list of largest exoplanets
{{short description|none}}
File:790106-0203 Voyager 58M to 31M reduced.gif as seen by Voyager 1 in 1979. It is the largest planet having its surface resolved and it is the largest planet in the Solar System.]]
Below is a list of the largest exoplanets so far discovered, in terms of physical size, ordered by radius.
Limitations
This list of extrasolar objects may and will change over time due to diverging measurements published between scientific journals, varying methods used to examine these objects, and the notably difficult task of discovering extrasolar objects in general. These objects are not stars, and are quite small on a universal or even stellar scale. Furthermore, these objects might be brown dwarfs, sub-brown dwarfs, or not even exist at all. Because of this, this list only cites the most certain measurements to date and is prone to change.
= Maximum Mass Limitation =
{{See also|Deuterium fusion}}
Different space organisations have different maximum masses for exoplanets. The NASA Exoplanet Archive (NASA EA) states that an object with a minimum mass lower than 30 {{Jupiter mass|link=y}}, not being a free-floating object, is qualified as an exoplanet. On the other hand, the official working definition by the International Astronomical Union (IAU) allows only exoplanets with a maximum mass of 13 {{Jupiter mass|link=y}}, that are orbiting a host object at a mass ratio of less than 0.04. For the purpose of the comparison of large planets, this article includes several of those listed by NASA EA up to the maximum 30 {{Jupiter mass}} with possible brown dwarfs among them of ≳ 13 {{Jupiter mass}} as stated by IAU.{{Cite web |url=https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PSCompPars |title=Planetary Systems Composite Data |website=NASA Exoplanet Archive |access-date=15 May 2025}}
= Classification of Sub-brown Dwarf and Rogue Objects =
{{See also|Sub-brown dwarf|Rogue planet}}
Sub-brown dwarfs are formed in the manner of stars, through the collapse of a gas cloud (perhaps with the help of photo-erosion) but that has a planetary mass, therefore by definition below the limiting mass for thermonuclear fusion of deuterium (~ {{Jupiter mass|13}}). However, there is no consensus amongst astronomers on whether the formation process should be taken into account when classifying an object as a planet.{{Cite web| url=http://www.space.com/scienceastronomy/solarsystem/planet_confusion_001101-1.html |title=What is a Planet? Debate Forces New Definition |first=Robert Roy |last=Britt |website=Space.com |date=2 November 2000|archive-url=https://web.archive.org/web/20010502150203/http://www.space.com/scienceastronomy/solarsystem/planet_confusion_001101-1.html |archive-date=2 May 2001 }} Free-floating sub-brown dwarfs can be observationally indistinguishable from rogue planets, which originally formed around a star and were ejected from orbit. Similarly, a sub-brown dwarf formed free-floating in a star cluster may be captured into orbit around a star, making distinguishing sub-brown dwarfs and large planets also difficult. A definition for the term "sub-brown dwarf" was put forward by the IAU Working Group on Extra-Solar Planets (WGESP), which defined it as a free-floating body found in young star clusters below the lower mass cut-off of brown dwarfs.{{Cite web |url=http://www.astro.iag.usp.br/~dinamica/WGEP.html |title=Position Statement on the Definition of "Planet" |website=IAU WGESP |date=28 February 2003}}
List
{{dynamic list}}
The sizes are listed in units of Jupiter radii ({{Jupiter radius}}, 71 492 km). This list is designed to include all exoplanets that are larger than 1.6 times the size of Jupiter. Some well-known exoplanets that are smaller than {{Jupiter radius|1.6}} ({{#expr: (71492 * 1.6) / 6378 round 2}}{{Nbsp}}{{Earth radius|link=y}} or {{val|{{#expr: 71492 * 1.6 round 0}}}}{{Nbsp}}{{val|u=km}}) and are gas giant have been included for the sake of comparison.
For the exoplanets with uncertain radii that could be below or above the adopted cut-off of 1.6 {{Jupiter radius|link=y}}, see the list of exoplanets with uncertain radii.
|+Key (Classification)
| bgcolor="#FFF8DC" width=40px style="text-align:center;"|{{asterisk}}
! Probably brown dwarfs (≳ 13 {{Jupiter mass}}) (based on mass)
! Probably sub-brown dwarfs (≲ 13 {{Jupiter mass}}) (based on mass and location)
! Uncertain status while probably brown dwarfs (≳ 13 {{Jupiter mass}}) (based on mass)
! Probably exoplanets (≲ 13 {{Jupiter mass}}) (based on mass)
! Planets with grazing transit, hindering radius determination
! Notable non-exoplanets reported for reference
! Theoretical planet size restrictions
class="wikitable"
|+Key (Illustration) | style="border:4px ridge red;"| ! Artist's impression |
colspan="2"| |
style="border:4px ridge yellow;"|
! Artist's size comparison |
colspan="2"| |
style="border:4px ridge orange;"|
! Artist's impression size comparison |
colspan="2"| |
style="border:4px ridge blue;"|
! Direct imaging telescopic observation |
colspan="2"| |
style="border:4px ridge cyan;"|
! Direct image size comparison |
colspan="2"| |
style="border:4px ridge green;"|
! Composite image of direct observations |
colspan="2"| |
style="border:4px ridge purple;"|
! Transiting telescopic observation |
colspan="2"| |
style="border:4px ridge indigo;"|
! Rendered image |
{{sticky header}}
= Notes =
{{notelist}}
Candidates for largest exoplanets
=Exoplanets with uncertain radii=
This list contains planets with uncertain radii that could be below or above the adopted cut-off of 1.6 {{Jupiter radius|link=y}}, depending on the estimate.
class="wikitable" style="margin:0px 15px 0px 0px"
|+Key (Classification) | bgcolor="#FFF8DC" width=40px style="text-align:center;"|{{asterisk}} ! Probably brown dwarfs (≳ 13 {{Jupiter mass}}) (based on mass) |
style="text-align:center;"| ←
! Probably planets (≲ 13 {{Jupiter mass|link=y}}) (based on mass) |
bgcolor="#CFF7C1" style="text-align:center;"|?
! Status uncertain (inconsistency in age or mass of planetary system) |
bgcolor="#CEE0F2" width="40px" style="text-align:center;" | →
! Planets with grazing transit, hindering radius determination |
class="wikitable"
|+Key (Illustration) |
style="border:4px ridge blue;"|
! Direct imaging telescopic observation |
colspan="2"| |
style="border:4px ridge green;"|
! Composite image of direct observations |
colspan="2"| |
style="border:4px ridge orange;"|
! Artist's impression size comparison |
{{sticky header}}
== Notes ==
{{notelist}}
=Unconfirmed exoplanets=
These planets are also larger than 1.6 times the size of the largest planet in the Solar System, Jupiter, but have yet to be confirmed or are disputed.
Note: Some data may be unreliable or incorrect due to unit or conversion errors and some objects are confirmed exoplanets such as TOI-7081 b and TOI-7018 b
class="wikitable" style="margin:0px 15px 0px 0px"
|+Key (Classification) |
bgcolor="#FFF8DC" style="text-align:center;"|{{asterisk}}
! Probably brown dwarfs (≳ 13 {{Jupiter mass}}) (based on mass) |
bgcolor="#FFE8DC" style="text-align:center;"|{{dagger}}
! Probably sub-brown dwarfs (≲ 13 {{Jupiter mass}}) (based on mass and location) |
style="text-align:center;"| ←
! Probably planets (≲ 13 {{Jupiter mass}}) (based on mass) |
bgcolor="#FE9F9F" style="text-align:center;"| X
! Unclassified object (unknown mass) |
bgcolor="#FAECC8" style="text-align:center;"| ↘
! Destroyed planet |
bgcolor="#E6E6E6" width=40px style="text-align:center;"| –
! Theoretical planet size restrictions |
class="wikitable"
|+Key (Illustration) |
style="border:4px ridge red;"|
! Artist's impression |
colspan="2"| |
style="border:4px ridge blue;"|
! Direct imaging telescopic observation |
colspan="2"| |
style="border:4px ridge green;"|
! Composite image of direct observations |
{{sticky header}}
class="wikitable sortable sticky-header" |
class="unsortable"| Illustration
! Name ! data-sort-type=number| Radius ! class="unsortable"| Key ! data-sort-type=number| Mass ! class="unsortable" | Notes |
---|
style="background:#e6e6e6"
|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px | New born planet limit | style="text-align:center;"|– | data-sort-value="20"|≤ 20 | Theoretical size limit of a newly-formed planet. |
style="background:#e6e6e6"
|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px | Young Hot Jupiter limit | style="text-align:center;"|– | Theoretical size limit of a newly-formed planet that needed 104 – 105 ({{val|10000}} – {{val|100000}}) years to migrate close to the host star, but has not yet interacted with it beforehand. |
style="border:4px ridge blue; background:#000000; text-align:center;"|112px
| {{nowrap|FU Orionis North b}} | data-sort-value="10"|~ 9.8 | style="text-align:center;" |← | Discovered using a variation of disk kinematics.{{Cite web |title=Planet FU Ori b |url=https://exoplanet.eu/catalog/fu_ori_b--9413/ |access-date=2024-10-11 |website=Encyclopaedia of exoplanetary systems / exoplanet.eu |language=en}} Tidal disruption and extreme evaporation made the planet radius shrink from the beginning of the burst ({{Jupiter radius|14}}) in 1937 to the present year by ~30 per cent and its mass is around half of its initial mass of {{Jupiter mass|6}}. |
bgcolor="#FE9F9F"
| | UCAC4 174-179953 b | style="text-align:center;" |X | Unknown | rowspan="12" |Object cannot be classified as brown dwarf or exoplanet without a mass estimate. |
bgcolor="#FE9F9F"
| | UCAC4 220-040923 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | UCAC4 223-042828 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | UCAC4 185-192986 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | UCAC4 118-126574 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | UCAC4 171-187216 b | data-sort-value="2.751"|2.75 ± 0.20 | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | KOI-7073 b | {{nowrap|2.699 {{±|0.473|0.794}}}}{{Cite web |title=The Extrasolar Planet Encyclopaedia — KOI-7073 b |url=https://exoplanet.eu/catalog/koi_7073_b--6240/ |website=Extrasolar Planets Encyclopaedia. Paris Observatory|date=2019}} | style="text-align:center;" |X | data-sort-value="1.0011" |Unknown |
bgcolor="#FE9F9F"
| | UCAC4 175-188215 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | UCAC4 116-118563 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | 19g-2-01326 b | {{nowrap|2.29 {{±|0.13|0.61}}}}{{Cite web |title=The Extrasolar Planet Encyclopaedia — 19g-2-01326 b |url=https://exoplanet.eu/catalog/19g_2_01326_b--1230/ |website=Extrasolar Planets Encyclopaedia. Paris Observatory|date=2013}} | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | SOI-2 b | style="text-align:center;" |X | data-sort-value="1.001" |Unknown |
bgcolor="#FE9F9F"
| | TIC 332350266.01 | data-sort-value="2.21"|2.21{{±|3.18}} | style="text-align:center;" |X | Unknown |
style="background:#e6e6e6"
|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px | Old Hot Jupiter limit | style="text-align:center;" |– | data-sort-value="0.4"|> ~0.4 | Theoretical limit for hot Jupiters close to a star, that are limited by tidal heating, resulting in 'runaway inflation' |
bgcolor="#FE9F9F"
| | TIC 138664795.01 | style="text-align:center;" |X | Unknown | rowspan="16" |Object cannot be classified as brown dwarf or exoplanet without a mass estimate. |
bgcolor="#FE9F9F"
| | UCAC4 221-041868 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | TOI-496 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | SOI-7 b | data-sort-value="1.96"| 1.96 | style="text-align:center;" |X | data-sort-value="1.0009" |Unknown |
bgcolor="#FE9F9F"
| | UCAC4 121-140615 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | UCAC4 123-150641 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | TIC 274508785.01 | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | W74 b | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | TIC 116307482.01 | style="text-align:center;" |X | Unknown |
bgcolor="#FE9F9F"
| | UCAC4 122-142653 b | style="text-align:center;" |X | data-sort-value="1.0007" |Unknown |
bgcolor="FE9F9F"
| | TIC 77173027.01 | style="text-align:center;" |X | data-sort-value="1.0006" |Unknown |
bgcolor="#FE9F9F"
| | TOI-159 Ab | style="text-align:center;" |X | data-sort-value="1.0003" |Unknown |
bgcolor="#FE9F9F"
| | TIC 82205179.01 | style="text-align:center;" |X | data-sort-value="1.00009"|Unknown |
bgcolor="#FE9F9F"
| | UCAC4 124-144273 b | style="text-align:center;" |X | data-sort-value="1.00007" |Unknown |
bgcolor="#FE9F9F"
| | TOI-710 b | style="text-align:center;" |X | data-sort-value="1.012" |Unknown |
bgcolor="#FE9F9F"
| | TOI-7081 b | style="text-align:center;" |X | data-sort-value="1.012" |Unknown |
style="border:4px ridge blue; background:#000000; text-align:center;"|112px
| CVSO 30 c | style="text-align:center;" |← | data-sort-value="4.7" |4.7 {{±|5.5|2.0}} | CVSO 30 c was discovered by direct imaging, with a calculated mass equal to 4.7 {{Jupiter mass}}.{{cite web |url=https://www.msn.com/en-gb/money/technology/amazing-photo-shows-likely-alien-planet-1200-light-years-away/ar-AAhocxR?ocid=spartandhp |title=Amazing Photo Shows Likely Alien Planet 1,200 Light-Years Away|publisher=MSN|date=21 June 2016|access-date=22 June 2016 |archive-url=https://web.archive.org/web/20160811163050/http://www.msn.com/en-gb/money/technology/amazing-photo-shows-likely-alien-planet-1200-light-years-away/ar-AAhocxR?ocid=spartandhp |archive-date=11 August 2016|url-status=dead}} However, the colors of the object suggest that it may actually be a background star, such as a K-type giant or a M-type subdwarf.{{cite journal |bibcode=2018ApJ...852L..24L|doi=10.3847/2041-8213/aaa40b |title=Evidence that the Planetary Candidate CVSO30c is a Background Star from Optical, Seeing-limited Data |journal=The Astrophysical Journal|volume=852|issue=2|pages=L24|year=2018|last1=Lee|first1=Chien-Hsiu |last2=Chiang |first2=Po-Shih |arxiv=1712.08727 |s2cid=119270170 |doi-access=free}} If confirmed in the future, it would be the furthest planet to be directly imaged at a dstance of about 1200 ly. Moreover, the phase of "dips" caused by suspected planet CVSO 30 b had drifted nearly 180 degrees from the expected value, thus ruling out the existence of the planet. CVSO 30 is also suspected to be a stellar binary, with the previously reported planetary orbital period equal to the rotation period of the companion star.{{cite journal |last1=Koen |first1=C. |last2=Winn |first2=J. N. |last3=Ricker |first3=G. R. |last4=Vanderspek |first4=R. |last5=Latham |first5=D. W. |last6=Seager |first6=S. |last7=Jenkins |first7=J. M. |last8=Barclay |first8=T. |last9=Collins |first9=K. A. |last10=Doty |first10=J. P. |last11=Louie |first11=D. R. |last12=Quinn |first12=S. N. |last13=Rose |first13=M. E. |last14=Smith |first14=J. C. |last15=Villaseñor |first15=J. |display-authors=1 |year=2020 |title=Properties of CVSO 30 from TESS measurements: Probably a binary T Tauri star with complex light curves and no obvious planets |journal=Monthly Notices of the Royal Astronomical Society |volume=494 |issue=3 |pages=4349–4356 |arxiv=2005.10253 |bibcode=2020AJ....160...86B |doi=10.1093/mnras/staa1038 |doi-access=free |last16=Wohler |first16=B.}} |
bgcolor="#FE9F9F"
| | TOI-7018 b | data-sort-value="1.61"|1.61 ± 0.04 |style="text-align:center;" |X | Unknown | Object cannot be classified as brown dwarf or exoplanet without a mass estimate. |
colspan="6" style="background:#efefef" data-sort-value="1.60" | Exoplanets with known mass of ≥{{Jupiter mass|1|link=y}} but unknown radius |
style="border:4px ridge blue; background:#000000; text-align:center;"|112px
| CHXR 73 b | data-sort-value="1.1" |Unknown | style="text-align:center;" |← |The common proper motion with respect to the host star is not yet proven, however, the probability that CHXR 73 and b are unrelated members of Chamaeleon I is ~0.1%. A radius is not yet published, but could be determined. Other members of the same star-forming region in this list, Cha 110913, CT Cha b, OTS 44, all have radii > 2 {{Jupiter radius|link=y}}. |
bgcolor="#FFE8DC"
| style="border:4px ridge blue; background:#000053; text-align:center;" rowspan="2" |112px | JuMBO 29 a | rowspan="2" |Unknown | style="text-align:center;" |{{dagger}} | data-sort-value="12.5" rowspan="2" |12.5 + 3{{cite journal| last = Luhman | first =K. L. | author-link=Kevin Luhman| date =14 Oct 2024 | title =Candidates for Substellar Members of the Orion Nebula Cluster from JWST/NIRCam | journal =The Astronomical Journal | volume =168 | issue =6 | page =230 | doi =10.3847/1538-3881/ad812a | doi-access =free | arxiv =2410.10406 | bibcode =2024AJ....168..230L }} | rowspan="2" | The pair orbit around at the separation by 135 AU. |
bgcolor="#FFE8DC"
| JuMBO 29 b | style="text-align:center;" |{{dagger}} |
bgcolor="#FFE8DC"
| style="border:4px ridge blue; background:#000053; text-align:center;" rowspan="2" |112px | JuMBO 24 a | rowspan="2" |Unknown | style="text-align:center;" |{{dagger}} | data-sort-value="11.5" rowspan="2" |11.5{{cite journal |doi=10.3847/2041-8213/ad18ac |doi-access=free |title=A Radio Counterpart to a Jupiter-mass Binary Object in Orion |date=2024 |last1=Rodríguez |first1=Luis F. |last2=Loinard |first2=Laurent |last3=Zapata |first3=Luis A. |journal=The Astrophysical Journal Letters |volume=960 |issue=2 |pages=L14 |arxiv=2401.04905 |bibcode=2024ApJ...960L..14R }} | rowspan="2" | The pair orbit around at the separation by 28 AU. |
bgcolor="#FFE8DC"
| JuMBO 24 b | style="text-align:center;" |{{dagger}} |
bgcolor="#FAECC8"
| style="border:4px ridge red; background:#000000; text-align:center;"|112px | SLRN-2020 (planet) | data-sort-value="1.1" |Unknown | style="text-align:center;" |↘ | Either a former hot Jupiter or a hot Neptune. Third planet observed to be engulfed by its host and first one in an older age star.{{Cite journal |last=Soker |first=Noam |date=2023-09-01 |title=On the nature of the planet-powered transient event ZTF SLRN-2020 |journal=Monthly Notices of the Royal Astronomical Society |volume=524 |issue=1 |pages=L94–L97 |arxiv=2305.04909 |bibcode=2023MNRAS.524L..94S |doi=10.1093/mnrasl/slad086 |doi-access=free |issn=0035-8711}} This planet accreted mass from the star and launched some of this mass away in jets. As the planet orbited closer to the star, the star removed the accreted mass and formed a disk around the star and launched jets. |
bgcolor="#FFE8DC"
| style="border:4px ridge blue; background:#000000; text-align:center;"|112px | J1407b | data-sort-value="1259" |Unknown{{efn|It's disk spans a radius of ~ 90 million kilometers (~ {{#expr: 90000000 / 71492 round 0}} {{Jupiter radius}}).}} | style="text-align:center;" |{{dagger}} | First exoplanet discovered with a ring system;{{cite news |title = The story of J1407b, the first exoplanet discovered with a ring system like Saturn |url = https://www.skyatnightmagazine.com/space-science/j1407b |first = Jenny |last = Winder |date = 27 February 2024 |work = BBC Sky at Night Magazine |publisher = BBC |accessdate = 23 July 2024 |url-status = live |archive-url = https://web.archive.org/web/20240611115813/https://www.skyatnightmagazine.com/space-science/j1407b |archive-date = 11 June 2024}} its circumplanetary disk or ring system has been frequently compared to that of Saturn's, which has led popular media outlets to dub it as a "Super Saturn"{{cite news |title = This Super-Saturn Alien Planet Might Be the New 'Lord of the Rings' |url = https://www.space.com/28435-super-saturn-alien-planet-rings.html |first = Shannon |last = Hall |work = Space.com |date = 3 February 2015 |accessdate = 24 July 2024 |url-status = live |archive-url = https://web.archive.org/web/20230604045248/https://www.space.com/28435-super-saturn-alien-planet-rings.html |archive-date = 4 June 2023}} |
style="border:4px ridge green; background:#000000; text-align:center;"|112px
| PDS 70 d | data-sort-value="2.1" |Unknown | style="text-align:center;" |← | In 2019, a third object was detected 0.12 arcseconds from the star. Its spectrum is very blue, possibly due to star light reflected in dust which could be a feature of the inner disk. The possibility does still exist that this object is a planetary mass object enshrouded by a dust envelope. For this second scenario the mass of the planet would be on the order of a few tens {{val|ul=Earth mass}}.{{cite journal |last1=Mesa |first1=D. |last2=Keppler |first2=M. |display-authors=etal |date=December 2019 |title=VLT/SPHERE exploration of the young multiplanetary system PDS70 |journal=Astronomy & Astrophysics |volume=632 |issue= |pages=A25 |doi=10.1051/0004-6361/201936764 |arxiv=1910.11169 |bibcode=2019A&A...632A..25M|s2cid=204852148 }} In 2025 a team{{efn|presents VLT/SPHERE, VLT/NaCo, VLT/SINFONI and JWST/NIRcam observations}} detected Keplerian motion of the candidate. The orbit could be in resonance with the PDS 70 b and PDS 70 c. The spectrum in the infrared is mostly consistent with the star PDS 70, but beyond 2.3 μm an infrared excess was detected. This excess could be produced by the thermal emission of the protoplanet, by circumplanetary dust, variability or contamination. The source may not be a point-like source. The source is therefore interpreted as an outer spiral wake from protoplanet PDS 70 d with a dusty envelope. A feature of the inner disk is an alternative explanation of candidate PDS 70 d. |
style="border:4px ridge blue; background:#000053; text-align:center;"|112px
| HR 8799 f | data-sort-value="1.2" |Unknown | style="text-align:center;" |← | All four confirmed HR 8799 planets orbit inside and outside of dusty disks like the Solar Kuiper belt and asteroid belt, which leaves room for HR 8799 f to be discovered inside the inner disk.{{cite journal |first1=Christian |last1=Marois |first2=B. last2=Zuckerman |first3=Quinn M. |last3=Konopacky |first4=Bruce |last4=Macintosh |first5=Travis |last5=Barman |date=December 2010 |title=Images of a fourth planet orbiting HR 8799 |journal=Nature |volume=468 |issue=7327 |pages=1080–1083 |doi=10.1038/nature09684 |bibcode=2010Natur.468.1080M |arxiv=1011.4918 |pmid=21150902 |s2cid=4425891}} It is difficult to find planet(s) inside inner disks as these planets at smaller semi-major axes have much shorter orbital periods according to Kepler's third law. At a separation of ∼5 au, a planet in this system would move fast enough that observations taken more than a few months apart would start to blur the planet. However, the evidence for HR 8799 f is found by a deep targeted search in the HR 8799 system and recovery of the known HR 8799 planets. |
style="border:4px ridge blue; background:#000000; text-align:center;"|112px
| Sirius Bb | data-sort-value="1.1" |Unknown | style="text-align:center;" |← | data-sort-value="1.5" |1.5,{{Cite web|url=https://exoplanet.eu/catalog/sirius_bb--10752/|title=Planet Sirius Bb|first=Pierre-Yves|last=Martin|date=October 27, 2024|website=exoplanet.eu}} {{nowrap|0.8 – 2.4}}{{Cite journal|title=An Imaging Search for Post-main-sequence Planets of Sirius B|first1=Miles|last1=Lucas|first2=Michael|last2=Bottom |first3=Garreth|last3=Ruane|first4=Sam|last4=Ragland|journal=The Astronomical Journal |date=2022|volume=163 |issue=2 |page=81 |doi=10.3847/1538-3881/ac4032 |doi-access=free |arxiv=2112.05234|bibcode=2022AJ....163...81L }} | In 1986, the Sirius stellar system emitted a higher than expected level of infrared radiation, as measured by the IRAS space-based observatory. This might be an indication of dust in the system, which is considered somewhat unusual for a binary star. The Chandra X-ray Observatory image shows Sirius B outshining Sirius A as an X-ray source, indicating that Sirius B may have its own exoplanet(s). |
style="border:4px ridge blue; background:#000000; text-align:center;"|112px
| WD 2226-210 c | data-sort-value="1.1" |Unknown | style="text-align:center;" |← | Located in the center of Helix Nebula. |
bgcolor="#FFF8DC"
| style="border:4px ridge blue; background:#000000; text-align:center;"|112px | Eta Telescopii b | data-sort-value="1.1" |Unknown | style="text-align:center;" |{{asterisk}} | Observations with the MIRI spectometer aboard the James Webb Space Telescope (JWST) show that the disk of Eta Telescopii A is axisymmetrical and possibly misaligned with the companion Eta Telescopii B. This suggests that, in the simplest scenario, there is an additional planet that has not been detected. Further modelling of the disk's parameters is needed to reduce uncertainites and determine if it is really misaligned. |
bgcolor="#FFE8DC"
| style="border:4px ridge blue; background:#000053; text-align:center;"|112px | Jupiter-mass Binary Objects | data-sort-value="1.01" |Unknown | style="text-align:center;" |{{dagger}} | data-sort-value="0.7" |0.7 − 13{{Cite arXiv |last1=Pearson |first1=Samuel G. |last2=McCaughrean |first2=Mark J. |date=2 Oct 2023 |title=Jupiter Mass Binary Objects in the Trapezium Cluster |class=astro-ph.EP |eprint=2310.01231 }} | Total of 42 JuMBO systems among 540 free-floating Jupiter-mass objects of which contains 40 binary systems and 2 triplet systems, discovered in Orion Cluster as of 2025. Their wide separations also differ markedly from typical brown dwarf binaries, which have much closer separations around 4 astronomical units.{{cite journal |last1=Diamond |first1=Jessica L. |last2=Parker |first2=Richard J. |title=Formation of Jupiter-mass Binary Objects through Photoerosion of Fragmenting Cores |journal=The Astrophysical Journal |date=November 2024 |volume=975 |issue=2 |pages=204 |doi=10.3847/1538-4357/ad8644 |doi-access=free |arxiv=2410.09159 |bibcode=2024ApJ...975..204D |language=en |issn=0004-637X}} These JuBO binary pairs have separations ranging from 28 to 384 astronomical units. |
== Notes ==
{{notelist}}
Chronological list of largest exoplanets
These exoplanets were the largest at the time of their discovery.
Present day: {{TODAY}}
class="wikitable" style="margin:0px 15px 0px 0px"
|+Key (Classification) |
bgcolor="#FAECC8" width="40px" style="text-align:center;" |{{asterisk}}
! Identified to be a probable/confirmed brown dwarf (≳ 13 {{Jupiter mass}}) or a star (≳ 78.5 {{Jupiter mass}}) |
bgcolor="#FFF8DC" width="40px" style="text-align:center;" | ⇗
!Assumed largest exoplanet, but later identified to be probable/confirmed brown dwarf (≳ 13 {{Jupiter mass}}) or a star (≳ 78.5 {{Jupiter mass}}) |
bgcolor="#FFE8DC" width="40px" style="text-align:center;" | ↓
!Assumed largest exoplanet, but later identified to be smaller in radius than originally determined |
bgcolor="#ACE1AF" width="40px" style="text-align:center;" | ↑
!Not assumed largest exoplanet, but later identified to be larger in radius than originally determined |
bgcolor="#CEF2E0" width="40px" style="text-align:center;" |{{dagger}}
! Candidate for largest exoplanet (currently or in time span) |
bgcolor="#CFF7C1" width="40px" style="text-align:center;"|?
! Status uncertain (inconsistency in age or mass of planetary system) while being candidate for largest exoplanet |
bgcolor="#CEE0F2" width="40px" style="text-align:center;" | →
! Assumed largest exoplanet, while unconfirmed, later retracted and/or confirmed |
style="text-align:center;" | ←
! Largest exoplanet (≲ 13 {{Jupiter mass}}) at the time |
bgcolor="#e6e6e6" width="40px" style="text-align:center;" | –
! Largest confirmed exoplanet (in radius and mass), while discovered candidates might be larger |
bgcolor="pink" width="40px" style="text-align:center;" |{{number sign}}
! Non-exoplanets reported for reference |
class="wikitable"
|+Key (Illustration) |
style="border:4px ridge red;" |
! Artist's impression |
colspan="2"| |
style="border:4px ridge orange;"|
! Artist's impression size comparison |
colspan="2"| |
style="border:4px ridge blue;" |
! Direct Imaging telescopic observation |
colspan="2"| |
style="border:4px ridge purple;" |
! Transiting telescopic observation |
colspan="2"| |
style="border:4px ridge indigo;"|
! Rendered image |
colspan="2"| |
style="border:4px ridge pink;" |
! Graphic chart |
colspan="2"| |
style="border:4px ridge magenta;" |
! Discovery/Confirmation observatory |
colspan="2"| |
style="border:4px ridge cyan;" |
! Constellation star chart |
{{sticky header}}
class="wikitable sortable sticky-header" |
data-sort-type=number| Years largest discovered
! class="unsortable"| Illustration ! Name ! data-sort-type=number| Radius at that time ! class="unsortable"| Key ! data-sort-type="number" | Mass ! class="unsortable" | Notes |
---|
style="background:#e6e6e6"
| data-sort-value="2025" |2025{{snd}}present | style="border:4px ridge purple; background:white;" |112x112px | data-sort-value="2.140" | 2.140 ± 0.025 | style="text-align:center;" | – | data-sort-value="0.418" |0.418 ± 0.012 | A very puffy Hot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius. |
style="background:#FAECC8"
| data-sort-value="2025" |(2025 – present) | style="border:4px ridge red; background: #000000; text-align:center;" |112px | AB Aurigae b | data-sort-value="2.75001" |< 2.75{{efn|1=This radius estimate might have been affected by the planet's circumplanetary disk, as the spectrum not necessarily corresponds to a planet photosphere.}} | style="text-align:center;" |{{asterisk}} | data-sort-value="20.0001" |20 | The commonly favored model for gas giant planet formation – core accretion – has significant difficulty forming massive gas giant planets at AB Aur b's very large distance from its AB Aur. Instead, AB Aur b may be forming by disk (gravitational) instability, where as a massive disk around a star cools, gravity causes the disk to rapidly break up into one or more planet-mass fragments.{{cite web | title=Hubble Finds a Planet Forming in an Unconventional Way | website=HubbleSite.org | date=April 4, 2022 | url=http://hubblesite.org/contents/news-releases/2022/news-2022-016 | access-date=April 10, 2022}} A more recent study revised the apparent magnitude, making AB Aur b more likely to be brown dwarf. |
style="background:#CEF2E0"
| data-sort-value="2024", rowspan="4" |(2024{{snd}}present) | style="border:4px ridge magenta; background:#000000;" rowspan="4" |112x112px | rowspan="4" |XO-6b | data-sort-value="2.171" |2.17 ± 0.20 | rowspan="4" style="text-align:center;" | {{dagger}} | data-sort-value="4.472", rowspan="4" |4.47 ± 0.12 | rowspan="4" | A very puffy Hot Jupiter. is consistent, but is either given as about {{val|1.93|ul=Solar radius}} or about {{val|1.42|ul=Solar radius}} in newer references.{{Cite journal |last1=Gaia Collaboration |last2=Vallenari |first2=A. |last3=Brown |first3=A. G. A. |last4=Prusti |first4=T. |last5=de Bruijne |first5=J. H. J. |last6=Arenou |first6=F. |last7=Babusiaux |first7=C. |last8=Biermann |first8=M. |last9=Creevey |first9=O. L. |last10=Ducourant |first10=C. |last11=Evans |first11=D. W. |last12=Eyer |first12=L. |last13=Guerra |first13=R. |last14=Hutton |first14=A. |last15=Jordi |first15=C. |date=June 2023 |title=Gaia Data Release 3: Summary of the content and survey properties |url=https://www.aanda.org/10.1051/0004-6361/202243940 |journal=Astronomy & Astrophysics |volume=674 |pages=A1 |arxiv=2208.00211 |bibcode=2023A&A...674A...1G |doi=10.1051/0004-6361/202243940 |issn=0004-6361}} Large size needs confirmation due to size discrepancy. |
style="background:#CEF2E0" |
style="background:#CEF2E0" |
style="background:#CEF2E0" |
style="background:#FAECC8"
| data-sort-value="2024"|(2024{{snd}}present) |style="border:4px ridge blue; background:#000000; text-align:center;" |112px | GQ Lupi b | data-sort-value="3.70" |3.70 | style="text-align:center;" | * | data-sort-value="20.001" |20 ± 10 | First confirmed exoplanet candidate to be directly imaged. It is believed to be several times more massive than Jupiter. Because the theoretical models which are used to predict planetary masses for objects in young star systems like GQ Lupi b are still tentative, the mass cannot be precisely specified, giving the masses of 1 – 39 {{Jupiter mass|link=y}}. |
style="background:#e6e6e6"
| data-sort-value="2024", rowspan="2" |2024{{snd}}2025 | style="border:4px ridge magenta; background:black;" rowspan="2" |112x112px | rowspan="2" |HAT-P-67 Ab | rowspan="2" style="text-align:center;" | – | data-sort-value="0.34", rowspan="2" |0.418 ± 0.012 | rowspan="2" | A very puffy Hot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius. |
style="background:#e6e6e6"
| 2.165 {{±|0.024|0.022}}{{efn|name=HatP67|Calculated using Rp/R⋆ multiplied by R⋆. The value is later multiplied by (142984 km ÷ 1391400 km) to convert from {{solar radius|link=y}} to {{jupiter radius|link=y}}.}} |
style="background:#FFF8DC"
| data-sort-value="2022" |(2022 – 2025) | style="border:4px ridge blue; background: white; text-align:center;" |112x112px | AB Aurigae b | data-sort-value="2.75" |2.75 | style="text-align:center;" | ⇗ | data-sort-value="20" |9, < 130, | The commonly favored model for gas giant planet formation – core accretion – has significant difficulty forming massive gas giant planets at AB Aur b's very large distance from its AB Aur. Instead, AB Aur b may be forming by disk (gravitational) instability,{{Cite journal |title=Giant Planet Formation by Gravitational Instability |last1=Boss |first1=Alan |journal=Science |language=en |volume=276 |issue=5320 |pages=1836–1839 |date= June 1997 |bibcode=1997Sci...276.1836B |doi=10.1126/science.276.5320.1836}} where as a massive disk around a star cools, gravity causes the disk to rapidly break up into one or more planet-mass fragments. |
style="background:#CEF2E0"
| data-sort-value="2021" rowspan="3"|(2020 – present) | style="border:4px ridge blue; background:#000000;" rowspan="3" |112x112px | rowspan="3" |PDS 70b | rowspan="3" style="text-align:center;" | {{dagger}} | rowspan="3" |3.2 {{±|3.3|1.6}}, 7.9 {{±|4.9|4.7}}, | rowspan="3" |Has been later measured to have a radius of only {{Jupiter radius|1.96}}, and then {{jupiter radius|2.7}} in 2022. Large size needs confirmation due to this discrepancy. |
style="background:#CEF2E0" |
style="background:#CEF2E0" |
style="background:#CFF7C1"
| data-sort-value="2020" |(2020{{snd}}present) | style="border:4px ridge blue; background:#000000;" |112x112px | SR 12 c | data-sort-value="2.38" |2.38 {{±|0.27|0.32}} | style="text-align:center;" |? | The planet is at the very edge of the deuterium burning limit. Mass being below it needs confirmation. Other sources of masses includes 14 {{±|7|8}} {{Jupiter mass|link=y}}, 12{{snd}}15 {{Jupiter mass|link=y}}. |
style="background:#FAECC8"
| data-sort-value="2019" rowspan="3"|(2019{{snd}}present) | style="border:4px ridge magenta; background:white;" rowspan="3" |112x112px | rowspan="3" |HD 114762 Ab | data-sort-value="1.05" rowspan="3"|Unknown | style="text-align:center;" rowspan="3" | * | data-sort-value="306.93" |306.93 | rowspan="3" |It was thought to be the first discovered exoplanet until 2019, when it was confirmed to be a low-mass star with the mass of 107 {{±|20|27}} {{val|ul=Jupiter mass}} (and later reviewed up to 147.0 {{±|39.3|42.0}} {{Jupiter mass}} in 2020 and 306.93 {{Jupiter mass}} ({{Solar mass|0.293|link=y}}) in 2022). |
style="background:#FAECC8"
| data-sort-value="147" |147.0 {{±|39.3|42.0}}{{efn|convert to: {{#expr: (0.293 / 306.93) * 147 round 3}}0 {{±|{{#expr: (0.293 / 306.93) * 39.3 round 3}}|{{#expr: (0.293 / 306.93) * 42 round 3}}0}} {{Solar mass|link=y}} }} |
style="background:#FAECC8"
| data-sort-value="107" |107 {{±|20|27}}{{efn|coverts to: {{#expr: (0.293 / 306.93) * 107 round 3}} {{±|{{#expr: (0.293 / 306.93) * 20 round 3}}|{{#expr: (0.293 / 306.93) * 27 round 3}}}} {{Solar mass|link=y}} }} |
style="background:#CEF2E0"
| data-sort-value="2019" |(2019{{snd}}present) | style="border:4px ridge red; background:#000000; text-align:center;" |112px | data-sort-value="1.91" |1.91 ± 0.25{{snd}}2.57 ± 0.26 | style="text-align:center;" |{{dagger}} | data-sort-value="9.28" |9.28(16) | Discovered by Kepler in first four months of Kepler data. A more recent analysis argues that a third-light correction factor of 1.818 is needed, to correct for the light blending of Kepler-13 B, resulting in higher radii results. |
style="background:#FFE8DC"
| data-sort-value="2018" rowspan="2" |(2018{{snd}}2024) | style="border:4px ridge red; background:black;" rowspan="2" |112px | rowspan="2" |WASP-76b | data-sort-value="1.842" | 1.842{{±|0.024}} | style="text-align:center;" rowspan="2" | ↓ | data-sort-value="0.92" rowspan="2" |0.921{{±|0.032}} | rowspan="2" |A very puffy Hot Jupiter. |
style="background:#FFE8DC" |
style="background:#e6e6e6"
| data-sort-value="2017" |2017{{snd}}2024 | style="border:4px ridge purple; background:white;" |112x112px | style="text-align:center;" | – | data-sort-value="0.34" |0.34 {{±|0.25|0.19}} | A very puffy Hot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius. |
style="background:#FFE8DC"
| data-sort-value="2017" rowspan="2" |(2017 – 2017) | style="border:4px ridge orange; background:#000000;" rowspan="2" |112x112px | rowspan="2" |XO-6b | style="text-align:center;" rowspan="2" | ↓ | rowspan="2" |A very puffy Hot Jupiter. |
style="background:#FFE8DC" |
style="background:#CEE0F2"
| data-sort-value="2015"|(2015{{snd}}2017) | style="border:4px ridge red; background:#000000;" |112px | Dimidium | data-sort-value="1.9"|1.9 ± 0.3 | style="text-align:center;" | → | data-sort-value"0.4605"|0.46 {{±|0.06|0.01}} | First convincing exoplanet discovered orbiting a main-sequence star. A prototype hot Jupiter. In 2015, a study allegedly detected visible light spectrum from Dimidium using the High Accuracy Radial Velocity Planet Searcher (HARPS) instrument. This suggested a high albedo for the planet, hence a large radius up to 1.9 ± 0.3 {{Jupiter radius|link=y}}, which could suggest 51 Pegasi b would be an inflated hot Jupiter. However, recent studies found no evidence of reflected light, ruling out the previous radii and albedo estimates from previous studies with Dimidium being likely a low-albedo planet with a radius around {{val|1.2|0.1|ul=Jupiter radius}}.{{Cite journal |last1=Scandariato |first1=G. |last2=Borsa |first2=F. |last3=Sicilia |first3=D. |last4=Malavolta |first4=L. |last5=Biazzo |first5=K. |last6=Bonomo |first6=A. S. |last7=Bruno |first7=G. |last8=Claudi |first8=R. |last9=Covino |first9=E. |last10=Marcantonio |first10=P. Di |last11=Esposito |first11=M. |last12=Frustagli |first12=G. |last13=Lanza |first13=A. F. |last14=Maldonado |first14=J. |last15=Maggio |first15=A. |date=2021-02-01 |title=The GAPS Programme at TNG - XXIX. No detection of reflected light from 51 Peg b using optical high-resolution spectroscopy |url=https://www.aanda.org/articles/aa/full_html/2021/02/aa39271-20/aa39271-20.html |journal=Astronomy & Astrophysics |language=en |volume=646 |pages=A159 |doi=10.1051/0004-6361/202039271 |issn=0004-6361|arxiv=2012.10435 |bibcode=2021A&A...646A.159S }} |
style="background:#CEF2E0"
| data-sort-value="2015" |(2015{{snd}}2017) | style="border:4px ridge red; background:#000000; text-align:center;" |112px | Saffar | style="text-align:center;" |{{dagger}} | data-sort-value="1.70" |1.70 {{±|0.33|0.24}} | New reference finds ~1.8 {{Jupiter radius|link=y}} more likely, but the original{{Cite journal |last1=Crossfield |first1=Ian J. M. |last2=Hansen |first2=Brad M. S. |last3=Harrington |first3=Joseph |last4=Cho |first4=James Y.-K. |last5=Deming |first5=Drake |last6=Menou |first6=Kristen |last7=Seager |first7=Sara |date=2010-11-10 |title=A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b |url=https://iopscience.iop.org/article/10.1088/0004-637X/723/2/1436 |journal=The Astrophysical Journal |volume=723 |issue=2 |pages=1436–1446 |arxiv=1008.0393 |bibcode=2010ApJ...723.1436C |doi=10.1088/0004-637X/723/2/1436 |issn=0004-637X}} ~1.36 {{Jupiter radius|link=y}} are also given. Large size needs confirmation. |
style="background:#CEF2E0"
| data-sort-value="2014" rowspan="2"|(2014{{snd}}present) | style="border:4px ridge blue; background:#000000;" rowspan="2" |112x112px | rowspan="2" | ROXs 42B b | rowspan="2" style="text-align:center;" | {{dagger}} | rowspan="2" | 9 {{±|6|3}}; 10 ± 4 | rowspan="2" | Large size needs confirmation. Other estimates include 1.9 – 2.4 {{Jupiter radius|link=y}}, 1.3{{Snd}}4.7 {{Jupiter radius}}. Other recent sources of masses include 3.2 – 27 {{Jupiter mass|link=y}}, 13 ± 5 {{Jupiter mass|link=y}}. |
style="background:#CEF2E0" |
style="background:#FFE8DC"
| data-sort-value="2012" rowspan="2" |(2012{{snd}}2018) | style="border:4px ridge cyan; background:white;" rowspan="2" |112px | rowspan="2" |Pollera | data-sort-value="1.704" | 1.704 {{±|0.195|0.180}} | style="text-align:center;" rowspan="2" | ↓ | data-sort-value="0.850" rowspan="2" |0.850 {{±|0.180|0.180}} | rowspan="2" |This planet is orbiting the host star at nearly-polar orbit with respect to star's equatorial plane, inclination being equal to −95.2{{±|0.9|1.0}}°. |
style="background:#FFE8DC" |
style="background:#CEF2E0"
| rowspan="4" data-sort-value="2012" |(2012{{snd}}2017) | rowspan="4" style="border:4px ridge magenta; background:#000000; text-align:center" |112px | rowspan="4" | WASP-78b | rowspan="4" style="text-align:center;" | {{dagger}} | rowspan="4" |Large size needs confirmation due to size discrepancy. |
style="background:#CEF2E0" |
style="background:#CEF2E0" |
style="background:#CEF2E0" |
style="background:#CEF2E0"
| rowspan="2" data-sort-value="2014" |(2011{{snd}}2017) | rowspan="2" style="border:4px ridge red; background:#000000;" |112x112px | rowspan="2" | HAT-P-32b | rowspan="2" style="text-align:center;" | {{dagger}} | rowspan="2" | 0.941 ± 0.166, | rowspan="2" |The radius is dependent on whether the orbit is circular or eccentric. Later shown to be most likely close to the lower end of the originally possible radius range. |
style="background:#CEF2E0" |
style="background:#ACE1AF"
| rowspan="2" data-sort-value="2007" |2011{{snd}}2017 | rowspan="2" style="border:4px ridge magenta; background:#000000;" |112px | rowspan="2" | HAT-P-33b | data-sort-value="1.484" | 1.85 ± 0.49 | rowspan="2" style="text-align:center;" | ↑ | rowspan="2" data-sort-value="0.86" |0.72 {{±|0.13|0.12}} | rowspan="2" | Later proven to be most likely the largest at the time. The radius is dependent on whether the orbit is circular or eccentric. |
style="background:#ACE1AF" |
style="background:#e6e6e6"
| data-sort-value="2010" |2010{{snd}}2011 | style="border:4px ridge red; background:#000000; text-align:center;" | 112x112px | Ditsö̀ | style="text-align:center;" | – | First planet discovered to have a retrograde orbit and first to have quartz (crystalline silica, SiO2) in the clouds of an exoplanet. Puffiest and possibly largest exoplanet at the time of discovery. {{nowrap|Extremely low density of 0.08 g/cm3.}} |
style="background:#FAECC8"
| data-sort-value="2008" rowspan="4"|(2008{{snd}}present) |style="border:4px ridge blue; background:#000000; text-align:center;" rowspan="4"|112x112px | rowspan="4" | CT Chamaeleontis b | rowspan="4" style="text-align:center;" | * | rowspan="4" data-sort-value="17"|17 ± 6 | rowspan="4" | Possibly the largest planet. |
style="background:#FAECC8" |
style="background:#FAECC8" |
style="background:#FAECC8" |
style="background:#e6e6e6"
| data-sort-value="2007" |2007{{snd}}2010 | style="border:4px ridge indigo; background:#000000;" |112x112px | TrES-4 | style="text-align:center;" | – | data-sort-value="0.78"|0.78 ± 0.19 | Largest confirmed exoplanet ever found and least dense planet of 0.17 g/cm3, about that of balsa wood, less than Saturn's 0.7 g/cm3, at the time of discovery. |
style="background:#ACE1AF"
| data-sort-value="2007" rowspan="2" |2007{{snd}}2007 | style="border:4px ridge blue; background:#000000;" rowspan="2" |112px | rowspan="2" | WASP-1 Ab | data-sort-value="1.484"| 1.484 {{±|0.059|0.091}}{{Cite journal |last=Southworth |first=John |date=2010-11-01 |title=Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models: Studies of transiting extrasolar planets - III |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=408 |issue=3 |pages=1689–1713 |arxiv=1006.4443 |bibcode=2010MNRAS.408.1689S |doi=10.1111/j.1365-2966.2010.17231.x|doi-access=free }} | rowspan="2" style="text-align:center;" | ↑ |
style="background:#ACE1AF" |
style="background:#e6e6e6"
| data-sort-value="2007" rowspan="2" |2007{{snd}}2007 | style="border:4px ridge red; background:#000000;" rowspan="2" |112x112px | rowspan="2" | HAT-P-1b | rowspan="2" style="text-align:center;" | – | rowspan="2" | The planet appears to be at least as large in radius, and smaller in mean density, than any previously known planet. |
style="background:#e6e6e6" |
style="background:#FAECC8"
| rowspan="2" data-sort-value="2007"|(2007{{snd}}2024) |style="border:4px ridge blue; background:#000000; text-align:center;" rowspan="2"|112px | rowspan="2" | GQ Lupi b | data-sort-value="3.0"|3.0 ± 0.5 | style="text-align:center;" rowspan="2" | * | data-sort-value="20"|~ 20 (1 – 39) | rowspan="2" | First confirmed exoplanet candidate to be directly imaged. |
style="background:#FAECC8" |
style="background:#CEF2E0"
| rowspan="2" data-sort-value="2006.5" |(2006{{snd}}present) | style="border:4px ridge blue; background:#000000;" rowspan="2" |112x112px | rowspan="2" | DH Tauri b | style="text-align:center;" rowspan="2" | {{dagger}} | data-sort-value="11.5"; rowspan="2" | 11.5 {{±|10.5|3.1}} | rowspan="2" | Mass being below the deuterium burning limit needs confirmation. Temperature originally given as 2700 – 2800 K. Other sources give the radii: 2.49 {{Jupiter radius|link=y}},{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}} 2.68 {{Jupiter radius|link=y}}, and 2.6 ± 0.6 {{Jupiter radius|link=y}} and masses: 11 ± 3 {{Jupiter mass|link=y}}, 14.2 {{±|2.4|3.5}} {{Jupiter mass|link=y}}, 17 ± 6 {{Jupiter mass|link=y}} and 12 ± 4 {{Jupiter mass|link=y}} |
style="background:#CEF2E0"
| data-sort-value="1.75" |1.75{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}} |
style="background:#e6e6e6"
| data-sort-value="2006"|2006{{snd}}2007 | style="border:4px ridge red; background:black; text-align:center; margin:0 0 12px 0; "|112x112px | HD 209458 b | style="text-align:center;" | – | data-sort-value="0.6825" |0.682 {{±|0.014|0.015}} | First known transiting exoplanet, first precisely measured planet available, first to have its orbital speed measured, determining its mass directly, one of first two exoplanets (other being HD 189733 Ab) to be observed spectroscopically and first to have an atmosphere, containing evaporating hydrogen, and first to have contained oxygen and carbon. First extrasolar gas giant to have its superstorm measured. Nicknamed "Osiris". |
style="background:#FFF8DC"
| data-sort-value="2005"|(2005{{snd}}2007) |style="border:4px ridge blue; background:#000000; text-align:center;"|112x112px | GQ Lupi b | data-sort-value="2"|~ 2{{Cite journal |last1=Neuhäuser |first1=R. |last2=Guenther |first2=E. W. |last3=Wuchterl |first3=G. |last4=Mugrauer |first4=M. |last5=Bedalov |first5=A. |last6=Hauschildt |first6=P. H. |date=May 2005 |title=Evidence for a co-moving sub-stellar companion of GQ Lup |url=http://www.aanda.org/10.1051/0004-6361:200500104 |journal=Astronomy & Astrophysics |volume=435 |issue=1 |pages=L13–L16 |arxiv=astro-ph/0503691 |bibcode=2005A&A...435L..13N |doi=10.1051/0004-6361:200500104 |issn=0004-6361}}{{cite web |date=7 April 2005 |title=Is this a Brown Dwarf or an Exoplanet? | style="text-align:center;" | ⇗ | First confirmed exoplanet candidate to be directly imaged. |
data-sort-value="1999"|1999{{snd}}2006
| style="border:4px ridge purple; background:white; text-align:center;"|112x112px | HD 209458 b | style="text-align:center;" | ← | data-sort-value="0.682" |0.682 {{±|0.014|0.015}} | First known transiting exoplanet, first precisely measured radius available, first to have its orbital speed measured, determining its mass directly, and first to have an atmosphere, containing evaporating hydrogen, and first to have contained oxygen and carbon. First extrasolar gas giant to have its superstorm measured. Nicknamed "Osiris". |
style="background:#CEF2E0"
| data-sort-value="1996" rowspan="2" |(1996{{snd}}1999) | style="border:4px ridge red; background:#000000; text-align:center;" |112px | Saffar | data-sort-value="1.8" |Unknown | style="text-align:center;" |{{dagger}} | data-sort-value="0.74" |0.74 ± 0.07{{cite arXiv |eprint=1109.3116 |title=Upsilon Andromedae b in polarized light: New constraints on the planet size, density and albedo |author1=S.V. Berdyugina |author2=A.V. Berdyugin |author3=V. Piirola |date=14 September 2011 |class=astro-ph.EP}} | rowspan="2" |About 20{{snd}}25 planets including Saffar were found within this time span via the radial velocity method, none of them had radius measurements shortly after their discoveries. As expected, Dimidium is larger than Poltergeist, whether one of the additional planets found till 1999 is larger than Dimidium is not clear to this day. Saffar has a phase curve measurement (see 2015), but confirmation of being larger than Dimidium is still needed. |
style="background:#CEF2E0"
| style="border:4px ridge pink; background:#000000;" |112x112px | various | data-sort-value="1.21"|Unknown | style="text-align:center;" | {{dagger}} |
style="background:#e6e6e6"
| data-sort-value="1995"|1996{{snd}}1999 | style="border:4px ridge red; background:#000000;" rowspan=2 |112x112px | Dimidium | data-sort-value="1.03"|Unknown | style="text-align:center;" | – | data-sort-value"0.4605"|0.46 {{±|0.06|0.01}} | First convincing exoplanet discovered orbiting a main-sequence star. A prototype hot Jupiter. |
data-sort-value="1994"|1995{{snd}}1996
| Dimidium | data-sort-value="1.02"|Unknown | style="text-align:center;" | ← | First convincing exoplanet discovered orbiting a main-sequence star. A prototype hot Jupiter. |
style="background:#CEE0F2"
| data-sort-value="1993"|(1993{{snd}}1995) | style="border:4px ridge red; background:#000000;" |112x112px | PSR B1620−26 b | data-sort-value="1.18"|Unknown | style="text-align:center;" | → | Likely larger than Poltergeist, but not confirmed as planet until 2003. First circumbinary planet, first planet to be found in a globular cluster and the oldest planet to be discovered (until 2020) at the age of 11.2–12.7 billion years old,{{cite web |author=Britt, Robert Roy |date=2003 |title=Primeval Planet: Oldest Known World Conjures Prospect of Ancient Life |url=http://thebookofbeginnings.com/sources/10/PrimevalPlanet.pdf |url-status=dead |archive-url=https://web.archive.org/web/20131219075138/http://thebookofbeginnings.com/sources/10/PrimevalPlanet.pdf |archive-date=2013-12-19 |access-date=2013-12-19 |work=Space.com}} hence the nickname, "Methuselah".{{cite web |title=Oldest Known Planet Identified |url=http://hubblesite.org/newscenter/newsdesk/archive/releases/2003/19/ |url-status=live |archive-url=https://web.archive.org/web/20080517012902/http://hubblesite.org/newscenter/newsdesk/archive/releases/2003/19/ |archive-date=2008-05-17 |access-date=2006-05-07 |work=HubbleSite}} |
data-sort-value="1992"|1992{{snd}}1995
| style="border:4px ridge red; background:#000000; text-align:center;"|112x112px | Poltergeist | data-sort-value="0.089"|Unknown | style="text-align:center;" | ← | data-sort-value="0.0135"|0.013 53 ± 0.000 63 | First confirmed planet ever discovered outside the Solar System together with the less massive Phobetor (PSR B1257+12 d), one of three pulsar planets known to be orbiting the pulsar Lich (PSR B1257+12). Lich planets are likely to form in a second round of planet formation as a result of merger of two white dwarfs into a pulsar star and a resulting disk of material in orbit around the star.{{cite book |author=Podsiadlowski |first=P. |title=Planets Around Pulsars; Proceedings of the Conference |date=1993 |publisher=California Institute of Technology |volume=36 |pages=149–165 |chapter=Planet Formation Scenarios |bibcode=1993ASPC...36..149P}} |
style="background:#CEE0F2"
| data-sort-value="1991"|(1991{{snd}}1992) | style="border:4px ridge magenta; background:white;" |112x112px | PSR 1829−10 b | data-sort-value="0.088"|Unknown | style="text-align:center;" | → | data-sort-value="0.03146"|0.031 46 | First found "orbiting the neutron star PSR 1829-10"{{Cite journal |last1=Bailes |first1=M. |last2=Lyne |first2=A. G. |last3=Shemar |first3=S. L. |date=July 1991 |title=A planet orbiting the neutron star PSR1829–10 |url=https://www.nature.com/articles/352311a0 |journal=Nature |language=en |volume=352 |issue=6333 |pages=311–313 |bibcode=1991Natur.352..311B |doi=10.1038/352311a0 |issn=0028-0836}} but in 1992 retracted before the discovery of Lich planets due to errors in calculations.{{Cite journal |last1=Lyne |first1=A. G. |last2=Bailes |first2=M |date=1992-01-16 |title=No planet orbiting PS R1829–10 |url=https://www.nature.com/articles/355213b0 |journal=Nature |language=en |volume=355 |issue=6357 |pages=213 |bibcode=1992Natur.355..213L |doi=10.1038/355213b0 |issn=0028-0836}} |
style="background:#FFF8DC"
| data-sort-value="1989"|(1989{{snd}}1995) | style="border:4px ridge magenta; background:white;" |112x112px | HD 114762 Ab | data-sort-value="1.05"|Unknown | style="text-align:center;" | ⇗ | data-sort-value="11.069"|{{nowrap|11.069 ± 0.063,}} | Discovered in 1989 by Latham to have a minimum mass of 11.069 ± 0.063 {{val|ul=Jupiter mass}} (at 90°) and a probable mass of approximately {{val|63.2|ul=Jupiter mass}} (at 10°), making the former planet the first to be spotted,{{cite web |url=https://www.discovermagazine.com/the-sciences/the-fight-over-who-really-found-the-first-exoplanet |title=The fight over who really found the first exoplanet |website=Discover Magazine |date=April 22, 2019 |access-date=December 14, 2019}} and confirmed in 1991, it was thought to be the first discovered exoplanet (or second if it included Tadmor during its evidence) until 2019 when it was confirmed to be a low-mass star with the mass of 107 {{±|20|27}} {{val|ul=Jupiter mass}}{{cite journal |title=Determining the mass of the planetary candidate HD 114762 b using Gaia |arxiv=1910.07835 |last1=Kiefer |first1=Flavien |journal=Astronomy & Astrophysics |date=17 October 2019|volume=632 |pages=L9 |doi=10.1051/0004-6361/201936942 |bibcode=2019A&A...632L...9K |s2cid=204743831 }} (and later reviewed up to 147.0 {{±|39.3|42.0}} {{Jupiter mass}} in 2020 and 306.93 {{Jupiter mass}} ({{Solar mass|0.293|link=y}}) in 2022),{{cite journal |last=Winn |first=Joshua N. |arxiv=2209.05516 |title=Joint Constraints on Exoplanetary Orbits from Gaia DR3 and Doppler Data |journal=The Astronomical Journal |date=September 2022|volume=164 |issue=5 |page=196 |doi=10.3847/1538-3881/ac9126 |bibcode=2022AJ....164..196W |s2cid=252211643 |doi-access=free }} making one of the Lich planets the first exoplanet confirmed ever, or Dimidium, if the planet should have secured been formed in a first round of planet formation with the star. |
style="background:#CEE0F2"
| data-sort-value="1988"|(1988{{snd}}1992) |style="border:4px ridge red; background:#000000; text-align:center;"|112x112px | Tadmor | data-sort-value="0.89"|Unknown | style="text-align:center;" | → |First evidence for exoplanet to receive later confirmation. First reported in 1988, making it arguably the first true exoplanet discovered, and independently in 1989, however, retracted in 1992 due to the possibility that the stellar activity of the star mimics a planet not allowing a solid discovery claim and then finally confirmed in 2003. |
style="background:pink;"
| data-sort-value="-600"|(Antiquity{{snd}}1992, 1988 or 1995) |style="border:4px ridge blue; background:#000000;"|112px | Jupiter | 1 | style="text-align:center;" |{{number sign}} | 1 | Oldest, largest and most massive planet in the Solar System Observations date back to 7th or 8th century BC. Using an early telescope the Galilean moons were discovered in 1610, the planet hosts 95 known moons. Photograph took in 1879, making Jupiter the first planet to have recognisable photo of a planet. |
class="sortbottom"
| colspan="7" | For earlier entries, see early speculations and discredited claims. |
= Notes =
{{notelist}}
See also
References
{{reflist|refs=
{{cite web |title=Planetary Systems Composite Data |url=https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PSCompPars |website=NASA Exoplanet Archive |access-date=12 December 2021}}
{{cite journal |last1=Bourrier |first1=V. |last2=Ehrenreich |first2=D. |display-authors=etal |date=March 2020 |title=Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). III. Atmospheric structure of the misaligned ultra-hot Jupiter WASP-121b |journal=Astronomy & Astrophysics |volume=635 |issue= |pages=A205 |doi=10.1051/0004-6361/201936640 |arxiv=2001.06836 |bibcode=2020A&A...635A.205B}}
{{cite encyclopedia |url=https://exoplanet.eu/catalog/ |encyclopedia=Extrasolar Planets Encyclopaedia |title=The Extrasolar Planet Encyclopaedia - Catalog Listing|date=1995}}
{{cite web |last1=Clavin |first1=Whitney |last2=Johnson |first2=Michele |last3=Cole |first3=Steve |title=NASA Space Telescopes Find Patchy Clouds on Exotic World |url=http://www.nasa.gov/mission_pages/spitzer/news/spitzer20130930.html |date=30 September 2013 |work=NASA |access-date=30 September 2013 |archive-date=17 October 2013 |archive-url=https://web.archive.org/web/20131017155848/http://www.nasa.gov/mission_pages/spitzer/news/spitzer20130930.html}}
{{cite web |last=Chu |first=Jennifer |title=Scientists generate first map of clouds on an exoplanet |url=http://web.mit.edu/newsoffice/2013/scientists-generate-first-map-of-clouds-on-kepler-7b-1003.html |date=2 October 2013 |work=MIT |access-date=2 January 2014}}
{{cite journal |last1=Knutson |first1=Heather A. |last2=Charbonneau |first2=David |display-authors=etal |date=May 2007 |title=A map of the day-night contrast of the extrasolar planet HD 189733b |journal=Nature |volume=447 |issue=7141 |pages=183–186 |doi=10.1038/nature05782 |pmid=17495920 |arxiv=0705.0993 |bibcode=2007Natur.447..183K}}
{{cite journal |last1=Evans |first1=Thomas M. |last2=Pont |first2=Frédéric |display-authors=etal |date=August 2013 |title=The Deep Blue Color of HD 189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths |journal=The Astrophysical Journal Letters |volume=772 |issue=2 |pages=L16 |doi=10.1088/2041-8205/772/2/L16 |arxiv=1307.3239 |bibcode=2013ApJ...772L..16E|s2cid=38344760}}
{{Cite journal |last1=Sun |first1=Xilei |last2=Huang |first2=Pinghui |last3=Dong |first3=Ruobing |last4=Liu |first4=Shang-Fei |date=2024 |title=Observational characteristics of circum-planetary-mass-object disks in the era of James Webb Space Telescope |journal=Astrophysical Journal |volume=972 |issue=1 |page=25 |doi=10.3847/1538-4357/ad57c2 |doi-access=free |arxiv=2406.09501|bibcode=2024ApJ...972...25S}}
{{cite web |url=http://news.nationalgeographic.com/news/2009/08/090817-new-planet-orbits-backward.html |archive-url=https://web.archive.org/web/20090820034615/http://news.nationalgeographic.com/news/2009/08/090817-new-planet-orbits-backward.html |archive-date=August 20, 2009 |title="Backward" Planet Has Density of Foam Coffee Cups |first=Rachel |last=Kaufman |date=17 August 2009 |work=National Geographic |publisher=National Geographic Society |access-date=6 February 2011}}
{{Cite journal|bibcode=2016AJ....151...45E |title=KELT-4Ab: An Inflated Hot Jupiter Transiting the Bright (V ˜ 10) Component of a Hierarchical Triple |journal=The Astronomical Journal |volume=151 |issue=2 |page=45 |last1=Eastman |first1=Jason D |last2=Beatty |first2=Thomas G |last3=Siverd |first3=Robert J |last4=Antognini |first4=Joseph M. O |last5=Penny |first5=Matthew T |last6=Gonzales |first6=Erica J |last7=Crepp |first7=Justin R |last8=Howard |first8=Andrew W |last9=Avril |first9=Ryan L |last10=Bieryla |first10=Allyson |last11=Collins |first11=Karen |last12=Fulton |first12=Benjamin J |last13=Ge |first13=Jian |last14=Gregorio |first14=Joao |last15=Ma |first15=Bo |last16=Mellon |first16=Samuel N |last17=Oberst |first17=Thomas E |last18=Wang |first18=Ji |last19=Gaudi |first19=B. Scott |last20=Pepper |first20=Joshua |last21=Stassun |first21=Keivan G |last22=Buchhave |first22=Lars A |last23=Jensen |first23=Eric L. N |last24=Latham |first24=David W |last25=Berlind |first25=Perry |last26=Calkins |first26=Michael L |last27=Cargile |first27=Phillip A |last28=Colón |first28=Knicole D |last29=Dhital |first29=Saurav |last30=Esquerdo |first30=Gilbert A |display-authors=29 |year=2016 |doi=10.3847/0004-6256/151/2/45 |arxiv=1510.00015 |s2cid=17613522 |doi-access=free}}{{Cite journal |last1=Berger |first1=Travis A. |last2=Huber |first2=Daniel |last3=Gaidos |first3=Eric |last4=van Saders |first4=Jennifer L. |date=2018-10-01 |title=Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2 |journal=The Astrophysical Journal |volume=866 |issue=2 |page=99 |doi=10.3847/1538-4357/aada83 |doi-access=free |arxiv=1805.00231 |bibcode=2018ApJ...866...99B |issn=0004-637X}}
{{Cite journal |title=A Companion to AB Pic at the Planet/brown Dwarf Boundary |journal=Astronomy & Astrophysics |last1=Chauvin |first1=G. |date=2005-07-18 |url=https://www.aanda.org/articles/aa/abs/2005/30/aahc231/aahc231.html |volume=438 |issue=3 |pages=L29–L32 |last2=Lagrange |first2=A.-M. |last3=Zuckerman |first3=B. |last4=Dumas |first4=C. |last5=Mouillet |first5=D. |last6=Song |first6=I. |last7=Beuzit |first7=J.-L. |last8=Lowrance |first8=P. |last9=Bessel |first9=M. S. |url-status=live |department=Letter to the Editor |publisher=EDP Sciences |archive-url=https://web.archive.org/web/20241117195951/https://www.aanda.org/articles/aa/abs/2005/30/aahc231/aahc231.html |archive-date=2024-11-17 |bibcode-access=free |doi-access=free |bibcode=2005A&A...438L..29C |doi=10.1051/0004-6361:200500111 |arxiv=astro-ph/0504658}}{{Cite arXiv |eprint=astro-ph/0509906 |first=Ralph |last=Neuhaeuser |title=Homogeneous Comparison of Directly Detected Planet Candidates: GQ Lup, 2M1207, AB Pic |date=30 Sep 2005}}
{{Cite web |title=Just a few pixels would let astronomers map surface features like oceans and deserts on an exoplanet |url=https://phys.org/news/2022-04-pixels-astronomers-surface-features-oceans.html |access-date=2024-08-16 |website=Phys.org - (Universe Today)}}{{cite web |author=Jerry Coffey |date=8 July 2008 |title=What is the Biggest Planet in the Solar System? |url=http://www.universetoday.com/15453/what-is-the-biggest-planet-in-the-solar-system/ |url-status=live |archive-url=https://web.archive.org/web/20141116084833/http://www.universetoday.com/15453/what-is-the-biggest-planet-in-the-solar-system/ |archive-date=16 November 2014 |access-date=7 November 2014 |publisher=Universe Today}}
{{cite journal | display-authors=1 |last1=Butler |first1=R. P. |last2=Wright |first2=J. T. |last3=Marcy |first3=G. W. |last4=Fischer |first4=D. A. |last5=Vogt |first5=S. S. |last6=Tinney |first6=C. G. |last7=Jones |first7=H. R. A. |last8=Carter |first8=B. D. |last9=Johnson |first9=J. A. |last10=McCarthy |first10=C. |last11=Penny |first11=A. J. | doi=10.1086/504701 | title=Catalog of Nearby Exoplanets | journal=The Astrophysical Journal | volume=646 | issue=1 | pages=505–522 | date=2006 | bibcode=2006ApJ...646..505B|arxiv = astro-ph/0607493 |s2cid=119067572}} ([http://exoplanets.org/planets.shtml web version])
{{citation|arxiv=1403.1870|last1=Valsecchi|first1=Francesca|title=Planets on the Edge|journal=The Astrophysical Journal|year=2014|volume=787|issue=1|pages=L9|doi=10.1088/2041-8205/787/1/L9|bibcode=2014ApJ...787L...9V|s2cid=118451863}}{{Cite journal |last1=Alsubai |first1=Khalid |last2=Tsvetanov |first2=Zlatan I. |last3=Latham |first3=David W. |last4=Bieryla |first4=Allyson |last5=Pyrzas |first5=Stylianos |last6=Mislis |first6=Dimitris |last7=Esquerdo |first7=Gilbert A. |last8=Esamdin |first8=Ali |last9=Liu |first9=Jinzhong |last10=Ma |first10=Lu |last11=Bretton |first11=Marc |last12=Pallé |first12=Enric |last13=Murgas |first13=Felipe |last14=Vilchez |first14=Nicolas P. E. |last15=Morton |first15=Timothy D. |date=2019-02-01 |title=Qatar Exoplanet Survey: Qatar-7b—A Very Hot Jupiter Orbiting a Metal-rich F-Star |journal=The Astronomical Journal |volume=157 |issue=2 |page=74 |arxiv=1812.05601 |bibcode=2019AJ....157...74A |doi=10.3847/1538-3881/aaf80a |doi-access=free |issn=0004-6256}}
{{Cite journal |last1=Benisty |first1=Myriam |last2=Bae |first2=Jaehan |last3=Facchini |first3=Stefano |last4=Keppler |first4=Miriam |last5=Teague |first5=Richard |last6=Isella |first6=Andrea |last7=Kurtovic |first7=Nicolas T. |last8=Pérez |first8=Laura M. |last9=Sierra |first9=Anibal |last10=Andrews |first10=Sean M. |last11=Carpenter |first11=John |last12=Czekala |first12=Ian |last13=Dominik |first13=Carsten |last14=Henning |first14=Thomas |last15=Menard |first15=Francois |date=2021-07-01 |title=A Circumplanetary Disk around PDS70c |journal=The Astrophysical Journal Letters |volume=916 |issue=1 |pages=L2 |arxiv=2108.07123 |bibcode=2021ApJ...916L...2B |doi=10.3847/2041-8213/ac0f83 |doi-access=free |issn=2041-8205}}{{Cite journal |last1=Leggett |first1=S. K. |last2=Tremblin |first2=P. |last3=Esplin |first3=T. L. |last4=Luhman |first4=K. L. |last5=Morley |first5=Caroline V. |date=2017-06-20 |title=The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy |journal=The Astrophysical Journal |volume=842 |issue=2 |page=118 |arxiv=1704.03573 |bibcode=2017ApJ...842..118L |doi=10.3847/1538-4357/aa6fb5 |issn=0004-637X |doi-access=free}}
{{Cite journal |last=Carmichael |first=Theron W |date=2023-01-17 |title=Improved radius determinations for the transiting brown dwarf population in the era of Gaia and TESS |url=https://academic.oup.com/mnras/article/519/4/5177/6965838 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=519 |issue=4 |pages=5177–5190 |arxiv=2212.02502 |bibcode=2023MNRAS.519.5177C |doi=10.1093/mnras/stac3720 |doi-access=free |issn=0035-8711}}{{cite web |title=Definition of a "Planet" |url=http://www.dtm.ciw.edu/boss/definition.html |archive-url=https://web.archive.org/web/20120702204018/http://www.dtm.ciw.edu/boss/definition.html |archive-date=2012-07-02 |access-date=2009-03-27 |publisher=Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union}}{{cite arXiv|eprint=0710.5667v1|class=astro-ph|title=Giant Planet Formation by Core Accretion|author=Mordasini, C.|year=2007|display-authors=etal}}
{{Cite journal |last1=Konacki |first1=Maciej |last2=Wolszczan |first2=Alex |date=2003-07-10 |title=Masses and Orbital Inclinations of Planets in the PSR B1257+12 System |url=https://iopscience.iop.org/article/10.1086/377093 |journal=The Astrophysical Journal |language=en |volume=591 |issue=2 |pages=L147–L150 |arxiv=astro-ph/0305536 |bibcode=2003ApJ...591L.147K |doi=10.1086/377093 |issn=0004-637X}}{{cite web |url=http://www.astro.psu.edu/users/alex/pulsar_planets.htm |title=Pulsar Planets |url-status=dead |archive-url=https://web.archive.org/web/20051230112904/http://www.astro.psu.edu/users/alex/pulsar_planets.htm |archive-date=30 December 2005}}
{{cite journal |author=Wolszczan |first1=A. |last2=Frail |first2=D. |date=1992 |title=A planetary system around the millisecond pulsar PSR1257 + 12 |journal=Nature |volume=355 |issue=6356 |pages=145–147 |bibcode=1992Natur.355..145W |doi=10.1038/355145a0 |s2cid=4260368}}{{Cite journal |last1=Kiefer |first1=F. |last2=Hébrard |first2=G. |last3=Lecavelier des Etangs |first3=A. |last4=Martioli |first4=E. |last5=Dalal |first5=S. |last6=Vidal-Madjar |first6=A. |date=January 2021 |title=Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets |url=https://www.aanda.org/10.1051/0004-6361/202039168 |journal=Astronomy & Astrophysics |volume=645 |pages=A7 |arxiv=2009.14164 |bibcode=2021A&A...645A...7K |doi=10.1051/0004-6361/202039168 |issn=0004-6361}}
{{cite journal| author=Snellen| title=OGLE2-TR-L9b: an exoplanet transiting a rapidly rotating F3 star| journal=Astronomy and Astrophysics| date=2009| volume=497| issue=2| pages=545–550| doi=10.1051/0004-6361/200810917| last2=Koppenhoefer| first2=J.| last3=Van Der Burg| first3=R. F. J.| last4=Dreizler| first4=S.| last5=Greiner| first5=J.| last6=De Hoon| first6=M. D. J.| last7=Husser| first7=T. O.| last8=Krühler| first8=T.| last9=Saglia| first9=R. P.| bibcode=2009A&A...497..545S|last10 = Vuijsje| first10=F. N.|arxiv = 0812.0599 | s2cid=15639369| url=http://goedoc.uni-goettingen.de/goescholar/bitstream/handle/1/9693/aa10917-08.pdf?sequence=2}}
{{cite journal |author=Ignas A. G. Snellen |last2=De Kok |last3=De Mooij |last4=Albrecht |display-authors=etal |date=2010 |title=The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b |journal=Nature |volume=465 |issue=7301 |pages=1049–1051 |arxiv=1006.4364 |bibcode=2010Natur.465.1049S |doi=10.1038/nature09111 |pmid=20577209 |s2cid=205220901}}
{{cite journal |last1=Akeson |first1=Rachel |last2=Beichman |first2=Charles |last3=Kervella |first3=Pierre |last4=Fomalont |first4=Edward |last5=Benedict |first5=G. Fritz |date=20 April 2021 |title=Precision millimeter astrometry of the {{nobr|α Centauri AB}} system |journal= The Astronomical Journal |volume=162 |issue=1 |page=14 |s2cid=233307418 |doi-access=free |doi=10.3847/1538-3881/abfaff |bibcode=2021AJ....162...14A |arxiv=2104.10086}}
| access-date = 4 August 2006}}
{{harvard citation no brackets|Brosch|2008|p=126}}
|first1 = M. A. |last1 = Kenworthy
|first2 = E. E. |last2 = Mamajek
|title = Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by exomoons?
|journal = The Astrophysical Journal
|date = February 2015
|volume = 800
|issue = 2
|id = 126
|pages = 10
|doi-access = free
|doi = 10.1088/0004-637X/800/2/126
|arxiv = 1501.05652
|bibcode = 2015ApJ...800..126K
|s2cid = 56118870}}
{{cite web |url=http://www.slate.com/blogs/bad_astronomy/2013/03/11/nearby_stars_astronomers_discover_third_closest_star_system_to_earth.html |title=Howdy, Neighbor! New Twin Stars Are Third Closest to the Sun |work=Slate |series=Bad Astronomy |first=Phil |last=Plait |author-link=Phil Plait |date=11 March 2013 |access-date=11 March 2013}}
{{cite journal |last1=Matthews |first1=E. C. |last2=Carter |first2=A. L. |display-authors=etal |title=A temperate super-Jupiter imaged with JWST in the mid-infrared |journal=Nature |volume= 633|issue= 8031|pages= 789–792|date=July 2024 |doi=10.1038/s41586-024-07837-8 |pmid=39048015 |doi-access=free |pmc=11424479 |arxiv=2503.01599 |bibcode=2024Natur.633..789M }}
{{cite journal |last1=Bardalez Gagliuffi |first1=Daniella |last2=Balmer |first2=William O. |display-authors=etal |date=June 2025 |title=JWST Coronagraphic Images of 14 Her c: a Cold Giant Planet in a Dynamically Hot, Multi-planet System |journal=The Astrophysical Journal Letters |volume= |issue= |pages= |doi= |arxiv=2506.09201}}
|title =On the age of Gliese 504
|author =Fuhrmann, K. |author2=Chini, R.
|date =2015
|journal=The Astrophysical Journal
|volume =806
|issue =2
|pages =163 |doi =10.1088/0004-637X/806/2/163
|bibcode=2015ApJ...806..163F
|s2cid =5694316 }}
}}
= Bibliography =
- {{Cite book |last=Brosch |first=Noah |url=https://www.worldcat.org/title/214308374 |title=Sirius matters |publisher=Springer Netherlands |year=2008 |isbn=978-1-4020-8318-1 |series=Astrophysics and space science library |volume=354 |location=Dordrecht |pages=185–202 |chapter=Sirius revealed – a synthesis of the information |doi=10.1007/978-1-4020-8319-8_10 |oclc=214308374}}
{{Exoplanet}}
{{DEFAULTSORT:Largest exoplanets}}