alpha}

|Adrian Bejan

fluid mechanics (dimensionless pressure drop along a channel){{cite conference |title=The formation of wall jet near a high temperature wall under microgravity environment |first1=Subrata |last1=Bhattacharje |first2=William L. |last2=Grosshandler |date=1988 |conference=National Heat Transfer Conference |editor1-first=Harold R. |editor1-last=Jacobs |volume=1 |publisher=American Society of Mechanical Engineers |location=Houston, TX |pages=711–716 |bibcode=1988nht.....1..711B}}
Bingham numberBm\mathrm{Bm} = \frac{ \tau_y L }{ \mu V }

|Eugene C. Bingham

fluid mechanics, rheology (ratio of yield stress to viscous stress)
Biot numberBi\mathrm{Bi} = \frac{h L_C}{k_b}

|Jean-Baptiste Biot

heat transfer (surface vs. volume conductivity of solids)
Blake numberBl or B\mathrm{B} = \frac{u \rho}{\mu (1 - \epsilon) D}

| Frank C. Blake (1892–1926)

geology, fluid mechanics, porous media (inertial over viscous forces in fluid flow through porous media)
Bond numberBo\mathrm{Bo} = \frac{\rho a L^2}{\gamma}

|Wilfrid Noel Bond

geology, fluid mechanics, porous media (buoyant versus capillary forces, similar to the Eötvös number){{cite journal |last1=Mahajan |first1=Milind P. |last2=Tsige |first2=Mesfin |last3=Zhang |first3=Shiyong |last4=Alexander |first4=J. Iwan D. |last5=Taylor |first5=P. L. |last6=Rosenblatt |first6=Charles |title=Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation |journal=Physical Review Letters |date=10 January 2000 |volume=84 |issue=2 |pages=338–341 |doi=10.1103/PhysRevLett.84.338 |pmid=11015905 |bibcode=2000PhRvL..84..338M |url=http://ising.phys.cwru.edu/plt/PapersInPdf/181BridgeCollapse.pdf |archive-url=https://web.archive.org/web/20120305114521/http://ising.phys.cwru.edu/plt/PapersInPdf/181BridgeCollapse.pdf |archive-date=5 March 2012}}
Brinkman numberBr \mathrm{Br} = \frac {\mu U^2}{\kappa (T_w - T_0)}

|Henri Brinkman

heat transfer, fluid mechanics (conduction from a wall to a viscous fluid)
Burger number

|Bu

|\mathrm{Bu} = \left(\dfrac{\mathrm{Ro}}{\mathrm{Fr}}\right)^2

|Alewyn P. Burger (1927–2003)

|meteorology, oceanography (density stratification versus Earth's rotation)

Brownell–Katz numberNBK\mathrm{N}_\mathrm{BK} = \frac{u \mu}{k_\mathrm{rw}\sigma}

| Lloyd E. Brownell and Donald L. Katz

fluid mechanics (combination of capillary number and Bond number){{cite web|url=http://www.onepetro.org/mslib/servlet/onepetropreview?id=00020506 |title=Home |publisher=OnePetro |date=2015-05-04 |access-date=2015-05-08}}
Capillary numberCa\mathrm{Ca} = \frac{\mu V}{\gamma}

|

porous media, fluid mechanics (viscous forces versus surface tension)
Cauchy numberCa \mathrm{Ca} = \frac{\rho u^2}{K}

|Augustin-Louis Cauchy

compressible flows (inertia forces versus compressibility force)
Cavitation numberCa

\mathrm{Ca}=\frac{p - p_\mathrm{v}}{\frac{1}{2}\rho v^2}

|

multiphase flow (hydrodynamic cavitation, pressure over dynamic pressure)
Chandrasekhar numberC\mathrm{C} = \frac{B^2 L^2}{\mu_o \mu D_M}

|Subrahmanyan Chandrasekhar

hydromagnetics (Lorentz force versus viscosity)
Colburn J factorsJM, JH, JD| Allan Philip Colburn (1904–1955)turbulence; heat, mass, and momentum transfer (dimensionless transfer coefficients)
Damkohler numberDa \mathrm{Da} = k \tau

|Gerhard Damköhler

chemistry (reaction time scales vs. residence time)
Darcy friction factorCf or fD|Henry Darcyfluid mechanics (fraction of pressure losses due to friction in a pipe; four times the Fanning friction factor)
Darcy number

|Da

| \mathrm{Da} =\frac{k}{d^2}

|Henry Darcy

|Fluid dynamics (permeability of the medium versus its cross-sectional area in porous media)

Dean numberD\mathrm{D} = \frac{\rho V d}{\mu} \left( \frac{d}{2 R} \right)^{1/2}

|William Reginald Dean

turbulent flow (vortices in curved ducts)
Deborah numberDe \mathrm{De} = \frac{t_\mathrm{c}}{t_\mathrm{p}}

|Deborah

rheology (viscoelastic fluids)
Drag coefficientcdc_\mathrm{d} = \dfrac{2 F_\mathrm{d}}{\rho v^2 A}\, ,

|

aeronautics, fluid dynamics (resistance to fluid motion)
Dukhin number

|Du

| {\rm Du} = \frac{\kappa^{\sigma}}{{\Kappa_m}a}.

|Stanislav and Andrei Dukhin

|Fluid heterogeneous systems (surface conductivity to various electrokinetic and electroacoustic effects)

Eckert numberEc \mathrm{Ec} = \frac{V^2}{c_p\Delta T}

|Ernst R. G. Eckert

convective heat transfer (characterizes dissipation of energy; ratio of kinetic energy to enthalpy)
Ekman number

|Ek

|\mathrm{Ek}=\frac{\nu}{2D^2\Omega\sin\varphi}

|Vagn Walfrid Ekman

|Geophysics (viscosity to Coriolis force ratio)

Eötvös numberEo\mathrm{Eo}=\frac{\Delta\rho \,g \,L^2}{\sigma}

|Loránd Eötvös

fluid mechanics (shape of bubbles or drops)
Ericksen numberEr\mathrm{Er}=\frac{\mu v L}{K}

|Jerald Ericksen

fluid dynamics (liquid crystal flow behavior; viscous over elastic forces)
Euler numberEu \mathrm{Eu}=\frac{\Delta{}p}{\rho V^2}

|Leonhard Euler

hydrodynamics (stream pressure versus inertia forces)
Excess temperature coefficient\Theta_r\Theta_r = \frac{c_p (T-T_e)}{U_e^2/2}

|

heat transfer, fluid dynamics (change in internal energy versus kinetic energy){{cite book|last=Schetz|first=Joseph A.|title=Boundary Layer Analysis|url=https://archive.org/details/boundarylayerana00sche|url-access=limited|year=1993|publisher=Prentice-Hall, Inc.|location=Englewood Cliffs, NJ|isbn=0-13-086885-X|pages=[https://archive.org/details/boundarylayerana00sche/page/n78 132]–134}}
Fanning friction factorf|John T. Fanningfluid mechanics (fraction of pressure losses due to friction in a pipe; 1/4th the Darcy friction factor){{Cite web |url=http://www.engineering.uiowa.edu/~cee081/Exams/Final/Final.htm |title=Fanning friction factor |access-date=2015-06-25 |archive-url=https://web.archive.org/web/20131220032423/http://www.engineering.uiowa.edu/~cee081/Exams/Final/Final.htm |archive-date=2013-12-20 |url-status=dead }}
Froude numberFr\mathrm{Fr} = \frac{U}{\sqrt{g\ell}}

|William Froude

fluid mechanics (wave and surface behaviour; ratio of a body's inertia to gravitational forces)
Galilei numberGa\mathrm{Ga} = \frac{g\, L^3}{\nu^2}

|Galileo Galilei

fluid mechanics (gravitational over viscous forces)
Görtler numberG\mathrm{G} = \frac{U_e \theta}{\nu} \left( \frac{\theta}{R} \right)^{1/2}

| {{Ill|Henry Görtler|de}}

fluid dynamics (boundary layer flow along a concave wall)
{{Ill|Goucher number|fr|Nombre de Goucher}}

|Go

| \mathrm{Go} = R \left(\frac {\rho g }{2 \sigma} \right)^{1/2}

| Frederick Shand Goucher (1888–1973)

|fluid dynamics (wire coating problems)

Garcia-Atance numberGA \mathrm{ G_A} = \frac{ p - p_v }{\rho a L}

| Gonzalo Garcia-Atance Fatjo

phase change (ultrasonic cavitation onset, ratio of pressures over pressure due to acceleration)
Graetz numberGz\mathrm{Gz} = {D_H \over L} \mathrm{Re}\, \mathrm{Pr}

|Leo Graetz

heat transfer, fluid mechanics (laminar flow through a conduit; also used in mass transfer)
Grashof numberGr \mathrm{Gr}_L = \frac{g \beta (T_s - T_\infty ) L^3}{\nu ^2}

|Franz Grashof

heat transfer, natural convection (ratio of the buoyancy to viscous force)
Hartmann numberHa\mathrm{Ha} = BL \left( \frac{\sigma}{\rho\nu} \right)^\frac{1}{2}

|Julius Hartmann (1881–1951)

magnetohydrodynamics (ratio of Lorentz to viscous forces)
Hagen numberHg \mathrm{Hg} = -\frac{1}{\rho}\frac{\mathrm{d} p}{\mathrm{d} x}\frac{L^3}{\nu^2}

|Gotthilf Hagen

heat transfer (ratio of the buoyancy to viscous force in forced convection)
Iribarren numberIr\mathrm{Ir} = \frac{\tan \alpha}{\sqrt{H/L_0}}

|Ramón Iribarren

wave mechanics (breaking surface gravity waves on a slope)
Jakob numberJa\mathrm{Ja} = \frac{c_{p,f}(T_w - T_{sat})}{h_{fg}}

|Max Jakob

heat transfer (ratio of sensible heat to latent heat during phase changes)
Jesus number

|Je

|\mathrm{Je}=\frac{\sigma\, L}{M \,g }

|Jesus

|Surface tension (ratio of surface tension and weight)

Karlovitz numberKa\mathrm{Ka} = k t_c

|Béla Karlovitz

turbulent combustion (characteristic flow time times flame stretch rate)
Kapitza numberKa\mathrm{Ka} = \frac{\sigma}{\rho(g\sin\beta)^{1/3}\nu^{4/3}}

|Pyotr Kapitsa

fluid mechanics (thin film of liquid flows down inclined surfaces)
Keulegan–Carpenter numberKC\mathrm{K_C} = \frac{V\,T}{L}

|Garbis H. Keulegan (1890–1989) and Lloyd H. Carpenter

fluid dynamics (ratio of drag force to inertia for a bluff object in oscillatory fluid flow)
Knudsen numberKn\mathrm{Kn} = \frac {\lambda}{L}

|Martin Knudsen

gas dynamics (ratio of the molecular mean free path length to a representative physical length scale)
Kutateladze numberKu\mathrm{Ku} = \frac{U_h \rho_g^{1/2}}{\left({\sigma g (\rho_l - \rho_g)}\right)^{1/4}}

| Samson Kutateladze

fluid mechanics (counter-current two-phase flow){{Cite journal | last1 = Tan | first1 = R. B. H. | last2 = Sundar | first2 = R. | doi = 10.1016/S0009-2509(01)00247-0 | title = On the froth–spray transition at multiple orifices | journal = Chemical Engineering Science | volume = 56 | issue = 21–22 | pages = 6337 | year = 2001 | bibcode = 2001ChEnS..56.6337T }}
Laplace numberLa\mathrm{La} = \frac{\sigma \rho L}{\mu^2}

| Pierre-Simon Laplace

fluid dynamics (free convection within immiscible fluids; ratio of surface tension to momentum-transport)
Lewis numberLe\mathrm{Le} = \frac{\alpha}{D} = \frac{\mathrm{Sc}}{\mathrm{Pr}}

|Warren K. Lewis

heat and mass transfer (ratio of thermal to mass diffusivity)
Lift coefficientCLC_\mathrm{L} = \frac{L}{q\,S}

|

aerodynamics (lift available from an airfoil at a given angle of attack)
Lockhart–Martinelli parameter\chi\chi = \frac{m_\ell}{m_g} \sqrt{\frac{\rho_g}{\rho_\ell}}

| R. W. Lockhart and Raymond C. Martinelli

two-phase flow (flow of wet gases; liquid fraction){{cite journal |last1=Stewart |first1=David |title=The Evaluation of Wet Gas Metering Technologies for Offshore Applications, Part 1 – Differential Pressure Meters |journal=Flow Measurement Guidance Note |date=February 2003 |volume=40 |url=http://www.flowprogramme.co.uk/publications/guidancenotes/GN40.pdf |archive-url=https://web.archive.org/web/20061117065355/http://www.flowprogramme.co.uk:80/publications/guidancenotes/GN40.pdf |archive-date=17 November 2006 |publisher=National Engineering Laboratory |location=Glasgow, UK}}
Mach numberM or Ma \mathrm{M} = \frac{{v}}{{v_\mathrm{sound}}}

|Ernst Mach

gas dynamics (compressible flow; dimensionless velocity)
Marangoni numberMg\mathrm{Mg} = - {\frac{\mathrm{d}\sigma}{\mathrm{d}T}}\frac{L \Delta T}{\eta \alpha}

| Carlo Marangoni

fluid mechanics (Marangoni flow; thermal surface tension forces over viscous forces)
Markstein numberMa\mathrm{Ma} = \frac{L_b}{l_f}

| George H. Markstein

turbulence, combustion (Markstein length to laminar flame thickness)
Morton numberMo\mathrm{Mo} = \frac{g \mu_c^4 \, \Delta \rho}{\rho_c^2 \sigma^3}

| Rose Morton

fluid dynamics (determination of bubble/drop shape)
Nusselt numberNu\mathrm{Nu} =\frac{hd}{k}

| Wilhelm Nusselt

heat transfer (forced convection; ratio of convective to conductive heat transfer)
Ohnesorge numberOh \mathrm{Oh} = \frac{ \mu}{ \sqrt{\rho \sigma L }} = \frac{\sqrt{\mathrm{We}}}{\mathrm{Re}}

| Wolfgang von Ohnesorge

fluid dynamics (atomization of liquids, Marangoni flow)
Péclet numberPe\mathrm{Pe} = \frac{L u}{D} or \mathrm{Pe} = \frac{L u}{\alpha}

| Jean Claude Eugène Péclet

fluid mechanics (ratio of advective transport rate over molecular diffusive transport rate), heat transfer (ratio of advective transport rate over thermal diffusive transport rate)
Prandtl numberPr\mathrm{Pr} = \frac{\nu}{\alpha} = \frac{c_p \mu}{k}

| Ludwig Prandtl

heat transfer (ratio of viscous diffusion rate over thermal diffusion rate)
Pressure coefficientCPC_p = {p - p_\infty \over \frac{1}{2} \rho_\infty V_\infty^2}

|

aerodynamics, hydrodynamics (pressure experienced at a point on an airfoil; dimensionless pressure variable)
Rayleigh numberRa\mathrm{Ra}_{x} = \frac{g \beta} {\nu \alpha} (T_s - T_\infin) x^3

| John William Strutt, 3rd Baron Rayleigh

heat transfer (buoyancy versus viscous forces in free convection)
Reynolds numberRe\mathrm{Re} = \frac{U L\rho}{\mu}=\frac{U L}{\nu}

| Osborne Reynolds

fluid mechanics (ratio of fluid inertial and viscous forces){{cite web |title=Table of Dimensionless Numbers |url=http://www.cchem.berkeley.edu/gsac/grad_info/prelims/binders/dimensionless_numbers.pdf |access-date=2009-11-05}}
Richardson numberRi \mathrm{Ri} = \frac{gh}{U^2} = \frac{1}{\mathrm{Fr}^2}

| Lewis Fry Richardson

fluid dynamics (effect of buoyancy on flow stability; ratio of potential over kinetic energy)[http://apollo.lsc.vsc.edu/classes/met455/notes/section4/2.html Richardson number] {{webarchive|url=https://web.archive.org/web/20150302154119/http://apollo.lsc.vsc.edu/classes/met455/notes/section4/2.html |date=2015-03-02 }}
Roshko numberRo \mathrm{Ro} = {f L^{2}\over \nu} =\mathrm{St}\,\mathrm{Re}

| Anatol Roshko

fluid dynamics (oscillating flow, vortex shedding)
Rossby numberRo\text{Ro} = \frac{U}{Lf},

| Carl-Gustaf Rossby

fluid flow (geophysics, ratio of inertial force to Coriolis force)
Rouse number

|P

|\mathrm{P} = \frac{w_s}{\kappa u_*}

|Hunter Rouse

|Fluid dynamics (concentration profile of suspended sediment)

Schmidt numberSc\mathrm{Sc} = \frac{\nu}{D}

| Ernst Heinrich Wilhelm Schmidt (1892–1975)

mass transfer (viscous over molecular diffusion rate)[http://www.ent.ohiou.edu/~hbwang/fluidynamics.htm Schmidt number] {{webarchive|url=https://web.archive.org/web/20100124213316/http://www.ent.ohiou.edu/~hbwang/fluidynamics.htm |date=2010-01-24 }}
Scruton number

|Sc

|\mathrm{Sc} = \frac{2\delta_sm_e}{\rho b^2_\text{ref}}

|Christopher 'Kit' Scruton

|Fluid dynamics (vortex resonance)

Shape factorHH = \frac {\delta^*}{\theta}

|

boundary layer flow (ratio of displacement thickness to momentum thickness)
Sherwood numberSh\mathrm{Sh} = \frac{K L}{D}

| Thomas Kilgore Sherwood

mass transfer (forced convection; ratio of convective to diffusive mass transport)
Shields parameter

|θ

|\theta = \frac{\tau}{(\rho_s-\rho) g D}

|Albert F. Shields

|Fluid dynamics (motion of sediment)

Sommerfeld numberS \mathrm{S} = \left( \frac{r}{c} \right)^2 \frac {\mu N}{P}

| Arnold Sommerfeld

hydrodynamic lubrication (boundary lubrication){{cite thesis |last=Ekerfors |first=Lars O. |date=1985 |title=Boundary lubrication in screw-nut transmissions |type=PhD |publisher=Luleå University of Technology |url=http://ltu.diva-portal.org/smash/get/diva2:990021/FULLTEXT01.pdf |issn=0348-8373}}
Stanton numberSt\mathrm{St} = \frac{h}{c_p \rho V} = \frac{\mathrm{Nu}}{\mathrm{Re}\,\mathrm{Pr}}

| Thomas Ernest Stanton

heat transfer and fluid dynamics (forced convection)
Stokes numberStk or Sk\mathrm{Stk} = \frac{\tau U_o}{d_c}

| Sir George Stokes, 1st Baronet

particles suspensions (ratio of characteristic time of particle to time of flow)
Strouhal numberSt\mathrm{St} = \frac{f L}{U}

| Vincenc Strouhal

Vortex shedding (ratio of characteristic oscillatory velocity to ambient flow velocity)
Stuart numberN \mathrm{N} = \frac {B^2 L_{c} \sigma}{\rho U} = \frac{\mathrm{Ha}^2}{\mathrm{Re}}

| John Trevor Stuart

magnetohydrodynamics (ratio of electromagnetic to inertial forces)
Taylor numberTa \mathrm{Ta} = \frac{4\Omega^2 R^4}{\nu^2}

| G. I. Taylor

fluid dynamics (rotating fluid flows; inertial forces due to rotation of a fluid versus viscous forces)
Thoma number

|σ

|\mathrm{\sigma}=\frac{ \mathrm{NPSH} }{h_\mathrm{pump}}

|Dieter Thoma (1881–1942)

|multiphase flow (hydrodynamic cavitation, pressure over dynamic pressure)

Ursell numberU\mathrm{U} = \frac{H\, \lambda^2}{h^3}

| Fritz Ursell

wave mechanics (nonlinearity of surface gravity waves on a shallow fluid layer)
Wallis parameterj{{i sup|∗}}j^* = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2}

| Graham B. Wallis

multiphase flows (nondimensional superficial velocity){{Cite journal |last1=Petritsch |first1=G. |last2=Mewes |first2=D. |doi=10.1016/S0029-5493(99)00005-9 |title=Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor |journal=Nuclear Engineering and Design |volume=188 |pages=75–84 |year=1999 |issue=1 |bibcode=1999NuEnD.188...75P}}
Weber numberWe\mathrm{We} = \frac{\rho v^2 l}{\sigma}

| Moritz Weber

multiphase flow (strongly curved surfaces; ratio of inertia to surface tension)
Weissenberg numberWi\mathrm{Wi} = \dot{\gamma} \lambda

| Karl Weissenberg

viscoelastic flows (shear rate times the relaxation time){{cite journal |last1=Smith |first1=Douglas E. |last2=Babcock |first2=Hazen P. |last3=Chu |first3=Steven |title=Single-Polymer Dynamics in Steady Shear Flow |journal=Science |date=12 March 1999 |volume=283 |issue=5408 |pages=1724–1727 |doi=10.1126/science.283.5408.1724 |publisher=American Association for the Advancement of Science |pmid=10073935 |bibcode=1999Sci...283.1724S |url=http://physics.ucsd.edu/~des/Shear1999.pdf |archive-url=https://web.archive.org/web/20061101152745/http://physics.ucsd.edu/~des/Shear1999.pdf |archive-date=1 November 2006}}
Womersley number\alpha\alpha = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2}

| John R. Womersley

biofluid mechanics (continuous and pulsating flows; ratio of pulsatile flow frequency to viscous effects){{cite web |author1=Bookbinder |author2=Engler |author3=Hong |author4=Miller |title=Comparison of Flow Measure Techniques during Continuous and Pulsatile Flow |url=https://www.seas.upenn.edu/~belab/LabProjects/2001/be310s01m2.html |website=2001 BE Undergraduate Projects |publisher=Department of Bioengineering, University of Pennsylvania |date=May 2001}}
Zeldovich number\beta\beta = \frac{E}{RT_f} \frac{T_f-T_o}{T_f}

| Yakov Zeldovich

fluid dynamics, Combustion (Measure of activation energy)

References

{{reflist}}

  • {{Cite book|title = Springer Handbook of Experimental Fluid Mechanics|last1=Tropea |first1=C. |last2=Yarin |first2=A.L. |last3=Foss |first3=J.F. |publisher = Springer-Verlag|year = 2007}}

{{Dimensionless numbers in fluid mechanics}}

*

Category:Fluid dynamics