Rotzo Formation
{{short description|Jurassic geological formation in Italy}}
{{Infobox rockunit
| name = Rotzo Formation
| image = Panorma di Rotzo.jpg
| caption = Panorama of the Rotzo area with several of the Outcrops visible: Tonezza mountain at the left, Val d´Assa cliff in the center-front and Campolongo mountain in the right
| type = Geological formation
| age = Early Pliensbachian
~{{fossil range|192|187}}
| prilithology = Lithified gray silty marl, gray grainstone, bioturbated/intraclastic/ooidal gray wackestone, mud banks and sand deposits.{{Cite web|url=https://paleobiodb.org/classic/basicCollectionSearch?collection_no=88592|title=PBDB}}
| otherlithology = Light-grey to yellowish-grey packstone with oolites, bioclasts, algal lumps, pellets, dasycladacean algae, foraminifera, lituolids, and miliolids
| period = Pliensbachian
| namedfor = Rotzo
| namedby =
| region = {{RegioneIT|sigla=VEN}}
| location = Vicenza Province: Trentino-Alto Adige, Southern Alps
| country = {{ITA}}
| coordinates = {{coord|45.7|N|11.1|E|region:IT|display=inline,title}}
| paleocoordinates = {{coord|32.1|S|16.7|E|display=inline}}
| unitof = Calcari Grigi Group
| underlies = Massone Oolitic Limestone
| overlies = *Monte Zugna Formation
| thickness = 250 m
| extent =
| area = Trento Platform
| map = {{Location map+ | Italy
| relief = 1
| width = 250
| float = center
| places =
{{Location map~ | Italy
| lat_deg = 45.7
| lon_deg = 11.1
| mark = Blue pog.svg
| marksize = 10
}}
}}
| map_caption =
}}
The Rotzo Formation (also known in older literature as the Noriglio Grey Limestone Formation) is a geological formation in Italy, dating to roughly between 192 and 186 million years ago and covering the Pliensbachian stage of the Jurassic Period in the Mesozoic Era.{{cite journal |last1=Broglio Loriga |first1=C. |last2=Neri |first2=C. |title=Aspetti paleobiologici e paleogeografici delle facies "Lithiotis" (Giurese inf.) |journal=Rivista Italiana di Paleontologia e Stratigrafia |date=1976 |volume=82 |issue=1 |pages=651–151}} Has been traditionally classified as a Sinemurian-Pliensbachian Formation, but a large and detailed dataset of isotopic 13C and 87Sr/86Sr data, estimated the Rotzo Formation to span only over the Early Pliensbachian, bracketed between the Jamesoni-Davoei biozones, marked in the Loppio Oolitic Limestone–Rotzo Fm contact by a carbon isotope excursion onset similar to the Sinemu-Pliens boundary event, while the other sequences fit with the a warm phase that lasts until the Davoei biozone.{{cite journal |last1=Franceschi |first1=M. |last2=Dal Corso |first2=J. |last3=Posenato |first3=R. |last4=Roghi |first4=G. |last5=Masetti |first5=D. |last6=Jenkyns |first6=H. C. |title=Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |date=2014 |volume=410 |issue=1 |pages=255–263 |doi=10.1016/j.palaeo.2014.05.025 |bibcode=2014PPP...410..255F |url=https://www.researchgate.net/publication/262771459 |access-date=12 November 2021}} The Rotzo Formation represented the Carbonate Platform, being located over the Trento Platform and surrounded by the Massone Oolite (marginal calcarenitic bodies), the Fanes Piccola Encrinite (condensed deposits and emerged lands), the Lombadian Basin Medolo Group and Belluno Basin Soverzene Formation (open marine), and finally towards the south, deep water deposits of the Adriatic Basin.{{cite journal |last1=Masetti |first1=D. |last2=Fantoni |first2=R. |last3=Romano |first3=R. |last4=Sartorio |first4=D. |last5=Trevisani |first5=E. |title=Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data |journal=AAPG Bulletin |date=2012 |volume=96 |issue=11 |pages=2065–2089 |doi=10.1306/03091211087 |bibcode=2012BAAPG..96.2065M |url=https://pubs.geoscienceworld.org/aapgbull/article-abstract/96/11/2065/133167/Tectonostratigraphic-evolution-of-the-Jurassic|access-date=12 November 2021}} The Pliensbachian Podpeč Limestone of Slovenia, the Aganane Formation & the Calcaires du Bou Dahar of Morocco represent regional equivalents, both in deposition and faunal content.
Fossil prosauropod tracks have been reported from the formation.{{cite journal |last1=Mietto |first1=P. |last2=Roghi |first2=G. |last3=Zorzin |first3=R. |title=Le impronte di dinosauri liassici dei Monti Lessini Veronesi [The Liassic dinosaur tracks from the Veronese Monti Lessini]|journal=Bollettino del Museo Civico di Storia Naturale di Verona. Geologia Paleontologia Preistoria |date=2000 |volume=24 |issue=2 |pages=55–72}} This formation was deposited within a tropical lagoon environment, similar to modern Bahamas which was protected by oolitic shoals and bars from the open deep sea located to the east (Belluno Basin) and towards the west (Lombardia Basin). It is characterized by a rich paleontological content. It is notable mostly thanks to its great amount of big aberrant bivalves, among which is the genus Lithiotis, described in the second half of the nineteenth century. The unusual shape of Lithiotis and Cochlearites shells, extremely elongated and narrow, characterized by a spoon-like body space placed in a high position, rarely preserved, seems to suggest their adaptation to soft and muddy bottoms with a high sedimentation rate.{{cite journal|last1=Masseti|first1=D. |last2=Posenato |first2=R. |last3=Bassi |first3=D. |last4=Fungagnoli |first4=A. |title=The Rotzo Formation (Lower Jurassic) at the Valbona Pass (Vicenza Province) |journal=IRIS Università degli Studi di Ferrara |date=2005 |volume=31 |issue=5 |pages=35–56 |url=https://www.researchgate.net/publication/292707238 |access-date=3 January 2022}} The Bellori outcrop displays about 20 m of limestones with intercalated clays and marls rich in organic matter and sometimes fossil wood (coal) and amber. The limestones are well stratified, with beds 10 cm to more than one metre thick, whereas the clayey levels range between 3 and 40 cm in thickness.{{cite journal |last1=Neri |first1=Mirco |last2=Papazzoni |first2=Cesare Andrea |last3=Vescogni |first3=Alessandro |last4=Roghi |first4=Guido |title=Cyclical variation in paleoenvironments of the Rotzo formation (Lower Jurassic, Lessini Mts., N Italy) |journal=STAMPA |date=2015 |volume=33 |issue=1 |pages=74–75}}{{cite journal |last1=Urban |first1=I. |title=Petrografia e geochimica delle ooliti del Giurassico inferiore della Piattaforma di Trento |journal=Area 04 - Scienze della Terra > GEO/02 Geologia Stratigrafica e Sedimentologica |date=2017 |volume=1 |issue=1 |pages=1–203 |url=http://tesi.cab.unipd.it/56909/ |access-date=3 January 2022}}
Paleoenvironment
File:Rotzo Formation succession.png)]]
The sedimentary cover of the Southern Alps has been recognized as a well-preserved section of the Mesozoic Tethys' southern continental margin, featuring a horst and graben structure linked to the rifting associated with the opening of the central North Atlantic that in the Late Triassic and Early Jurassic, created elevated blocks separated by troughs. While the western margin (Piedmont and Lombardy) quickly submerged in the Early Jurassic (As seen by the Saltrio Formation & Moltrasio Formation), the eastern regions maintained shallow water sedimentation, including the Friuli and Trento Platforms, this last one latter evolving into a pelagic plateau, and separated from the Lombardian basin by the Garda escarpment fault system.{{Cite journal |last1=Castellarin |first1=A. |last2=Picotti |first2=V. |date=1990 |title=Jurassic tectonic framework of the eastern border of the Lombardian basin |journal=Eclogae Geologicae Helvetiae |volume=83 |issue=3 |pages=683–700}}
The Early Jurassic Calcari Grigi Group represents the shallow-water sedimentation phase of the Trento Platform, revealing several sites over an area of about 1,500 km2. The continuity of dinosaur tracks from the Hettangian-Pliensbachian interval indicates a stable connection between the Southern Alps' carbonate tidal flats and nearby vegetated lands and freshwater sources, although the exact locations of these lands remain uncertain.{{Cite journal |last1=Bernardi |first1=M. |last2=Petti |first2=F. M. |last3=Avanzini |first3=M. |date=2010 |title=Palaeoenvironmental implications of Asteriacites lumbricalis in the coste dell'Anglone sinemurian dinosaur ichnosite (NE Italy) |url=https://www.researchgate.net/publication/250305294 |journal=Palaeontologia Electronica |volume=13 |issue=3 |pages=1–8}} Detailed sedimentological studies of the Calcari Grigi Group, particularly the Rotzo Formation, describe it as a shallow subtidal platform with an inner lagoon bordered by oolitic shoals.
The Coste dell’Anglone ichnosite for example, situated on the margin of this lagoon within a sandy barrier complex, was influenced by pioneer plants like Hirmeriellaceae in semi-arid conditions. Sedimentary structures indicate a shallow water tidal environment with heterolithic stratification pointing to steady flows at low current velocities. The presence of dinosaur tracks and supratidal markers suggests repeated subaerial exposure, contrasting with previous interpretations of the site as fully subtidal.
These findings align with the lagoon-barrier island complex scenario, featuring a subtidal ramp gently inclined to the west and an intertidal-supratidal barrier island complex trending approximately N-S, now corresponding to the Mt. Brento-Biaina and Mt. Baldo chains.
Amoebae
The presence of the families Centropyxidae and Difflugiidae testifies the presence of a mixed marine-terrestrial depositional system, lacking large bodies of water.
class="wikitable sortable" |
Genus
! Species ! Location ! Material ! Notes ! Images |
---|
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Tonezza del Cimone |style="background:#D1FFCF;" |Isolated Tests/Shells |style="background:#D1FFCF;" | A testate amoebae, member of the family Centropyxidae inside Arcellinida. |style="background:#D1FFCF;" | File:Collection Penard MHNG Specimen 691-1-3 Centropyxis aculeata.tif]] |
style="background:#D1FFCF;" |
Difflugia{{Cite journal |last1=BASSI |first1=DAVIDE |last2=FUGAGNOLI |first2=ANNA |last3=POSENATO |first3=RENATO |last4=SCOTT |first4=DAVID B. |title=Testate Amoebae from the Early Jurassic of the Western Tethys, North-East Italy |date=2008 |journal=Palaeontology |volume=51 |issue=6 |pages=1335–1339 |doi=10.1111/j.1475-4983.2008.00817.x |s2cid=129670565 |issn=0031-0239|doi-access=free |bibcode=2008Palgy..51.1335B }} |style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Tonezza del Cimone |style="background:#D1FFCF;" |Isolated Tests/Shells |style="background:#D1FFCF;" | A testate amoebae, member of the family Difflugiidae inside Arcellinida. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Tonezza del Cimone |style="background:#D1FFCF;" |Isolated Tests/Shells |style="background:#D1FFCF;" | A testate amoebae, member of the family Difflugiidae inside Arcellinida. |style="background:#D1FFCF;" | File:Collection Penard MHNG Specimen 574-1-2 Pontigulasia vas.tif]] |
Foranimifera
Invertebrates
Microfossils of the Rotzo Formation consist of benthic foraminifera, calcareous algae, Ostracoda and coprolites. Foraminifera are mainly benthic agglutinated species belonging to the superfamily Lituolacea (suborder Textulariina), while lamellar and porcellaneous-walled species are very rare.{{cite journal |last1=Monaco |first1=P. |last2=Giannetti |first2=A. |title=Stratigrafia tafonomica nel Giurassico inferiore dei Calcari Grigi della Piattaforma di Trento |journal=Atti Ticinensi di Scienze della Terra |date=2001 |volume=42 |issue=1 |pages=175–209 |url=https://www.researchgate.net/publication/233741320 |access-date=3 January 2022}} The bivalve Opisoma excavatum is very common.{{cite journal |last1=Posenato |first1=R. |title=Opisoma excavatum Boehm, a Lower Jurassic photosymbiotic alatoform-chambered bivalve |journal=Lethaia |date=2013 |volume=46 |issue=2 |pages=424–437 |doi=10.1111/let.12020 |bibcode=2013Letha..46..424P |url=https://www.researchgate.net/publication/257390499 |access-date=3 January 2022}}
=Sponges=
class = "wikitable" |
Genus
! Species ! Provenance ! Material ! Notes ! Images |
---|
Chaetetes{{cite journal |last1=Avanzini |first1=M. |last2=Broglio Loriga |first2=C. |title=Chaetetid facies from the uppermost Calcari Grigi of the Southern Alps (Lower Jurassic, Gruppo del Pasubio, Trento, Italy) |journal=Memorie di Scienze Geologiche Università di Padova |date=1996 |volume=48 |pages=55–64 |url=https://galileodiscovery.unipd.it/discovery/fulldisplay?vid=39UPD_INST:VU1&search_scope=MyInst_and_CI&tab=Everything&docid=alma990032404020206046&context=L |access-date=20 January 2024}}
|
|
| Colonial Imprints | A Chaetetidan Demosponge, member of Chaetetinae. Monospecific assamblages with encrusting and symbiont forms are found abundantly on lagoonal facies, distributed in several stratigraphic horizons. | |
= Anthozoa =
=Brachiopod=
=Bivalves=
The Rotzo Formation is known mostly due to its massive bivalve associations of the genera Lithiotis, Cochlearites and Lithioperna that extended all along the Pliensbachian Trento Platform forming mass accumulations of specimens that formed Reef-Like structures.{{cite journal |last1=Franceschi |first1=M. |last2=Dal Corso |first2=J. |last3=Posenato |first3=R. |last4=Roghi |first4=G. |last5=Masetti |first5=D. |last6=Jenkyns |first6=H.C. |title=Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |date=2014 |volume=410 |issue=4 |pages=255–263 |doi=10.1016/j.palaeo.2014.05.025 |bibcode=2014PPP...410..255F |url=https://www.academia.edu/18803196 |access-date=3 January 2022}} This fauna appeared after the early Pliensbachian C-cycle perturbation, that triggered the diffusion of the Lithiotis Fauna, noted on the rapid widespread of this biota after the event layers. All of the genera related with this fauna appeared on the lower Jurassic, and all but one became extinct before the Middle Jurassic.{{cite journal |last1=Fraser |first1=N.M. |last2=Bottjer |first2=D.J. |last3=Fischer |first3=A.G. |title=Dissecting "Lithiotis" Bivalves: Implications for the Early Jurassic Reef Eclipse |journal=PALAIOS |date=2004 |volume=19 |issue=1 |pages=51–67 |doi=10.1669/0883-1351(2004)019<0051:DLBIFT>2.0.CO;2 |bibcode=2004Palai..19...51F |s2cid=128632794 |url=https://www.researchgate.net/publication/250082892 |access-date=3 January 2022}} This "Reefs" had a strong zonation, starting with the bivalves Gervilleioperna and Mytiloperna, restricted to intertidal and shallow-subtidal facies. Lithioperna is limited to lagoonal subtidal facies and even in some low-oxygen environments. Finally Lithiotis and Cochlearites are found in subtidal facies, constructing buildups. This sections formed various kinds of ecosystems on the Trento platform, where it appeared in branched corals filled with (Spongiomorpha), Domal corals (Stromatoporida), tubular corals, Styllophyllidae corals, unidentified Cerioidea colonial corals, regular echinoid debris, sponges, and the solitary coral Opelismilia sp., with also aggregated snail shells.
=Ammonoidea=
=Gastropoda=
=Echinodermata=
=Crustacea=
=Annelida=
=Ichnofossils=
In the Western Venetian Prealps a shallow-water, oceanic carbonate platform system, the Trento platform, developed on the Early Jurassic, producing a large succession of massive to well-bedded white Limestones, several {{cvt|100|m|ft}} thick that are part of the Calcari Grigi Group, where the Rotzo Formation is the Upper Member.{{cite journal |last1=Monaco |first1=P. |last2=Giannetti |first2=A. |title=Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy) |journal=Facies |date=2002 |volume=47 |issue=1 |pages=57–82 |doi=10.1007/BF02667706 |bibcode=2002Faci...47...57M |s2cid=129735856 |url=https://link.springer.com/article/10.1007/BF02667706 |access-date=3 January 2022}} On the local limestone of the Rotzo Formation deep burrowing is a very common type of biogenic activity, as is shown due to the presence of a large characteristic network of burrows which reach down to the lagoonal, marly-clayey assigned strata, suggesting intense bioturbation by large unknown organisms, perhaps giant decapod crustaceans (Probably members of the family Erymidae), although, the burrows found are not closely related to the ones of Shrimps or other decapods, but resemble those of Stomatopoda and Malacostraca. Other includes abandoned burrows, vertical biogenic action and infilling on the sea substrate.
class = "wikitable" |
Genus
! Species ! Provenance ! Material ! Made By ! Images |
---|
style="background:#FEF6E4;" |
| style="background:#FEF6E4;" |
| style="background:#FEF6E4;" | Campomolon, Valbona | style="background:#FEF6E4;" | Vertical burrows with preserved entrances | style="background:#FEF6E4;" |
| style="background:#FEF6E4;" | |
style="background:#FEF6E4;" |
| style="background:#FEF6E4;" |
| style="background:#FEF6E4;" | Campomolon, Valbona | style="background:#FEF6E4;" | Burrowing and track Ichnofossils | style="background:#FEF6E4;" |
| style="background:#FEF6E4;" |File:Chondrites_trace_fossil_-_geograph.org.uk_-_6982077.jpg |
style="background:#FEF6E4;" |
|style="background:#FEF6E4;" |
|style="background:#FEF6E4;" | Campomolon, Valbona |style="background:#FEF6E4;" | Infilled abandoned burrows by coarse-grained skeletal debris |style="background:#FEF6E4;" | |style="background:#FEF6E4;" | |
style="background:#FEF6E4;" |
|style="background:#FEF6E4;" |
|style="background:#FEF6E4;" | Campomolon, Valbona |style="background:#FEF6E4;" | Infilled abandoned burrows by coarse-grained skeletal debris |style="background:#FEF6E4;" |
|style="background:#FEF6E4;" |File:Skolithos_icnofosil_ilustracion.jpg along the possible makers]]. |
style="background:#FEF6E4;" |
Thalassinoides{{cite journal |last1=Monaco|first1=P. |title=Decapod burrows (Thalassinoides, Ophiomorpha) and crustacean remains in the Calcari Grigi, lower Jurassic, Trento platform (Italy). |journal=1st Workshop on Mesozoic and Tertiary decapod crustaceans, Studi e Ricerche, Associazione Amici del Museo Civico "G.Zannato" Montecchio Maggiore (Vicenza), October 6–8, 2000 |date=2000 |volume=1 |issue=1 |pages=55–57 |url=https://www.researchgate.net/publication/233832779 |access-date=3 January 2022}}{{cite journal |last1=Garassino |first1=A. |last2=Monaco |first2=M. |title=Burrows and body fossil of decapod custaceans i the Calcari Grigi, Lower Jurassic, Treno Platform (Italy) |journal=Geobios |date=2000 |volume=34 |issue=3 |pages=291–301}}{{cite journal |last1=Monaco |first1=P. |last2=Garassino |first2=A. |title=Burrowing and carapace remains of crustacean decapods in the Calcari Grigi, Early Jurassic, Trento platform |journal=Geobios |date=2001 |volume=34 |issue=3 |pages=291–301 |doi=10.1016/S0016-6995(01)80077-2 |url=https://www.sciencedirect.com/science/article/pii/S0016699501800772 |access-date=3 January 2022}} |style="background:#FEF6E4;" |
|style="background:#FEF6E4;" | Campomolon, Valbona |style="background:#FEF6E4;" | Burrowing and track Ichnofossils |style="background:#FEF6E4;" |
|style="background:#FEF6E4;" |File:Ichnofossil_Thalassinoides.jpg specimens]]. |
Vertebrata
=Chondrichthyes=
Episodic surficial bioturbation is common on the Rotzo Formation, due to invertebrates or fishes which alter intensely but rapidly the substrate for many cm in depth. It this case the Bioturbation is assigned to mollusc predatory Chondrichthyes, such as Hybodontidae and Heterodontidae. It also resemble traces left by present day flat angel sharks or Squatinidae and Guitarfish such as Rhinobatos.
=Actinopterygii=
Unidentified fish scales are known from the formation.{{cite journal |last1=Petti |first1=F. M. |last2=Bernardi |first2=M. |last3=Todesco |first3=R. |last4=Avanzini |first4=M. |title=Dinosaur footprints as ultimate evidence for a terrestrial environment in the late Sinemurian trento carbonate platform |journal=PALAIOS |date=2011 |volume=26 |issue=10 |pages=601–606 |doi=10.2110/palo.2011.p11-003r |bibcode=2011Palai..26..601P |s2cid=128845481 |url=https://www.researchgate.net/publication/261965036 |access-date=3 January 2022}}
=Crocodyliformes=
= Dinosaurs =
On the Inter-supratidal levels show that on the Rotzo Formation the Tracksites were rarely hit by Storm Waves.{{cite journal |last1=Guidorroghi |first1=R. |title=Lower Jurassic (Hettangian-Sinemurian) dinosaur track megasites, southern Alps, Northern Italy |journal=The Triassic-Jurassic Terrestrial Transition |date=2006 |volume=37 |issue=8 |page=207}} Bella Lastra Tracksite recovers this environment, where the shales present (Where Fish & Crocodrylomorph Remains where found) are filled with plant roots, pollen grains, spores, freshwater ostracodes and the bivalve Eomiodon. This was deposited mostly on a Lagoonar environment with abundant shed vegetation. The main local Track record recovers specially Theropoda and Sauropoda, where the Sauropods are the most abundant tracks present (70%), moving the Otozum-like Sauropodomorphs of lower levels, with the climate changing from arid to humid. The Coste dell’Anglone ichnosite is considered as derived from semi-arid tidal flat deposits, due to the abundance of Cheirolepidiaceae Pollen.{{cite journal |last1=Petti |first1=F. M. |last2=Bernardi |first2=M. |last3=Ferretti |first3=P. |last4=Tomasoni |first4=R. |last5=Avanzini |first5=M. |title=Dinosaur tracks in a marginal marine environment: the Coste dell'Anglone ichnosite (Early Jurassic, Trento Platform, NE Italy). |journal=Italian Journal of Geosciences |date=2011 |volume=130 |issue=1 |pages=27–41 |url=https://www.researchgate.net/publication/235891320 |access-date=3 January 2022}} As the Pliensbachian Trento Platform is considered to be formed by a channelized barrier formed by sand, with reiterate tide emersions. The dinosaurs living here probably trampled on the subtidal flats looking for fishes trapped on tidal-derived ponds.
{{paleobiota-key-compact}}
Flora
{{multiple image
| align = left
| perrow = 2/2
| largeur totale = 200
| en-tête =
| image1 = Rhizophora mangle (red mangroves) (San Salvador Island, Bahamas) 6 (15598753449).jpg
| image2 = Going into a cypress swamp - panoramio.jpg
| footer = Rotzo Formation nearby land hosted Bahamian-type biomes (San Salvador Island Mangroves in the picture) with nearby "Taxodium swamp"-like coniferous associations dominated by the Pagiophyllum producer
}}
The Rotzo Formation was deposited on a Lagoon on the emerged Trento Platform, leading to a well preserved fossil flora record, collected and studied since the 19th century.{{cite journal |last1=Neri |first1=M. |last2=Papazzoni |first2=C.A. |last3=Kustatscher |first3=E. |last4=Roghi |first4=G. |title=Paleoenvironmental data from the amber-bearing levels of the Rotzo formation (Pliensbachian, Lower Jurassic), Monti Lessini (Verona, Italy). |journal=In XV Edizione delle "Giornate di Paleontologia", PaleoDays |date=2015 |volume=15 |issue=2 |pages=78–79 |url=https://www.researchgate.net/publication/300064257 |access-date=3 January 2022}} The great level of floral fossilization has even allow to discovery fossil amber on the Bellori section. This amber has allowed to determine that the environment was a shallow tropical lagoon, only a few metres deep, closed seawards by oolitic shoals and bars. This levels are dominated by a high abundance of Classopollis sp. (Cheirolepidiaceae), associated with dry and wet climates in coastal areas. The abundance of this group of conifers is also proven by the high presence of cuticles of Pagiophyllum cf. rotzoanum.{{cite journal |last1=Neri |first1=M. |last2=Kustatscher |first2=E. |last3=Roghi |first3=G. |last4=Papazzoni |first4=C.A. |title=Paleobotanical assemblage from the Lower Jurassic amber bearing levels from the Rotzo Formation, Monti Lessini (Venetian Prealps, Northern Italy) |journal=In the Micropaleontological Society, 5th Silicofossil and Palynology Joint Meeting |date=2016 |volume=16 |issue=2 |pages=33}} Beyond this genera, spores are highly diversified, including from Sphenophyta, Selaginellales to Ferns, with abundance (more than 50%) of trilete spores (Deltoidospora), what suggest a good freshwater availability corresponding to a wet climate, proven also by the presence of aquatic miospores of algae such as Botryococcus and Pseudoschizaea. The climate was arid on some seasons with monsoon months. The abundance of marine fauna on this sediments, including fragments of corals, bryozoans, bivalves, echinoids, and foraminifera, suggest transport from brackish lagoons and marshes, probably occurred during storm events. Overall data points to a marshy and/or submerged paleoenvironment, comparable to the present-day Taxodium swamp or cypress swamp and a Bahamian-type marine environment in a rather wet monsoonal climate as in the modern southeastern Asia. The abundant presence of glossy black charcoal little fragments point to wildfires being a consistent local landscape feature.
=Amber=
The Rotzo Formation records one of the few Early Jurassic assamblages with Amber in the world, the nicknamed "Bellori amber" found near the village of the same name.{{cite journal |last1=Neri |first1=M. |last2=Roghi |first2=G. |last3=Ragazzi |first3=E. |last4=Papazzoni |first4=C. A. |title=First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy). |journal=Geobios |date=2017 |volume=50 |issue=1 |pages=49–63 |doi=10.1016/j.geobios.2016.10.001 |bibcode=2017Geobi..50...49N |url=https://www.sciencedirect.com/science/article/pii/S0016699516301231 |access-date=3 January 2022}} Made mostly of small droplets of less than 1 mm with exceptionally preserved morphology its likely the amber producing plants were likely not stressed or affected by disease. Due to the small size animal inclusion have not been found. However various plant materials, identified “mummified wood” and wood tissue are known. Additionally large amounts of Circumpolles Cheirolepidiaceous pollen, and occasional freshwater algae Pseudoschizaea remains are included. Several cuticle fragments are attributed to the araucariaceous or Hirmeriellaceae genus Pagiophyllum. Those lived on a coastal and wet palaeoenvironment similar to the present-day Taxodium swamps with monsoonal seasons as in the modern southern Asia.
=Palynology=
class="wikitable sortable" |
Genus
! Species ! Location ! Material ! Notes |
---|
style="background:#D1FFCF;" |
Accincitisporites{{cite journal |last1=Van Erve |first1=A.W. |title=Palynological investigation in the Lower Jurassic of the Vicentinian Alps (Northeastern Italy) |journal=Review of Palaeobotany and Palynology |year=1977 |volume=23 |issue=6 |pages=1–117 |doi=10.1016/0034-6667(77)90004-5 |bibcode=1977RPaPa..23....1V |url=https://www.sciencedirect.com/science/article/abs/pii/0034666777900045 |access-date=3 January 2022}}{{cite journal |last1=Neri |first1=M. |last2=Kustatscher |first2=E. |last3=Roghi |first3=G. |title=Megaspores from the Lower Jurassic (Pliensbachian) Rotzo Formation (Monti Lessini, northern Italy) and their paleoenvironmental implications |journal=Palaeobiodiversity and Palaeoenvironments |date=2018 |volume=98 |issue=1 |pages=102–118 |doi=10.1007/s12549-017-0314-z |s2cid=133666705 |url=https://www.researchgate.net/publication/323279856 |access-date=3 January 2022|doi-access=free |bibcode=2018PdPe...98...97N }} |style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with Voltzia (Willsiostrobus) and Corystospermales |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with Lycophytes, in situ in Cyclostrobus, Lycostrobus and Annalepis zeiller. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Osmundaceae in the Polypodiopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the Calamitaceae in the Equisetales. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Lycopodiaceae in the Lycopodiopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with Selaginellaceae |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Zamiaceae in the Cycadales. It is among the most abundant flora recovered on the upper section of the coeval Rya Formation, and was found to be similar to the pollen of the extant Encephalartos laevifolius.{{citation |last=Guy-Ohlson |first=D. |year=1988 |title=The use of dispersed palynomorphs referable to the form genus Chasmatosporites (Nilsson) Pocock and Jansonius, in Jurassic biostratigraphy|journal=Congreso Argentino de Paleontologia y Bioestratigrafia|volume=3 |issue=1–2 |pages=5–13|url=http://repoarchivos.segemar.gob.ar/Mounted/KOHA%20-%20DSPACE%20DISCK2/D-Space%20-%20Repositorio%20Institucional%20SEGEMAR/Congresos%20y%20Jornadas-%20VER%20CLASIFICACI%C3%93N%20segun%20entidades/Congresos%20de%20Palentolog%C3%ADa%20-%20Argentino%20y%20Latinoamericano/3035/3035.pdf |access-date=9 April 2021}} |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | Affinities with the Hirmeriellaceae in the Pinopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | Affinities with the family Cycadaceae and Bennettitaceae. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the Selaginellaceae in the Lycopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Bellori, Ponte Basaginocchi, Vajo dell’Anguilla |style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | Type pollen of the Erdtmanithecales, related to the Gnetales. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores. |style="background:#D1FFCF;" | Affinities with Selaginellaceae |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | Affinities with the Hirmeriellaceae in the Pinopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the Selaginellaceae in the Lycopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the Selaginellaceae in the Lycopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Lycopodiaceae in the Lycopodiopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Lycopodiaceae in the Lycopodiopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the Ophioglossaceae in the Filicales. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Lycopodiaceae in the Lycopodiopsida |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | Affinities with the family Karkeniaceae and Ginkgoaceae in the Ginkgoales. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | Affinities with the family Cupressaceae in the Pinopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Lycopodiaceae in the Lycopodiopsida |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Lycopodiaceae in the Lycopodiopsida |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Cysts |style="background:#D1FFCF;" | Affinities with Chlorophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | Affinities with the Hirmeriellaceae in the Pinopsida |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with the family Osmundaceae in the Polypodiopsida. |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Affinities with Selaginellaceae |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Spores |style="background:#D1FFCF;" | Incertae sedis; affinities with the Pteridophyta |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Pollen |style="background:#D1FFCF;" | From the family Caytoniaceae in the Caytoniales. |
= Algae =
=Equisetales=
class="wikitable sortable" |
Genus
! Species ! Location ! Material ! Notes ! Images |
---|
style="background:#D1FFCF;" |
Equisetites{{cite journal |last1=De Zigno |first1=A. |title=Flora fossilis formationis Oolithicae |journal=Tipografia del Seminario di Padova |year=1856–1868 |volume=1 |issue=1 |pages=1–426 |url=https://www.biodiversitylibrary.org/item/122892#page/1/mode/1up |access-date=3 January 2022}} |style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Stems |style="background:#D1FFCF;" | Affinities with Equisetaceae. Related to humid environments, the stems of local Equisetopsids show a rather large grown cycle, like the Bamboo on the modern Southern Asia, implicating tall Plants influenced by a Tropical Climate. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Leaf Whorl |style="background:#D1FFCF;" | Affinities with Phyllothecaceae inside Equisetales |style="background:#D1FFCF;" | |
=Pteridophytes=
class="wikitable sortable" |
Genus
! Species ! Location ! Material ! Notes ! Images |
---|
style="background:#D1FFCF;" |
Coniopteris{{Cite journal |last1=Scanu |first1=G. G. |last2=Kustatscher |first2=E. |last3=Pittau |first3=P. |date=2012 |title=The Jurassic plant fossils of the Lovisato Collection: preliminary notes |url=https://www.researchgate.net/publication/267024458 |journal=Bollettino della Società Paleontologica Italiana |volume=51 |issue=2 |pages=71–84}} |style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Polypodiales inside Polypodiidae. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Marattiales inside Marattiopsida. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Dipteridaceae inside Gleicheniales. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Gleicheniaceae inside Polypodiopsida |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with either Dicksoniaceae or Polypodiidae inside Polypodiopsida. Similar to the genus Coniopteris. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Matoniaceae inside Gleicheniales. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Matoniaceae inside Gleicheniales. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Matoniaceae inside Gleicheniales. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Matoniaceae inside Gleicheniales. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Fronds |style="background:#D1FFCF;" | Affinities with Dipteridaceae inside Gleicheniales. A rather lower Fern, with great resemblance with the modern genus Dipteris. |style="background:#D1FFCF;" | |
=Corystospermales=
=Caytoniales=
class="wikitable sortable" |
Genus
! Species ! Location ! Material ! Notes ! Images |
---|
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Leaflets |style="background:#D1FFCF;" | Affinities with Caytoniaceae inside Caytoniales. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Leaflets |style="background:#D1FFCF;" | Affinities with Caytoniaceae inside Caytoniales. There is a superficial doubt with the assignation to S. goeppertiana, and due to that Roverè di Velo specimen may be confirmed by comparing them with original Zigno's Material. |style="background:#D1FFCF;" | |
=Cycadophyta=
=Bennettitales=
=Ginkgoopsida=
class="wikitable sortable" |
Genus
! Species ! Location ! Material ! Notes ! Images |
---|
style="background:#D1FFCF;" |
Trevisania{{cite journal |last1=Wesley |first1=A. |date=1956 |title=Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 1 |journal=Mem. Ist. Geol. Min. Univ. Padova |volume=19 |issue=3 |pages=1–69}} |style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Val d´Assa |style="background:#D1FFCF;" | Leaves |style="background:#D1FFCF;" | Affinities with the genus Trichopitys, as probably a member of Karkeniaceae inside Ginkgoopsida, with strong resemblance with the genus Baiera, lumped in some papers as Baiera lindleyana. |style="background:#D1FFCF;" | |
=Conifers=
class="wikitable sortable" |
Genus
! Species ! Location ! Material ! Notes ! Images |
---|
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. Brachyphyllum tropidimorphyrn shows close resemblance between African and Venetian conifers and its distribution suggests a lowland araucarian forest.{{cite journal |last1=Krassilov |first1=V. A. |title=Araucariaceae as indicators of climate and paleolatitudes. |journal=Review of Palaeobotany and Palynology |date=1978 |volume=26 |issue=1–4 |pages=113–124|doi=10.1016/0034-6667(78)90008-8 |bibcode=1978RPaPa..26..113K }} |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Branched shoots |style="background:#D1FFCF;" | Affinities with Cheirolepidiaceae inside Coniferales. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Isolated leaves |style="background:#D1FFCF;" | A possible Conifer leaf. Was suggested to have affinities with Czekanowskiales, sometimes found inside Ginkgoopsida, yet recent finds of it associated with the cone genera Sphaerostrobus and Ourostrobus points to a coniferophyte affinity, maybe as a member of Palissyaceae.{{Cite journal |last1=van Konijnenburg-van Cittert|first1=J.H.A. |last2=Schmeißner|first2=S.|last3=D.|first3=G.|last4=Kustatscher|first4=E.|last5=Pott|first5=C.|date=2024-03-13 |title=Plant macrofossils from the Rhaetian of Einberg near Coburg (Bavaria, Germany). Part 3. Conifers, incertae sedis and general discussion|journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=310 |issue=3 |pages=251–282 |doi=10.1127/njgpa/2023/1182 |issn=0077-7749}} |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Branched shoots |style="background:#D1FFCF;" | Affinities with Cupressaceae inside Coniferales. Arboreal plants similar to the modern genus Cunninghamia |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. One of the specimens was assigned to Otozamites massalongianus, due to confusing the overlapping appearance and the Otozamites-like shape of the leaves of the apical portion of the main shoot. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Incertae sedis inside Coniferales, initially identified as "Yuccites schimperianus", suggested as a member of its own family, the "Pelourdeaceae". A hygrophytic riparian conifer with herbaceous or shrubby habit. Some specimens are difficult to identify. |style="background:#D1FFCF;" | |
style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" |
|style="background:#D1FFCF;" | Branched shoots |style="background:#D1FFCF;" | Affinities with Palyssiaceae inside Coniferales. Extinct group conifer leaves with similarities with Sequoia or Amentotaxus. Maybe Includes the species "Taxites vicentina". |style="background:#D1FFCF;" | File:Taxites vicetina.JPG |