list of largest exoplanets

{{short description|none}}

File:790106-0203 Voyager 58M to 31M reduced.gif as seen by Voyager 1 in 1979. It is the largest planet having its surface resolved and it is the largest planet in the Solar System.]]

Below is a list of the largest exoplanets so far discovered, in terms of physical size, ordered by radius.

Limitations

This list of extrasolar objects may and will change over time due to diverging measurements published between scientific journals, varying methods used to examine these objects, and the notably difficult task of discovering extrasolar objects in general. These objects are not stars, and are quite small on a universal or even stellar scale. Furthermore, these objects might be brown dwarfs, sub-brown dwarfs, or not even exist at all. Because of this, this list only cites the most certain measurements to date and is prone to change.

= Maximum Mass Limitation =

{{See also|Deuterium fusion}}

Different space organisations have different maximum masses for exoplanets. The NASA Exoplanet Archive (NASA EA) states that an object with a minimum mass lower than 30 {{Jupiter mass|link=y}}, not being a free-floating object, is qualified as an exoplanet. On the other hand, the official working definition by the International Astronomical Union (IAU) allows only exoplanets with a maximum mass of 13 {{Jupiter mass|link=y}}, that are orbiting a host object at a mass ratio of less than 0.04. For the purpose of the comparison of large planets, this article includes several of those listed by NASA EA up to the maximum 30 {{Jupiter mass}} with possible brown dwarfs among them of ≳ 13 {{Jupiter mass}} as stated by IAU.{{Cite web |url=https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PSCompPars |title=Planetary Systems Composite Data |website=NASA Exoplanet Archive |access-date=15 May 2025}}

= Classification of Sub-brown Dwarf and Rogue Objects =

{{See also|Sub-brown dwarf|Rogue planet}}

Sub-brown dwarfs are formed in the manner of stars, through the collapse of a gas cloud (perhaps with the help of photo-erosion) but that has a planetary mass, therefore by definition below the limiting mass for thermonuclear fusion of deuterium (~ {{Jupiter mass|13}}). However, there is no consensus amongst astronomers on whether the formation process should be taken into account when classifying an object as a planet.{{Cite web| url=http://www.space.com/scienceastronomy/solarsystem/planet_confusion_001101-1.html |title=What is a Planet? Debate Forces New Definition |first=Robert Roy |last=Britt |website=Space.com |date=2 November 2000|archive-url=https://web.archive.org/web/20010502150203/http://www.space.com/scienceastronomy/solarsystem/planet_confusion_001101-1.html |archive-date=2 May 2001 }} Free-floating sub-brown dwarfs can be observationally indistinguishable from rogue planets, which originally formed around a star and were ejected from orbit. Similarly, a sub-brown dwarf formed free-floating in a star cluster may be captured into orbit around a star, making distinguishing sub-brown dwarfs and large planets also difficult. A definition for the term "sub-brown dwarf" was put forward by the IAU Working Group on Extra-Solar Planets (WGESP), which defined it as a free-floating body found in young star clusters below the lower mass cut-off of brown dwarfs.{{Cite web |url=http://www.astro.iag.usp.br/~dinamica/WGEP.html |title=Position Statement on the Definition of "Planet" |website=IAU WGESP |date=28 February 2003}}

List

{{dynamic list}}

The sizes are listed in units of Jupiter radii ({{Jupiter radius}}, 71 492 km). This list is designed to include all exoplanets that are larger than 1.6 times the size of Jupiter. Some well-known exoplanets that are smaller than {{Jupiter radius|1.6}} ({{#expr: (71492 * 1.6) / 6378 round 2}}{{Nbsp}}{{Earth radius|link=y}} or {{val|{{#expr: 71492 * 1.6 round 0}}}}{{Nbsp}}{{val|u=km}}) and are gas giant have been included for the sake of comparison.
For the exoplanets with uncertain radii that could be below or above the adopted cut-off of 1.6 {{Jupiter radius|link=y}}, see the list of exoplanets with uncertain radii.

class="wikitable" style="margin:0px 15px 0px 0px"

|+Key (Classification)

| bgcolor="#FFF8DC" width=40px style="text-align:center;"|{{asterisk}}

! Probably brown dwarfs (≳ 13 {{Jupiter mass}}) (based on mass)bgcolor="#FFE8DC" width=40px style="text-align:center;"|{{dagger}}

! Probably sub-brown dwarfs (≲ 13 {{Jupiter mass}}) (based on mass and location)bgcolor="#D1E231" width=40px style="text-align:center;"|!

! Uncertain status while probably brown dwarfs (≳ 13 {{Jupiter mass}}) (based on mass)style="text-align:center;"| ←

! Probably exoplanets (≲ 13 {{Jupiter mass}}) (based on mass)bgcolor="#CEE0F2" width="40px" style="text-align:center;" | →

! Planets with grazing transit, hindering radius determinationbgcolor="pink" width=40px style="text-align:center;" |{{number sign}}

! Notable non-exoplanets reported for referencebgcolor="#E6E6E6" width=40px style="text-align:center;"| –

! Theoretical planet size restrictions

class="wikitable"

|+Key (Illustration)

| style="border:4px ridge red;"|

! Artist's impression

colspan="2"|
style="border:4px ridge yellow;"|

! Artist's size comparison

colspan="2"|
style="border:4px ridge orange;"|

! Artist's impression size comparison

colspan="2"|
style="border:4px ridge blue;"|

! Direct imaging telescopic observation

colspan="2"|
style="border:4px ridge cyan;"|

! Direct image size comparison

colspan="2"|
style="border:4px ridge green;"|

! Composite image of direct observations

colspan="2"|
style="border:4px ridge purple;"|

! Transiting telescopic observation

colspan="2"|
style="border:4px ridge indigo;"|

! Rendered image

{{sticky header}}

class="wikitable sortable sticky-header"
style="background:#353535" class="unsortable"| {{font color|white|Illustration}}

! Name
(Alternates)

! data-sort-type=number| Radius
({{Jupiter radius|link=y}})

! class="unsortable"| Key

! data-sort-type=number| Mass
({{Jupiter mass|link=y}})

! style="background:#EFEFEF" class="unsortable" | Notes

style="background:pink;"

|style="border:4px ridge blue; background:#000000; text-align:center;"|112x112px

| Sun
(Sol)

| data-sort-value="9.731"|9.731
({{val|1|ul=Solar radius}}){{Cite journal |last1=Prša |first1=Andrej |last2=Harmanec |first2=Petr |last3=Torres |first3=Guillermo |last4=Mamajek |first4=Eric |last5=Asplund |first5=Martin |last6=Capitaine |first6=Nicole |last7=Christensen-Dalsgaard |first7=Jørgen |last8=Depagne |first8=Éric |last9=Haberreiter |first9=Margit |last10=Hekker |first10=Saskia |last11=Hilton |first11=James |last12=Kopp |first12=Greg |last13=Kostov |first13=Veselin |last14=Kurtz |first14=Donald W. |last15=Laskar |first15=Jacques |date=2016-08-01 |title=NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3 * † |journal=The Astronomical Journal |volume=152 |issue=2 |page=41 |arxiv=1605.09788 |bibcode=2016AJ....152...41P |doi=10.3847/0004-6256/152/2/41 |doi-access=free |issn=0004-6256}}
(695 700 km){{efn|The measured radius from 2003 to 2006 was 696,342 ± 65 kilometers{{citation | first1=Marcelo | last1=Emilio | first2=Jeff R. | last2=Kuhn | first3=Rock I. | last3=Bush | first4=Isabelle F. | last4=Scholl | title=Measuring the Solar Radius from Space during the 2003 and 2006 Mercury Transits | arxiv=1203.4898 |bibcode = 2012ApJ...750..135E |doi = 10.1088/0004-637X/750/2/135 | volume=750 | issue=2 | journal=The Astrophysical Journal | pages=135| year=2012 | s2cid=119255559 }} with some in 2018 measured 695,660 ± 140 kilometers.{{citation | first1 = M | last1=Haberreiter | first2=W | last2=Schmutz | first3=A.G. | last3=Kosovichev | title=Solving the Discrepancy between the Seismic and Photospheric Solar Radius | journal=Astrophysical Journal | volume=675 | issue=1 | pages=L53–L56 | doi=10.1086/529492 | bibcode=2008ApJ...675L..53H| arxiv=0711.2392 | year=2008 | s2cid=14584860 }} To avoid confusion, International Astronomical Union set the solar radius to exactly {{val|695700|u=km}}.{{citation | first1=E.E. | last1=Mamajek | first2=A. | last2=Prsa | first3=G. | last3=Torres | first4=al. | last4=et | title=IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties | arxiv=1510.07674 |bibcode = 2015arXiv151007674M | year=2015 }}}}

| style="text-align:center;" |{{number sign}}

| data-sort-value="1047.569"|1047.569
({{val|1|ul=Solar mass}})
(1.988 416 × 1030 kg){{efn|The best estimate mass is ({{val|1.988475}} ± {{val|0.000092}}) × 1030 kg. Another estimate mass gave {{val|1.988420}} × 1030 kg. (based on the ratio of the mass of Earth to the Sun of {{frac|{{val|332946}}}}){{cite book| first=David | last=Leverington | date=2003| title=Babylon to Voyager and beyond: a history of planetary astronomy| page=126 | publisher=Cambridge University Press| isbn=978-0-521-80840-8}} To simplify the solar mass, International Astronomical Union set the solar mass to exactly {{val|1.988416}} × 1030 kg.}}

| The only star in the Solar System. Responsible for life on Earth and keeping the planets on orbit. Age: 4.6 Gyr.{{Cite journal |last1=Bonanno |first1=A. |last2=Schlattl |first2=H. |last3=Paternò |first3=L. |year=2002 |title=The age of the Sun and the relativistic corrections in the EOS |journal=Astronomy and Astrophysics |volume=390 |issue=3 |pages=1115–1118 |arxiv=astro-ph/0204331 |bibcode=2002A&A...390.1115B |doi=10.1051/0004-6361:20020749 |s2cid=119436299}}
Reported for reference.

style="background:pink;"

|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| Toliman
(Alpha Centauri B)

| data-sort-value="8.3599021"|{{val|8.360}} ± 0.035
(0.8591 ± 0.0036 {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="952.4497348"|952.450 ± 2.619
(0.9092 ± 0.0025 {{Solar mass|link=y}})

| One of first two stars (other being Rigil Kentaurus / Alpha Centauri A) to have its stellar parallax measured.{{Cite journal|last=Henderson|first=Thomas|date=1839|title=On the Parallax of α Centauri|journal=Monthly Notices of the Royal Astronomical Society|volume=4|issue=19 |pages=168–170|doi=10.1093/mnras/4.19.168 |bibcode=1839MNRAS...4..168H|doi-access=free}} Nearest binary star system and nearest stellar system to the Sun at the distance of {{cvt|4.344 ± 0.002|ly|pc|lk=on|abbr=off}}. A member of Alpha Centauri System, the nearest system to the Sun. Age: 5.3 ± 0.3 Gyr.{{cite journal |last1=Joyce |first1=M. |last2=Chaboyer |first2=B. |year=2018 |title=Classically and asteroseismically constrained 1D stellar evolution models of {{nobr|α Centauri A}} and B using empirical mixing length calibrations |journal=The Astrophysical Journal |volume=864 |issue=1 |page=99 |arxiv=1806.07567 |bibcode=2018ApJ...864...99J |doi=10.3847/1538-4357/aad464 |doi-access=free |s2cid=119482849}}
Reported for reference.

style="background:#e6e6e6"

|style="border:4px ridge red; background:black; text-align:center;" |112x112px

| Maximum size of planetary-mass object

| data-sort-value="8"|8

| style="text-align:center;"|–

| data-sort-value="5"|~ 5

| Maximum theoretical size limit assumed for a ~ 5 {{val|ul=Jupiter mass}} mass object right after formation, however, for 'arbitrary initial conditions'.

style="background:#FFE8DC"

|style="border:4px ridge green; background: #000000; text-align:center;"|112px

| Proplyd 133-353

| data-sort-value="7.82"|≲ 7.82 ± 0.81{{efn|Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:

:\sqrt{\biggl(\frac{5,772}{2,450}\biggr)^4 \cdot 0.021} = 0.782\ R_\odot.}}
(≲ {{Solar radius calculator|0.021|2450|type=LT|decimals=3|Terr=50|Lerr=0.004|unit=Y|link=Y}})

| style="text-align:center;" |{{dagger}}

| data-sort-value="13.001"|(≲) 13

| A candidate sub-brown dwarf or rogue planet with a photoevaporating disk, located in the Orion Nebula Cluster. At a probable age younger than 500 000 years, it is one of the youngest free-floating planetary-mass candidates known.
More information about Proplyd 133-353 and estimates of its radius are available:{{efn|

{{Efn|1=Using PMS evolutionary models and a potential higher age of 1 Myr, the luminosity would be lower, and the planet would be smaller. However, this would require for the object to be closer as well, which is unlikely. Another distance estimate to the Orion Nebula Cluster would result in a luminosity 1.14 times lower and also a smaller radius.}}

{{Efn|Instead of a photo-evaporating disk it may be an evaporating gaseous globule (EGG). If so, it has a final mass of 2 - 28 {{Jupiter mass}}.|name=Info 2}}

{{Efn|A calculated radius thus does not need to be the radius of the (dense) core. |name=Info 3}}

{{Efn|Proplyd 133-353 is proposed to have formed in a very low-mass dusty cloud or an evaporating gas globule as a second generation of star formation, which can explain both its young age and the presence of its disk.}}

}}

style="background:pink;"

|style="border:4px ridge red; background:#5E2113; text-align:center;" rowspan="2" |112x112px

| 2M0535-05 A
(V2384 Orionis A)

| data-sort-value="6.71"|6.71 ± 0.11
{{nowrap|(0.690 ± 0.011 {{val|ul=Solar radius}})}}

| style="text-align:center;" |{{number sign}}

| data-sort-value="59.9"|59.9 ± 3.5
(0.0572 ± 0.0033 {{val|ul=Solar mass}})

| rowspan="2" |First eclipsing binary brown dwarf system to be discovered, orbiting around 9.8 days.{{cite journal |last1=Stassun |first1=Keivan G. |last2=Mathieu |first2=Robert D. |last3=Valenti |first3=Jeff A. |date=March 2006 |title=Discovery of two young brown dwarfs in an eclipsing binary system |journal=Nature |volume=440 |issue=7082 |pages=311–314 |doi=10.1038/nature04570 |pmid=16541067 |bibcode=2006Natur.440..311S}}{{cite web |url=https://hubblesite.org/contents/news-releases/2006/news-2006-11.html |title=Astronomers Measure Precise Mass of a Binary Brown Dwarf |date=15 March 2006 |website=hubblesite.org |publisher=STScI |access-date=8 May 2024}} Age: ~1 Myr{{Cite journal |last1=Gómez Maqueo Chew |first1=Yilen |last2=Stassun |first2=Keivan G. |last3=Prša |first3=Andrej |last4=Mathieu |first4=Robert D. |date=2009-07-10 |title=Near-Infrared Light Curves of the Brown Dwarf Eclipsing Binary 2Mass J05352184-0546085: Can Spots Explain the Temperature Reversal? |url=https://iopscience.iop.org/article/10.1088/0004-637X/699/2/1196 |journal=The Astrophysical Journal |volume=699 |issue=2 |pages=1196–1208 |arxiv=0905.0491 |bibcode=2009ApJ...699.1196G |doi=10.1088/0004-637X/699/2/1196 |issn=0004-637X}}
Reported for reference.

style="background:pink;"

| 2M0535-05 B
(V2384 Orionis B)

| data-sort-value="5.25" |5.25 ± 0.09
(0.540 ± 0.009 {{val|ul=Solar radius}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="38.3" |38.3 ± 2.3
(0.0366 ± 0.0022 {{val|ul=Solar mass}})

style="background:#FFE8DC"

|

| KPNO-Tau-4

| data-sort-value="4.1"|4.1

| style="text-align:center;" |{{dagger}}

| data-sort-value="10.502"|10.5

| A member of Taurus-Auriga star-forming region.

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112x112px

| GQ Lupi b
(GQ Lupi Ab,
GQ Lupi B)

| data-sort-value="3.70" |3.70

| style="text-align:center;" |{{asterisk}}

| data-sort-value="20.001" |20 ± 10;
~ 20 (1 – 39)

| First confirmed exoplanet candidate to be directly imaged. It is believed to be several times more massive than Jupiter. Because the theoretical models which are used to predict planetary masses for objects in young star systems like GQ Lupi b are still tentative, the mass cannot be precisely determined, giving the masses of 1 – {{Val|39|ul=Jupiter mass}}; in the higher half of this range, it may be classified as a young brown dwarf. It should not be confused with the star GQ Lup C (2MASS J15491331), 2400 AU away, sometimes referred to as GQ Lup B.{{cite journal |last=Alcalá |first=J. M. |display-authors=etal |year=2020 |title=2MASS J15491331-3539118: a new low-mass wide companion of the GQ Lup system |url=https://www.researchgate.net/publication/339147825 |journal=Astronomy & Astrophysics |volume=635 |pages=L1 |arxiv=2001.10879 |bibcode=2020A&A...635L...1A |doi=10.1051/0004-6361/201937309 |s2cid=210942917}} Other sources of the radius include 3.7 ± 0.7 {{Jupiter radius|link=y}}, 3.0 ± 0.5 {{Jupiter radius|link=y}}, 3.77 {{Jupiter radius}}, 3.5 {{±|1.50|1.03}} {{Jupiter radius|link=y}}, 4.6 ± 1.4 RJ, 6.5 ± 2.0 RJ.

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| 2M1207
(TWA 27)

| 3.41{{Cite journal |last1=Venuti |first1=L. |last2=Stelzer |first2=B. |last3=Alcalá |first3=J. M. |last4=Manara |first4=C. F. |last5=Frasca |first5=A. |last6=Jayawardhana |first6=R. |last7=Antoniucci |first7=S. |last8=Argiroffi |first8=C. |last9=Natta |first9=A. |last10=Nisini |first10=B. |last11=Randich |first11=S. |last12=Scholz |first12=A. |date=December 2019 |title=X-shooter spectroscopy of young stars with disks: The TW Hydrae association as a probe of the final stages of disk accretion |url=https://www.aanda.org/10.1051/0004-6361/201935745 |journal=Astronomy & Astrophysics |volume=632 |pages=A46 |arxiv=1909.06699 |bibcode=2019A&A...632A..46V |doi=10.1051/0004-6361/201935745 |issn=0004-6361}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="19.9"|19.9 ± 6.3

| Host object of the first planetary body in an orbit discovered via direct imaging.

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| HD 100546 b
(KR Muscae b)

| 3.4

| style="text-align:center;" |{{asterisk}}

| 25

| Sometimes the initially reported {{val|6.9}} {{±|2.7|2.9}} {{Jupiter radius|link=y}} for the emitting area due to the diffuse dust and gas envelope or debris disk surrounding the planet is confused with the actual radius. Other source of mass: 1.65 {{val|ul=Jupiter mass}}.{{cite journal |last1=Pineda |first1=Jaime E. |last2=Szulágyi |first2=Judit |last3=Quanz |first3=Sascha P. |last4=Van Dishoeck |first4=Ewine F. |last5=Garufi |first5=Antonio |last6=Meru |first6=Farzana |last7=Mulders |first7=Gijs D. |last8=Testi |first8=Leonardo |last9=Meyer |first9=Michael R. |last10=Reggiani |first10=Maddalena |date=2019 |title=High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits |journal=The Astrophysical Journal |volume=871 |issue=1 |page=48 |arxiv=1811.10365 |bibcode=2019ApJ...871...48P |doi=10.3847/1538-4357/aaf389 |doi-access=free}}
HD 100546 system is the closest planetary system that contains a Herbig Ae/Be star.{{Cite journal | title=The Disk and Environment of the Herbig Be Star HD 100546 | last1=Grady | first1=C. A.| last2=Polomski | first2=E. F. | last3=Henning | first3=Th. | last4=Stecklum | first4=B. | last5=Woodgate | first5=B. E. | last6=Telesco | first6=C. M. | last7=Piña | first7=R. K. | last8=Gull | first8=T. R. | last9=Boggess | first9=A. | last10=Bowers | first10=C. W. | last11=Bruhweiler | first11=F. C. | last12=Clampin | first12=M. | last13=Danks | first13=A. C. | last14=Green | first14=R. F. | last15=Heap | first15=S. R. | last16=Hutchings | first16=J. B. | last17=Jenkins | first17=E. B. | last18=Joseph | first18=C. | last19=Kaiser | first19=M. E. | last20=Kimble | first20=R. A. | last21=Kraemer | first21=S. | last22=Lindler | first22=D. | last23=Linsky | first23=J. L. | last24=Maran | first24=S. P. | last25=Moos | first25=H. W. | last26=Plait | first26=P. | last27=Roesler | first27=F. | last28=Timothy | first28=J. G. | last29=Weistrop | first29=D. | display-authors=1 | journal=The Astronomical Journal | volume=122 | issue=6 | pages=3396–3406 | bibcode=2001AJ....122.3396G | doi=10.1086/324447 | year=2001 | doi-access=free}}

style="background:#FFE8DC"

|

| 2MASS J0437+2331

| 3.30{{Cite journal |last1=Best |first1=William M. J. |last2=Liu |first2=Michael C. |last3=Magnier |first3=Eugene A. |last4=Bowler |first4=Brendan P. |last5=Aller |first5=Kimberly M. |last6=Zhang |first6=Zhoujian |last7=Kotson |first7=Michael C. |last8=Burgett |first8=W. S. |last9=Chambers |first9=K. C. |last10=Draper |first10=P. W. |last11=Flewelling |first11=H. |last12=Hodapp |first12=K. W. |last13=Kaiser |first13=N. |last14=Metcalfe |first14=N. |last15=Wainscoat |first15=R. J. |date=2017-03-01 |title=A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius–Centaurus |journal=The Astrophysical Journal |volume=837 |issue=1 |pages=95 |arxiv=1702.00789 |bibcode=2017ApJ...837...95B |doi=10.3847/1538-4357/aa5df0 |doi-access=free |issn=0004-637X}}{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="7.1"|7.1 {{±|1.1|1.0}}

| May be a sub-brown dwarf or a rogue planet

style="background:pink"

|style="border:4px ridge red; background:#000000; text-align:center;"|112px

| Gliese 873
(EV Lac)

| data-sort-value="3.221"|3.221 ± 0.127{{cite journal | title=The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars | last1=Pineda | first1=J. Sebastian | last2=Youngblood | first2=Allison | last3=France | first3=Kevin | display-authors=1 | journal=The Astrophysical Journal | volume=918 | issue=1 | id=40 | pages=23 | date=September 2021 | doi=10.3847/1538-4357/ac0aea | arxiv=2106.07656 | bibcode=2021ApJ...918...40P | s2cid=235435757 | doi-access=free }}
(0.331 ± 0.013 {{Solar radius|link=y}})

| style="text-align:center;" |#

| data-sort-value="335.2"|335.2 ± 8.38
(0.32 ± 0.008 {{Solar mass|link=y}})

| Nearest star to the Sun in the constellation Lacerta. Its fast rotation, with its convective interior, produces a powerful magnetic field that is believed to play a role in the star's ability to produce the brightest (other than Sun) and most powerful flares observed in 2008.{{cite web |first=Brian | last=Dunbar |editor=Smith, Yvette | title=Pipsqueak Star Unleashes Monster Flare | publisher=NASA | date=May 20, 2008 | url=http://www.nasa.gov/multimedia/imagegallery/image_feature_1087.html | access-date=2010-06-12 }} Estimated Age: 0.3 Myr
Reported for reference.

style="background:#FFE8DC"

| style="border:4px ridge blue; background:#000053; text-align:center;" |112px

| OTS 44

| data-sort-value="3.2"|3.2{{snd}}3.6

| style="text-align:center;" |{{dagger}}

| data-sort-value="11.51"|11.5

| First discovered rogue planet; very likely a brown dwarf or sub-brown dwarf. It is surrounded by a circumstellar disk of dust and particles of rock and ice. The currently preferred radius estimate is done by SED modelling including substellar object and disk model.

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| FU Tauri b
(FU Tau b)

| data-sort-value="3.2"|3.2 ± 0.3{{Cite journal |last1=Wu |first1=Ya-Lin |last2=Cheng |first2=Yu-Chi |last3=Huang |first3=Li-Ching |last4=Bowler |first4=Brendan P. |last5=Close |first5=Laird M. |last6=Tseng |first6=Wei-Ling |last7=Chen |first7=Ning |last8=Chen |first8=Da-Wei |date=2023-10-01 |title=Monitoring Hα Emission from the Wide-orbit Brown-dwarf Companion FU Tau B |journal=The Astronomical Journal |volume=166 |issue=4 |pages=143 |arxiv=2309.07114 |bibcode=2023AJ....166..143W |doi=10.3847/1538-3881/acedb0 |doi-access=free |issn=0004-6256}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="15.7"|~ 15.7,{{Cite journal |last1=Luhman |first1=K. L. |last2=Mamajek |first2=E. E. |last3=Allen |first3=P. R. |last4=Muench |first4=A. A. |last5=Finkbeiner |first5=D. P. |date=2009-02-01 |title=Discovery of a Wide Binary Brown Dwarf Born in Isolation |url=https://iopscience.iop.org/article/10.1088/0004-637X/691/2/1265 |journal=The Astrophysical Journal |volume=691 |issue=2 |pages=1265–1275 |arxiv=0902.0425 |bibcode=2009ApJ...691.1265L |doi=10.1088/0004-637X/691/2/1265 |issn=0004-637X}}
20 ± 4,
19 ± 4

| Likely a part of a binary brown dwarf. Or a sub-brown dwarf.

style="background:#FFE8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112x112px

| 2MASS J044144b
(2M 0441+23 Bb)

| 3.06{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="9.8"|9.8 ± 1.8

| Based on the mass ratio to 2M J044145 A (2M 0441+23 Aa) it is likely not a planet according to the IAU's exoplanet working definition.{{Cite journal |last1=Lecavelier des Etangs |first1=A. |last2=Lissauer |first2=Jack J. |date=June 2022 |title=The IAU working definition of an exoplanet |url=https://linkinghub.elsevier.com/retrieve/pii/S138764732200001X |journal=New Astronomy Reviews |language=en |volume=94 |pages=101641 |arxiv=2203.09520 |bibcode=2022NewAR..9401641L |doi=10.1016/j.newar.2022.101641 |s2cid=247065421}} Part of the lowest mass quadruple 2M 0441+23 system of {{Solar mass|0.26|link=y}}.

style="background:pink;"

| style="border:4px ridge orange; background:#000000; text-align:center;"|112x112px

| Kapteyn's Star

| data-sort-value="2.83"|2.83 ± 0.24
(0.291 ± 0.025 {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="294.4"|294.4 ± 14.7
(0.2810 ± 0.014 {{Solar mass|link=y}})

| The closest halo star and nearest red subdwarf, at the distance of {{cvt|3.93|pc|ly|2|order=flip}}, and second-highest proper motion of any stars of more than 8 arcseconds per year (after the Barnard's Star). Age: 11.5 {{±|0.5|1.5}} Gyr.
Reported for reference.

style="background:#D1E231"

| style="border:4px ridge blue; background: #000000; text-align:center;" |112px

| AB Aurigae b
(AB Aur b)

| data-sort-value="2.75" |< 2.75{{efn|1=This radius estimate might have been affected by the planet's circumplanetary disk, as the spectrum not necessarily corresponds to a planet photosphere.}}

| style="text-align:center;" |!

| data-sort-value="20.001" |20 {{nowrap|(~ 4 Myr)}},{{Cite journal |last=Ginski |first=Christian |date=2022-05-09 |title=A massive gas giant caught in formation |url=https://www.nature.com/articles/s41550-022-01665-4 |journal=Nature Astronomy |language=en |volume=6 |issue=6 |pages=639–640 |bibcode=2022NatAs...6..639G |doi=10.1038/s41550-022-01665-4 |issn=2397-3366 |hdl-access=free |hdl=1887/3561614}}
{{nowrap|10 – 12}} {{nowrap|(1 Myr)}},
9, < 130

| Likely a brown dwarf; Assuming a hot-start evolution model and a planetary mass, AB Aurigae b would be younger than 2 Myr to have its observed large luminosity, which is inconsistent with the age of AB Aurigae of 6.0 {{±|2.5|1.0}} Myr, which could be caused by delayed planet formation in the disk. Other system ages include 1 - 5 Myr, 4 ± 1 Myr and 4 Myr.{{Cite journal |last1=Herczeg |first1=Gregory J. |last2=Hillenbrand |first2=Lynne A. |date=2014-04-22 |title=An Optical Spectroscopic Study of T Tauri Stars. I. Photospheric Properties |url=https://iopscience.iop.org/article/10.1088/0004-637X/786/2/97 |journal=The Astrophysical Journal |volume=786 |issue=2 |pages=97 |arxiv=1403.1675 |bibcode=2014ApJ...786...97H |doi=10.1088/0004-637X/786/2/97 |issn=0004-637X}} Another source gives a higher mass of {{val|20|ul=Jupiter mass}} in the brown dwarf regime for an age of 4 Myr, arguing since gravitational instability of the disk (preferred formation mechanism in the discovery publication) operates on very short time scales, the object might be as old as AB Aur. A more recent study also support the latter source, given the apparent magnitude was revised upwards.

style="border:4px ridge blue; background:#000000; text-align:center;"|112x112px

| DH Tauri b
(DH Tau b)

| data-sort-value="2.701"|2.7 ± 0.8

| style="text-align:center;" |←

| data-sort-value="11.001"|11 ± 3

| First planet to have a confirmed circumplanetary disk, detected with polarimetry at the VLT and youngest confirmed planet at an age of 0.7 Myr. DH Tauri b is suspected to have an exomoon candidate orbiting it every 320 years, with about the same mass as Jupiter.
Other sources give the radii: {{val|2.6|0.6}} {{Jupiter radius|link=y}}, 2.49 {{Jupiter radius|link=y}}{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}} and masses: 14.2 {{±|2.4|3.5}} {{val|ul=Jupiter mass}}, 17 ± 6 {{val|ul=Jupiter mass}}, 12 ± 4 {{val|ul=Jupiter mass}}.

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000" |112x112px

| CT Chamaeleontis b
(CT Cha b)

| data-sort-value="2.6" |2.6 {{±|1.2|0.2}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="17" |17 ± 6

| Likely a brown dwarf.{{cite journal|arxiv=1501.01396|year=2015|title=New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion CT Chamaeleontis B with the Magellan AO System|doi=10.1088/0004-637X/801/1/4|last1=Wu|first1=Ya-Lin|last2=Close|first2=Laird M.|last3=Males|first3=Jared R.|last4=Barman|first4=Travis S.|last5=Morzinski|first5=Katie M.|last6=Follette|first6=Katherine B.|last7=Bailey|first7=Vanessa|last8=Rodigas|first8=Timothy J.|last9=Hinz|first9=Philip|last10=Puglisi|first10=Alfio|last11=Xompero|first11=Marco|last12=Briguglio|first12=Runa|journal=The Astrophysical Journal|volume=801|issue=1|page=4|bibcode=2015ApJ...801....4W|s2cid=96467798}} Furthest planet to be directly imaged at the distance of {{cvt|622|ly|pc|2|order=}}.

style="background:#FFF8DC"

|

| HIP 79098 b
(HIP 79098 (AB)b)

| data-sort-value="2.6" |2.6 ± 0.6

| style="text-align:center;" |{{asterisk}}

| data-sort-value="17" |16{{snd}}25,{{Cite journal |last1=Janson |first1=Markus |last2=Asensio-Torres |first2=Ruben |last3=André |first3=Damien |last4=Bonnefoy |first4=Mickaël |last5=Delorme |first5=Philippe |last6=Reffert |first6=Sabine |last7=Desidera |first7=Silvano |last8=Langlois |first8=Maud |last9=Chauvin |first9=Gaël |last10=Gratton |first10=Raffaele |last11=Bohn |first11=Alexander J. |last12=Eriksson |first12=Simon C. |last13=Marleau |first13=Gabriel-Dominique |last14=Mamajek |first14=Eric E. |last15=Vigan |first15=Arthur |date=June 2019 |title=The B-Star Exoplanet Abundance Study: a co-moving 16–25 MJup companion to the young binary system HIP 79098 |url=https://www.aanda.org/10.1051/0004-6361/201935687 |journal=Astronomy & Astrophysics |volume=626 |pages=A99 |arxiv=1906.02787 |bibcode=2019A&A...626A..99J |doi=10.1051/0004-6361/201935687 |issn=0004-6361}}
28 ± 13

| The mass ratio between HIP 79098 b and the central binary HIP 79098 AB is estimated at 0.3–1%. The low value similar suggests that HIP 79098 b represents the upper end of the planet population, as opposed to having been formed as a star.

style="background:pink;"

| style="border:4px ridge purple; background:white; text-align:center |112x112px

| CM Draconis A
(Gliese 630.1 Aa)

| data-sort-value="2.4437"|2.4437 ± 0.0002{{cite journal |last1=Martin |first1=David V. |last2=Sethi |first2=Ritika |display-authors=etal |date=February 2024 |title=The benchmark M dwarf eclipsing binary CM Draconis with TESS: spots, flares, and ultra-precise parameters |journal=Monthly Notices of the Royal Astronomical Society |volume=528 |issue=1 |pages=963–975 |doi=10.1093/mnras/stae015 |doi-access=free |arxiv=2301.10858 |bibcode=2024MNRAS.528..963M}}
(0.25113 ± 0.00016 {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="235.8"|235.8 ± 0.3
{{nowrap|(0.22507 ± 0.00024 {{Solar mass|link=y}})}}

| Second eclipsing binary red dwarf system discovered after YY Geminorum AB (Castor Cab).{{cite journal |last1=Lacy |first1=C. H. |date=December 1977 |title=Absolute dimensions and masses of the remarkable spotted dM4e eclipsing binary flare star CM Draconis. |journal=Astrophysical Journal |volume=218 |issue= |pages=444–460 |doi=10.1086/155698 |bibcode=1977ApJ...218..444L}} One of the lightest stars with precisely measured masses and radii, orbiting around 1.268 days. The members of Gliese 630.1 triple system. Age: 4.1 ± 0.8 Gyr.{{Cite journal |last1=Morales |first1=Juan Carlos |last2=Ribas |first2=Ignasi |last3=Jordi |first3=Carme |last4=Torres |first4=Guillermo |last5=Gallardo |first5=José |last6=Guinan |first6=Edward F. |last7=Charbonneau |first7=David |last8=Wolf |first8=Marek |last9=Latham |first9=David W. |last10=Anglada-Escudé |first10=Guillem |last11=Bradstreet |first11=David H. |last12=Everett |first12=Mark E. |last13=O'Donovan |first13=Francis T. |last14=Mandushev |first14=Georgi |last15=Mathieu |first15=Robert D. |date=2009-02-01 |title=Absolute Properties of the Low-Mass Eclipsing Binary Cm Draconis |url=https://iopscience.iop.org/article/10.1088/0004-637X/691/2/1400 |journal=The Astrophysical Journal |volume=691 |issue=2 |pages=1400–1411 |arxiv=0810.1541 |bibcode=2009ApJ...691.1400M |doi=10.1088/0004-637X/691/2/1400 |issn=0004-637X}}
Reported for reference.

style="background:#FFF8DC"

| style="border:4px ridge green; background:white; text-align:center |112x112px

| PZ Telescopii b
(PZ Tel b,
HD 174429 b)

| 2.42 {{±|0.28|0.34}}{{Cite journal |last1=Schmidt |first1=T. O. B. |last2=Mugrauer |first2=M. |last3=Neuhäuser |first3=R. |last4=Vogt |first4=N. |last5=Witte |first5=S. |last6=Hauschildt |first6=P. H. |last7=Helling |first7=Ch. |last8=Seifahrt |first8=A. |date=June 2014 |title=First spectroscopic observations of the substellar companion of the young debris disk star PZ Telescopii |url=http://www.aanda.org/10.1051/0004-6361/201321625 |journal=Astronomy & Astrophysics |volume=566 |pages=A85 |arxiv=1404.2870 |bibcode=2014A&A...566A..85S |doi=10.1051/0004-6361/201321625 |issn=0004-6361}}

| style="text-align:center;" |{{asterisk}}

| 27 {{±|25|9}}{{Cite journal |last1=Franson |first1=Kyle |last2=Bowler |first2=Brendan P. |date=2023-06-01 |title=Dynamical Mass of the Young Brown Dwarf Companion PZ Tel B |journal=The Astronomical Journal |volume=165 |issue=6 |pages=246 |arxiv=2304.01302 |bibcode=2023AJ....165..246F |doi=10.3847/1538-3881/acca18 |doi-access=free |issn=0004-6256}}

| Likely a brown dwarf. First possible extra Jupiter-like planet to be directly imaged{{cite journal |last1=Jenkins |first1=J. S. |last2=Pavlenko |first2=Y. V. |last3=Ivanyuk |first3=O. |last4=Gallardo |first4=J. |last5=Jones |first5=M. I. |last6=Day-Jones |first6=A. C. |last7=Jones |first7=H. R. A. |last8=Ruiz |first8=M. T. |last9=Pinfield |first9=D. J. |last10=Yakovina |first10=L. |title=Benchmark Cool Companions: Ages and Abundances for the PZ Telescopii System |display-authors=4 |journal=Monthly Notices of the Royal Astronomical Society |volume=420 |issue=4 |pages=3587–98 |date=2012

|bibcode=2012MNRAS.420.3587J |arxiv=1111.7001 |doi=10.1111/j.1365-2966.2011.20280.x |doi-access=free |s2cid=18735984}}

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center |112x112px

| TWA 5 B
(TWA 5 A (AB) b)

| 2.34 – 3.02

| style="text-align:center;" |{{asterisk}}

| data-sort-value="25.01" |25 {{±|120|20}}{{Cite journal |last1=Neuhäuser |first1=R. |last2=Schmidt |first2=T. O. B. |last3=Hambaryan |first3=V. V. |last4=Vogt |first4=N. |date=June 2010 |title=Orbital motion of the young brown dwarf companion TWA 5 B |url=http://www.aanda.org/10.1051/0004-6361/200913917 |journal=Astronomy and Astrophysics |volume=516 |pages=A112 |arxiv=1005.1244 |bibcode=2010A&A...516A.112N |doi=10.1051/0004-6361/200913917 |issn=0004-6361}}

| First brown dwarf companion around a pre-main sequence star confirmed by both spectrum and proper motion. Exhibits strong emission.{{Citation |last1=Neuhaeuser |first1=R. |title=Spectrum and proper motion of a brown dwarf companion of the T Tauri star CoD-33 7795 |date=2000 |journal=Astronomy and Astrophysics |volume=360 |pages=L39–L42 |arxiv=astro-ph/0007301 |bibcode=2000A&A...360L..39N |last2=Guenther |first2=E. W. |last3=Petr |first3=M. G. |last4=Brandner |first4=W. |last5=Huelamo |first5=N. |last6=Alves |first6=J.}}

style="background:pink;"

| style="border:4px ridge purple; background:white; text-align:center |112x112px

| CM Draconis B
(Gliese 630.1 Ab)

| data-sort-value="2.3094"|2.3094 ± 0.0001
(0.23732 ± 0.00014 {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="220.2"|220.2 ± 0.3
(0.21017 ± 0.00028 {{Solar mass|link=y}})

| Second eclipsing binary red dwarf system discovered after YY Geminorum AB (Castor Cab). One of the lightest stars with precisely measured masses and radii, orbiting around 1.268 days. The members of Gliese 630.1 triple system. Age: 4.1 ± 0.8 Gyr.
Reported for reference.

style="background:#FFE8DC"

|

| o005 s41280

| data-sort-value="2.30"|2.30{{Cite journal |arxiv=2501.16648 |last1=Tu |first1=Zhijun |last2=Wang |first2=Shu |last3=Chen |first3=Xiaodian |last4=Liu |first4=Jifeng |title=Three Brown Dwarfs Masquerading as High-Redshift Galaxies in JWST Observations |journal=The Astrophysical Journal |date=2025 |volume=980 |issue=2 |page=230 |doi=10.3847/1538-4357/adaf9f |doi-access=free |bibcode=2025ApJ...980..230T }}

| style="text-align:center;" |{{dagger}}

| data-sort-value="8.4"|8.4

| May be a sub-brown dwarf or a rogue planet

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center |112x112px

| Eta Telescopii B
(η Tel B, HR 7329 B)

| 2.28 ± 0.03{{Cite journal |last1=Chai |first1=Yiwei |last2=Chen |first2=Christine H. |last3=Worthen |first3=Kadin |last4=Li |first4=Alexis |last5=Sefilian |first5=Antranik A. |last6=Balmer |first6=William |last7=Hines |first7=Dean C. |last8=Law |first8=David R. |last9=Sargent |first9=B. A. |last10=Wyatt |first10=Mark |last11=Lu |first11=Cicero X. |last12=Perrin |first12=Marshall D. |last13=Rebollido |first13=Isabel |last14=Rickman |first14=Emily |last15=Sloan |first15=G. C. |date=2024-12-01 |title=A JWST MIRI MRS View of the η Tel Debris Disk and Its Brown Dwarf Companion |journal=The Astrophysical Journal |volume=976 |issue=2 |pages=167 |arxiv=2408.11692 |bibcode=2024ApJ...976..167C |doi=10.3847/1538-4357/ad74f4 |doi-access=free |issn=0004-637X}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="29" |29 {{±|16|13}}

| Part of a triple star system.

style="background:#FFE8DC"

|

| TWA 29

| data-sort-value="2.222"|2.222 {{±|0.082|0.081}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="6.6"|6.6 {{±|5.2|2.9}}

| Rogue planet

style="background:pink"

| style="border:4px ridge red; background:#000000; text-align:center;"|112px

| TOI-6894

| data-sort-value="2.215"|2.215 ± 0.055
(0.2276 ± 0.0057 {{Solar radius|link=y}})

| style="text-align:center;" |#

| data-sort-value="216.85"|216.85 ± 11.52
(0.207 ± 0.011 {{Solar mass|lnk=y}})

| Least massive star to host a giant planet
Reported for reference.

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| ROXs 12 b
(ROXs 12 Ab,
2MASS J16262803 b,
WDS J16265-2527 Ab)

| data-sort-value="2.2" |2.20 ± 0.35

| style="text-align:center;" |{{asterisk}}

| data-sort-value="16" |16 ± 4,{{Cite journal |last1=Kraus |first1=Adam L. |last2=Ireland |first2=Michael J. |last3=Cieza |first3=Lucas A. |last4=Hinkley |first4=Sasha |last5=Dupuy |first5=Trent J. |last6=Bowler |first6=Brendan P. |last7=Liu |first7=Michael C. |date=2013-12-31 |title=THREE WIDE PLANETARY-MASS COMPANIONS TO FW TAU, ROXs 12, AND ROXs 42B |url=https://iopscience.iop.org/article/10.1088/0004-637X/781/1/20 |journal=The Astrophysical Journal |volume=781 |issue=1 |pages=20 |arxiv=1311.7664 |bibcode=2014ApJ...781...20K |doi=10.1088/0004-637X/781/1/20 |issn=0004-637X}}
19 ± 5

| In 2005, ROXs 12 b was discovered/detected on a wide separation by direct imaging,{{Cite journal |last1=Ratzka |first1=T. |last2=Köhler |first2=R. |last3=Leinert |first3=Ch. |date=July 2005 |title=A multiplicity survey of the ρ Ophiuchi molecular clouds |url=http://www.aanda.org/10.1051/0004-6361:20042107 |journal=Astronomy & Astrophysics |volume=437 |issue=2 |pages=611–626 |arxiv=astro-ph/0504593 |bibcode=2005A&A...437..611R |doi=10.1051/0004-6361:20042107 |issn=0004-6361}} the same year DH Tauri b, GQ Lupi b, 2M1207b, and AB Pictoris b were confirmed, and was confirmed in 2013.
ROXs 12 b and 2MASS J16262774–2527247 ({{nowrap|ROXs 12 B}}, {{nowrap|WDS J16265-2527 B}}) inclination misalignment with ROXs 12 A was interpreted as either formation similar to fragmenting binary stars or ROXs 12 b formed in an equatorial disk that was torqued by 2MASS J16262774–2527247.

style="background:#e6e6e6"

|style="border:4px ridge red; background:#000000; text-align:center;"|112px

| Hot Jupiter limit

| data-sort-value="2.2"|2.2

| style="text-align:center;" |–

| data-sort-value="0.4"|≳ 0.4{{Cite journal |last1=Winn |first1=Joshua N. |last2=Fabrycky |first2=Daniel |last3=Albrecht |first3=Simon |last4=Johnson |first4=John Asher |date=2010-08-01 |title=Hot Stars with Hot Jupiters Have High Obliquities |url=https://iopscience.iop.org/article/10.1088/2041-8205/718/2/L145 |journal=The Astrophysical Journal |volume=718 |issue=2 |pages=L145–L149 |arxiv=1006.4161 |bibcode=2010ApJ...718L.145W |doi=10.1088/2041-8205/718/2/L145 |issn=2041-8205}}

| Theoretical size limit for hot Jupiters close to a star, that are limited by tidal heating, resulting in 'runaway inflation'

style="border:4px ridge purple; background:white; text-align:center |112x112px

| HAT-P-67 Ab

| data-sort-value="2.14"|2.140 ± 0.025

| style="text-align:center;" |←

| data-sort-value="0.45"|0.45 ± 0.15

| A very puffy Hot Jupiter. Was the largest known planet with an accurately and precisely measured radius (2.085 {{±|0.096|0.071}} {{Jupiter radius|link=y}}), until a new estimate revised its radius in 2024 and again in 2025.

style="background:#FFE8DC"

|

| PSO J077.1+24

| data-sort-value="2.14"|2.14{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="5.9"|5.9 {{±|0.9|0.8}}

| Rogue planet

style="background:#FFE8DC"

|

| CAHA Tau 1

| data-sort-value="2.12"|2.12{{Cite web |title=Planet CAHA Tau 1 |url=https://exoplanet.eu/catalog/caha_tau_1--9138/ |access-date=9 September 2024 |website=Encyclopaedia of exoplanetary systems / exoplanet.eu}}{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="10.001"|10 ± 5

| Rogue planet

style="border:4px ridge blue; background:#000000; text-align:center;"|112x112px

| ROXs 42B b

| data-sort-value="2.105"|2.10 ± 0.35

| style="text-align:center;" |←

| data-sort-value="9"|9 {{±|6|3}}, 10 ± 4

| Older estimates include 1.9 – 2.4, 1.3{{Snd}}4.7 {{Jupiter radius|link=y}} and 2.43{{±|0.18}}, 2.55{{±|0.2}} {{Jupiter radius|link=y}}. Other recent sources of masses include 3.2 – 27 {{Jupiter mass|link=y}}, 13 ± 5 {{Jupiter mass|link=y}}.

style="background:pink"

|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| LSR J1835+3259
(2MASS 1835+32)

| data-sort-value="2.1"|2.1 ± 0.1{{Cite journal|last1=Berdyugina|first1=S. V.|last2=Harrington|first2=D. M.|last3=Kuzmychov|first3=O.|last4=Kuhn|first4=J. R.|last5=Hallinan|first5=G.|last6=Kowalski|first6=A. F.|last7=Hawley|first7=S. L.|date=September 2017|title=First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved|journal=Astrophysical Journal|language=en|volume=847|issue=1|pages=61|doi=10.3847/1538-4357/aa866b|arxiv=1709.02861|bibcode=2017ApJ...847...61B |s2cid=118904301|issn=0004-637X |doi-access=free }}
(0.2158 ± 0.0103 {{Solar radius|link=y}})

| style="text-align:center;" |#

| data-sort-value="55"|55 ± 4
(0.0525 ± 0.0038 {{Solar mass|link=y}})

| First extrasolar auroras on extrasolar-objects (and brown dwarf) discovered{{cite web |url=http://news.discovery.com/space/alien-life-exoplanets/monstrous-aurora-detected-beyond-our-solar-system-150729.htm |title=Monstrous Aurora Detected Beyond our Solar System |last1=O'Neill|first1=Ian|date=July 29, 2015|website=news.discovery.com|publisher=Discovery|access-date=July 29, 2015|archive-date=July 31, 2015 |archive-url=https://web.archive.org/web/20150731022645/http://news.discovery.com/space/alien-life-exoplanets/monstrous-aurora-detected-beyond-our-solar-system-150729.htm|url-status=dead}}
Reported for reference.

| HATS-15b

| data-sort-value="2.019"|2.019 {{±|0.202|0.160}}

| style="text-align:center;" |←

| data-sort-value="2.17"|2.17 ± 0.15

|

style="background:#FFE8DC"

|style="border:4px ridge blue; background:#000053; text-align:center;"| 112x112px

| Cha 110913-773444
(Cha 110913)

| data-sort-value="2.005"|2.0{{snd}}2.1

| style="text-align:center;" |{{dagger}}

| data-sort-value="8.001"|8 {{±|7|3}}

| A rogue planet/sub-brown dwarf that is surrounded by a protoplanetary disk, the first one to be confirmed. It is one of youngest free-floating substellar objects with 0.5–10 Myr. The currently preferred radius estimate is done by SED modelling including substellar object and disk model.

style="background:#FFE8DC"

|

| CFHTWIR-Oph 90
(Oph 90)

| data-sort-value="2.001"|2.00 {{±|0.09|0.12}};
3

| style="text-align:center;" |{{dagger}}

| data-sort-value="10.501"|10.5

| May be rogue planet or brown dwarf

style="background:#FFE8DC"

|

| {{anchor|SSTB213 J041757 a}} | SSTB213 J041757 a

| data-sort-value="2"|2{{Cite EPE|name=SSTB213 J041757|id=9834}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="3.5"|3.5

| In a binary with a #SSTB213 J041757 b rogue planet.

style="background:pink;"

| style="border:4px ridge red; background:#000000; text-align:center;" |112px

| Proto-Jupiter

| data-sort-value="2" |2.0{{snd}}2.59{{Cite journal |last1=Batygin |first1=Konstantin |last2=Adams |first2=Fred C. |date=2025-05-20 |title=Determination of Jupiter's primordial physical state |url=https://www.nature.com/articles/s41550-025-02512-y |journal=Nature Astronomy |volume=9 |issue=6 |pages=835–844 |language=en |arxiv=2505.12652 |bibcode=2025NatAs.tmp..115B |doi=10.1038/s41550-025-02512-y |issn=2397-3366}}{{cite web |url=https://thinkstewartville.com/2025/06/16/4-5-billion-years-ago-jupiter-was-2-5-times-its-current-size-scientists-discover/ |title=4.5 billion years ago, Jupiter was 2.5 times its current size, scientists discover. |first=Tricia |last=Richards |website= Think Stewartville |date=16 June 2025 |access-date=18 June 2025}}

| style="text-align:center;" |{{number sign}}

| data-sort-value="0.9999" |≲ 1;{{cite journal | title=Age of Jupiter inferred from the distinct genetics and formation times of meteorites | last1=Kruijer | first1=Thomas S. | last2=Burkhardt | first2=Christoph | last3=Budde | first3=Gerrit | last4=Kleine | first4=Thorsten | journal=Proceedings of the National Academy of Sciences | volume=114 | issue=26 | pages=6712–6716 | date=June 2017 | doi=10.1073/pnas.1704461114 | pmid=28607079 | pmc=5495263 | bibcode=2017PNAS..114.6712K | doi-access=free }}{{cite journal | last1=D'Angelo | first1=G. | last2=Weidenschilling | first2=S. J. | last3=Lissauer | first3=J. J. | last4=Bodenheimer | first4=P. | url=https://www.sciencedirect.com/science/article/abs/pii/S0019103520304358 | title=Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch | journal=Icarus |year=2021 | volume=355 | page=114087 | arxiv=2009.05575 | doi=10.1016/j.icarus.2020.114087 | bibcode=2021Icar..35514087D | s2cid=221654962 }}{{cite journal | last=Guillot | first=Tristan | title=Interiors of Giant Planets Inside and Outside the Solar System | journal=Science | year=1999 | volume=286 | issue=5437 | pages=72–77 | doi=10.1126/science.286.5437.72 |pmid=10506563 | bibcode=1999Sci...286...72G | access-date=April 24, 2022 |url=http://web.gps.caltech.edu/~mbrown/classes/ge131/notes/guillot.pdf|archive-url = https://ghostarchive.org/archive/20221009/http://web.gps.caltech.edu/~mbrown/classes/ge131/notes/guillot.pdf |archive-date=October 9, 2022 |url-status=live}}
1{{cite journal|last=Lissauer|first=J. J.|author2=Hubickyj, O. |author3=D'Angelo, G. |author4=Bodenheimer, P. |url=https://www.sciencedirect.com/science/article/abs/pii/S0019103508003552 |title=Models of Jupiter's growth incorporating thermal and hydrodynamic constraints| journal=Icarus|year=2009|volume=199|issue=2| pages=338–350|arxiv=0810.5186|doi=10.1016/j.icarus.2008.10.004|bibcode=2009Icar..199..338L |s2cid=18964068}}

| Jupiter is most likely formed first and underwent planetary migration, impacting the whole Solar System. During the migration, Jupiter was briefly as close as 1.5 AU to the Sun, likely influencing the formation of Mars, before migrating back to near the ice line by Saturn's gravity.{{cite web |last1=Fesenmaier |first1=Kimm |title=New research suggests Solar system may have once harbored super-Earths |date=23 March 2015 |url=http://www.caltech.edu/news/new-research-suggests-solar-system-may-have-once-harbored-super-earths-46017| publisher=Caltech |access-date=5 November 2015}}{{cite journal |last1=Morbidelli |first1=Alessandro |last2=Crida |first2=Aurélien |title=The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk |journal=Icarus |date=2007|volume=191 |issue=1 |pages=158–171 |arxiv=0704.1210 |doi=10.1016/j.icarus.2007.04.001 |bibcode=2007Icar..191..158M|s2cid=17672873 }} Jupiter, as well as Saturn and Neptune, may also be responsible for ejecting fifth giant (or hypothetical Planet Nine if confirmed){{cite journal |last1=Mustill |first1=Alexander J. |last2=Raymond |first2=Sean N. |last3=Davies |first3=Melvyn B. |date=21 July 2016 |title=Is there an exoplanet in the Solar System? |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=460 |issue=1 |pages=L109–L113 |arxiv=1603.07247 |bibcode=2016MNRAS.460L.109M |doi=10.1093/mnrasl/slw075|doi-access=free }}{{cite journal |last1=Kenyon |first1=Scott J. |last2=Bromley |first2=Benjamin C. |date=2016 |title=Making Planet Nine: Pebble Accretion at 250–750 AU in a Gravitationally Unstable Ring |journal=The Astrophysical Journal |volume=825 |issue=1 |page=33 |arxiv=1603.08008 |bibcode=2016ApJ...825...33K |doi=10.3847/0004-637X/825/1/33|s2cid=119212968 |doi-access=free }} due to orbital instability between the five giant planets.{{cite journal|last=Nesvorný|first=David|title=Young Solar System's Fifth Giant Planet?|journal=The Astrophysical Journal Letters|date=2011|volume=742|issue=2|pages=L22|doi=10.1088/2041-8205/742/2/L22|arxiv = 1109.2949 |bibcode = 2011ApJ...742L..22N |s2cid=118626056}} Due to its radiation emitting more heat than incoming through solar radiation via the Kelvin–Helmholtz mechanism within its contracting interior,{{cite book| first=Linda T. | last=Elkins-Tanton |date=2011| title=Jupiter and Saturn | publisher=Chelsea House| location=New York | isbn=978-0-8160-7698-7 | edition=revised}}{{cite book| title=Giant Planets of Our Solar System: Atmospheres, Composition, and Structure| first=Patrick| last=Irwin| date=2003| page=62| isbn=978-3-540-00681-7| publisher=Springer Science & Business Media | url=https://books.google.com/books?id=p8wCsJweUb0C&pg=PA62 | access-date=April 23, 2022 | archive-date=June 19, 2024| archive-url=https://web.archive.org/web/20240619015914/https://books.google.com/books?id=p8wCsJweUb0C&pg=PA62#v=onepage&q&f=false | url-status=live}} Jupiter is currently shrinking by about {{cvt|1|mm}} per year.{{cite book | title = Giant Planets of Our Solar System: Atmospheres, Composition, and Structure | first = Patrick G. J. | last = Irwin | publisher = Springer | orig-year = 2003 | url = https://books.google.com/books?id=p8wCsJweUb0C&q=%22kelvin+helmholtz+mechanism%22&pg=PA63 | edition = Second | year = 2009 | page = 4 | quote = the radius of Jupiter is estimated to be currently shrinking by approximately 1 mm/yr | isbn = 978-3-642-09888-8 | access-date = March 6, 2021 | archive-date = June 19, 2024 | archive-url = https://web.archive.org/web/20240619015915/https://books.google.com/books?id=p8wCsJweUb0C&q=%22kelvin+helmholtz+mechanism%22&pg=PA63#v=snippet&q=%22kelvin%20helmholtz%20mechanism%22&f=false | url-status = live }}.{{cite book | editor1-last=Bagenal | editor1-first=Fran | editor2-last=Dowling | editor2-first=Timothy E. | editor3-last=McKinnon | editor3-first=William B. | last1=Guillot | first1=Tristan | last2=Stevenson | first2=David J. | last3=Hubbard | first3=William B. | last4=Saumon | first4=Didier | date=2004 | title=Jupiter: The Planet, Satellites and Magnetosphere | chapter=Chapter 3: The Interior of Jupiter | publisher=Cambridge University Press | isbn=978-0-521-81808-7 }} Through this, at the time of its formation, Jupiter was hotter and was about twice its current diameter{{cite journal |last=Bodenheimer |first=P. |title=Calculations of the early evolution of Jupiter |series=23 |journal=Icarus |year=1974 |issue=3 |volume=23 |pages=319–325 |bibcode=1974Icar...23..319B |doi=10.1016/0019-1035(74)90050-5}} with smaller mass or the same as the current mass.
Reported for reference.

style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| Kepler-435b
(KOI-680 b)

| data-sort-value="1.99"|1.99 ± 0.18

| style="text-align:center;" |←

| data-sort-value="0.84"|0.84 ± 0.15

|

style="border:4px ridge blue; background:#000000; text-align:center;" rowspan="2" |112x112px

| PDS 70 c

| data-sort-value="1.98" |1.98 {{±|0.39|0.31}}

| style="text-align:center;" |←

| data-sort-value="7.5" |7.5 {{±|4.7|4.2}},{{Nbsp}}{{nowrap|7.8 {{±|5.0|4.7}}}}, {{nowrap|~1 − ~15}}{{Nbsp}}(total)

| rowspan="2" |Second multiplanetary system to be directly imaged (after HR 8799 System). PDS 70 b is first protoplanet to have been ever detected{{cite web |author= |title=First confirmed image of newborn planet caught with ESO's VLT - Spectrum reveals cloudy atmosphere |url=https://www.eurekalert.org/pub_releases/2018-07/e-fci062918.php |date=2 July 2018 |work=EurekAlert! |access-date=2 July 2018}}{{cite journal |last1=Keppler |first1=M |display-authors=etal |year=2018 |title=Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 |journal=Astronomy & Astrophysics |volume=617 |pages=A44 |arxiv=1806.11568 |doi=10.1051/0004-6361/201832957 |bibcode=2018A&A...617A..44K |s2cid=49562730 }} while PDS 70 c is first confirmed directly imaged exoplanet still embedded in the natal gas and dust from which planets form (protoplanetary disk), and the second protoplanet to have a confirmed circumplanetary disk (after DH Tauri b).

PDS 70 b

| data-sort-value="1.96"|1.96 {{±|0.20|0.17}},
2.7

| style="text-align:center;" |←

| data-sort-value="3.2"|3.2 {{±|3.3|1.6}},{{Nbsp}}7.9 {{±|4.9|4.7}}, {{nowrap|< 10 (2 σ)}},{{Nbsp}}{{nowrap|≲ 15 (total)}}

style="border:4px ridge red; background:#000000; text-align:center;"|112px

| OGLE2-TR-L9b

| data-sort-value="1.958"|1.958 {{±|0.174|0.111}}

| style="text-align:center;" |←

| data-sort-value="4.5"|4.5 ± 1.5

| First discovered planet orbiting a fast-rotating hot star, OGLE2-TR-L9.

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000053; text-align:center;" |112x112px

| CFHTWIR-Oph 98 A

| data-sort-value="1.95"|1.95 {{±|0.11|0.10}}; 2.14{{Cite web |title=Planet CFHTWIR-Oph 98 b |url=https://exoplanet.eu/catalog/cfhtwir_oph_98_b--7873/ |access-date=2024-08-15 |website=Encyclopaedia of exoplanetary systems / Exoplanet.eu}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="15.4"|15.4 ± 0.8;
10.5

| Either a M-type brown dwarf or sub-brown dwarf with a sub-brown dwarf/planet companion CFHTWIR-Oph 98 b.
Other sources of masses includes: 9.6 – 18.4 {{Jupiter mass|link=y}}.

| WASP-178b
(KELT-26 b,
HD 134004 b)

| data-sort-value="1.940"|1.940 {{±|0.060|0.058}}

| style="text-align:center;" |←

| data-sort-value="1.41"|1.41 {{±|0.43|0.51}}

| An ultra-hot Jupiter. Initially, the planet's atmosphere was discovered having silicon monoxide, making this exoplanet the first one to have the compound on its atmosphere, now the atmosphere is more likely dominated by ionized magnesium and iron.

style="border:4px ridge red; background:#000000; text-align:center;"| 112x112px

| WASP-12Ab

| data-sort-value="1.937"|1.937 ± 0.056

| style="text-align:center;" |←

| data-sort-value="1.476"|1.47 {{±|0.076|0.069}}

| This planet is so close to WASP-12 A that its tidal forces are distorting it into an egg-like shape.{{Cite journal |first1=Shu-lin |last1=Li |first2=N. |last2=Miller |first3=Douglas N. C. |last3=Lin |name-list-style=amp |first4=Jonathan J. |last4=Fortney |date=2010 |title=WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation |journal=Nature |volume=463 |issue=7284 |pages=1054–1056 |doi=10.1038/nature08715 |pmid=20182506 |bibcode = 2010Natur.463.1054L |arxiv = 1002.4608 |s2cid=4414948}} First planet observed being consumed by its host star;[http://www.nasa.gov/mission_pages/hubble/science/planet-eater.html Hubble Finds a Star Eating a Planet] nasa.gov. 2010-05-20. Retrieved on 2010-12-10. it will be destroyed in 3.16 ± 0.10 {{val|ul=Myr}} due to tidal interactions.{{Cite web |last=waspplanets |date=2019-11-26 |title=The orbit of WASP-12b is decaying |url=https://wasp-planets.net/2019/11/26/the-orbit-of-wasp-12b-is-decaying/ |access-date=2020-01-01 |website=WASP Planets |language=en}}{{cite journal |last1=Wong |first1=Ian |last2=Shporer |first2=Avi |last3=Vissapragada |first3=Shreyas |last4=Greklek-McKeon |first4=Michael |last5=Knutson |first5=Heather A. |last6=Winn |first6=Joshua N. |last7=Benneke |first7=Björn |date=20 January 2022 |title=TESS Revisits WASP-12: Updated Orbital Decay Rate and Constraints on Atmospheric Variability |journal=The Astronomical Journal |volume=163 |issue=4 |page=175 |arxiv=2201.08370 |bibcode=2022AJ....163..175W |doi=10.3847/1538-3881/ac5680 |s2cid=246063389 |doi-access=free}}
WASP-12b is suspected to have one exomoon due to a curve of change of shine of the planet observed regular variation of light.

style="background:#FFF8DC"

|

| BD-14 3065b
(TOI-4987 b)

| data-sort-value="1.926"|1.926 ± 0.094

| style="text-align:center;" |{{asterisk}}

| data-sort-value="12.37"|12.37 ± 0.92

| Might be a brown dwarf fusing deuterium at its core, which could explain its anomalous high radius. Also fourth hottest known exoplanets, measuring {{Convert|3520|K|C F}}.

style="border:4px ridge red; background:#000000; text-align:center;" |112px

| Kepler-13b
(Kepler-13 Ab)

| data-sort-value="1.512" |1.91 ± 0.25{{snd}}2.57 ± 0.26{{Cite journal |last1=Howell |first1=Steve B. |last2=Scott |first2=Nicholas J. |last3=Matson |first3=Rachel A. |last4=Horch |first4=Elliott P. |last5=Stephens |first5=Andrew |date=2019-09-01 |title=High-resolution Imaging Transit Photometry of Kepler-13AB |journal=The Astronomical Journal |volume=158 |issue=3 |pages=113 |bibcode=2019AJ....158..113H |doi=10.3847/1538-3881/ab2f7b |doi-access=free |issn=0004-6256}}

| style="text-align:center;" |←

| data-sort-value="9.28" |9.28(16){{cite journal |last1=Esteves |first1=Lisa J. |last2=Mooij |first2=Ernst J. W. De |last3=Jayawardhana |first3=Ray |year=2015 |title=Changing Phases of Alien Worlds: Probing Atmospheres Of Kepler planets with High-Precision Photometry |journal=The Astrophysical Journal |volume=804 |issue=2 |page= |arxiv=1407.2245 |bibcode=2015ApJ...804..150E |doi=10.1088/0004-637X/804/2/150 |bibcode-access=free |doi-access=free |article-number=150}}

| Discovered by Kepler in first four months of Kepler data.{{cite journal | title=Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data | last1=Borucki | first1=William J. | last2=Koch | first2=David G. | last3=Basri | first3=Gibor | last4=Batalha | first4=Natalie | last5=Brown | first5=Timothy M. | last6=Bryson | first6=Stephen T. | last7=Caldwell | first7=Douglas | last8=Christensen-Dalsgaard | first8=Jørgen | last9=Cochran | first9=William D. | last10=Devore | first10=Edna | last11=Dunham | first11=Edward W. | last12=Gautier | first12=Thomas N. | last13=Geary | first13=John C. | last14=Gilliland | first14=Ronald | last15=Gould | first15=Alan | last16=Howell | first16=Steve B. | last17=Jenkins | first17=Jon M. | last18=Latham | first18=David W. | last19=Lissauer | first19=Jack J | last20=Marcy | first20=Geoffrey W. | last21=Rowe | first21=Jason | last22=Sasselov | first22=Dimitar | last23=Boss | first23=Alan | last24=Charbonneau | first24=David | last25=Ciardi | first25=David | last26=Doyle | first26=Laurance | last27=Dupree | first27=Andrea K. | last28=Ford | first28=Eric B. | last29=Fortney | first29=Jonathan | last30=Holman | first30=Matthew J. | display-authors=1 | journal=The Astrophysical Journal | volume=736 | issue=1 | article-number=19 | page= | year=2011 | arxiv=1102.0541 | bibcode=2011ApJ...736...19B | bibcode-access=free | doi=10.1088/0004-637X/736/1/19 | doi-access=free }} A more recent analysis argues that a third-light correction factor of 1.818 is needed, to correct for the light blending of Kepler-13 B, resulting in higher radii results.

style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| KELT-9b
(HD 195689 b)

| data-sort-value="1.891"|1.891 {{±|0.061|0.055}}

| style="text-align:center;" |←

| data-sort-value="2.171"|2.17 ± 0.56

| Hottest confirmed exoplanet, with a temperature of {{val|4050|180|ul=K}} (3777 ± 180 {{val|ul=°C}}; 6830 ± 324 {{val|ul=°F}}).

| TOI-1518 b

| data-sort-value="1.875"|1.875 ± 0.053

| style="text-align:center;" |←

| data-sort-value="1.83"|1.83 ± 0.47{{Cite journal |last1=A. |first1=Simonnin |last2=V. |first2=Parmentier |last3=J.P. |first3=Wardenier |last4=G. |first4=Chauvin |last5=A. |first5=Chiavassa |last6=M. |first6=N'Diaye |last7=X. |first7=Tan |last8=N. |first8=Heidari |last9=B. |first9=Prinoth |last10=J. |first10=Bean |last11=G. |first11=H'ebrard |last12=M. |first12=Line |last13=D. |first13=Kitzmann |last14=D. |first14=Kasper |last15=S. |first15=Pelletier |date=2025-04-08 |title=Time-resolved absorption of six chemical species with MAROON-X points to a strong drag in the ultra-hot Jupiter TOI-1518 b |url=https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/202453241 |journal=Astronomy & Astrophysics |arxiv=2412.01472 |doi=10.1051/0004-6361/202453241 |first16=Seidel |last16=J.V. |first17=Seifhart |last17=A. |first18=Benneke |last18=B. |first19=Bonfils |last19=X. |first20=Brogi |last20=M. |first21=Désert |last21=J-M. |first22=Gandhi |last22=S. |first23=Hammond |last23=E.K.H. |first24=Moutou |last24=C. |first25=Palma-Bifani |last25=P. |first26=Pino |last26=L. |first27=Rauscher |last27=E. |first28=Weiner Mansfield |last28=M. |first29=Serrano Bell |last29=J. |first30=Smith |last30=P.}}

|

style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| HAT-P-70b

| data-sort-value="1.87"|1.87 {{±|0.15|0.10}}

| style="text-align:center;" |←

| data-sort-value="6.78"|< 6.78 (3 σ)

|

style="background:#FFE8DC"

|

| 2MASS J1935-2846

| data-sort-value="1.869"|1.869 ± 0.053{{Cite journal |last1=Hurt |first1=Spencer A. |last2=Liu |first2=Michael C. |last3=Zhang |first3=Zhoujian |last4=Phillips |first4=Mark |last5=Allers |first5=Katelyn N. |last6=Deacon |first6=Niall R. |last7=Aller |first7=Kimberly M. |last8=Best |first8=William M. J. |date=2024-01-01 |title=Uniform Forward-modeling Analysis of Ultracool Dwarfs. III. Late-M and L Dwarfs in Young Moving Groups, the Pleiades, and the Hyades |journal=The Astrophysical Journal |volume=961 |issue=1 |pages=121 |arxiv=2311.04268 |bibcode=2024ApJ...961..121H |doi=10.3847/1538-4357/ad0b12 |doi-access=free |issn=0004-637X}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="7.4"|7.4 {{±|6.3|3.4}}

| May be a sub-brown dwarf or rogue planet.

style="background:#CEE0F2"

|

| HATS-23b

| data-sort-value="1.866"|1.86 {{±|0.30|0.40}}

| style="text-align:center;" | →

| data-sort-value="1.4702"|1.470 ± 0.072

|Grazing planet.

style="background:#FFE8DC"

| style="border:4px ridge blue; background:#000053; text-align:center;"|112x112px

| CFHTWIR-Oph 98 b
(Oph 98 b,
CFHTWIR-Oph 98 B)

| data-sort-value="1.865"|1.86 ± 0.05{{Cite web |title=Planet CFHTWIR-Oph 98 b |url=https://exoplanet.eu/catalog/cfhtwir_oph_98_b--7873/ |access-date=2024-08-15 |website=Encyclopaedia of exoplanetary systems / Exoplanet.eu}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="7.8"|7.8 {{±|0.7|0.8}}

| Its formation as an exoplanet is challenging or impossible. If its formation scenario is known, it may explain the formation of Planet Nine. Planetary migration may explain its formation, or it may be a sub-brown dwarf.
Other sources of mass includes 4.1 – 11.6 {{Jupiter mass|link=y}}.

| KELT-8b
(HD 343246 b)

| data-sort-value="1.86"|1.86 {{±|0.18|0.16}}

| style="text-align:center;" |←

| data-sort-value="0.867"|0.867 {{±|0.065|0.061}}

|

style="border:4px ridge red; background:#000000; text-align:center;" |112px

| WASP-76b

| data-sort-value="1.842" |1.842 ± 0.024{{Cite journal |last1=Wang |first1=Weilong |last2=Gu |first2=Shenghong |last3=Wang |first3=Xiaobin |last4=Sun |first4=Leilei |last5=Lee |first5=Byeong-Cheol |last6=Kwok |first6=Chi-Tai |last7=Hui |first7=Ho-Keung |last8=Dou |first8=Jiangpei |last9=Xiang |first9=Yue |last10=Cao |first10=Dongtao |last11=Xu |first11=Fukun |date=2025-06-02 |title=Observations and Studies on the Transiting Systems HAT-P-36, XO-2 and WASP-76 |journal=The Astronomical Journal |volume=169 |issue=6 |pages=342 |bibcode=2025AJ....169..342W |doi=10.3847/1538-3881/add1de |doi-access=free |issn=0004-6256}}

| style="text-align:center;" |←

| data-sort-value="0.92" |0.921{{±|0.032}}

| A glory effect in the atmosphere of WASP-76b might be responsible for the observed increase in brightness of its eastern terminator zone which if confirmed, it would become the first exoplanet to have its glory-like phenomenon to be discovered.{{Cite web |last=European Space Agency |date=April 5, 2024 |title=Astronomers detect potential 'glory effect' on a hellish distant world for the first time |url=https://phys.org/news/2024-04-astronomers-potential-glory-effect-hellish.html |access-date=2024-04-07 |website=phys.org}}{{cite news |last=Strickland |first=Ashley |title=Scientists spot 'glory effect' on a world beyond our solar system for the first time |url=https://www.cnn.com/2024/04/19/world/rainbow-glory-exoplanet-scn/index.html |date=19 April 2024 |work=CNN |url-status=live |archive-url=https://archive.today/20240419203336/https://www.cnn.com/2024/04/19/world/rainbow-glory-exoplanet-scn/index.html |archive-date=19 April 2024 |access-date=20 April 2024 }} WASP-76b is suspected to have an exomoon analogue to Jupiter's Io due to the detection of sodium via absorption spectroscopy.

style="background:#FFE8DC"

|style="border:4px ridge blue; background:#000030; text-align:center;"|112x112px

| KPNO-Tau 12
(2MASS J0419012+280248)

| data-sort-value="1.84"|1.84,
2.22 {{±|0.11|0.17}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="11.5"|11.5

| A low-mass brown dwarf or free-floating planetary-mass object surrounded by a protoplanetary disk. A member of Taurus-Auriga star-forming region.
Other sources of masses include: 14.6 {{Jupiter mass}}, 13.6 {{Jupiter mass}},{{Cite journal |last1=Kirk |first1=Helen |last2=Myers |first2=Philip C. |title=Young Stellar Groups and Their Most Massive Stars |url=https://ui.adsabs.harvard.edu/abs/2011ApJ...727...64K/abstract |date=February 2011 |journal=The Astrophysical Journal |language=en |volume=727 |issue=2 |pages=64 |arxiv=1011.1416 |bibcode=2011ApJ...727...64K |doi=10.1088/0004-637X/727/2/64 |issn=0004-637X}} 6-7 {{Jupiter mass}},{{Cite journal |last1=Canty |first1=J. I. |last2=Lucas |first2=P. W. |last3=Roche |first3=P. F. |last4=Pinfield |first4=D. J. |date=November 2013 |title=Towards precise ages and masses of Free Floating Planetary Mass Brown Dwarfs |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=435 |issue=3 |pages=2650–2664 |arxiv=1308.1296 |bibcode=2013MNRAS.435.2650C |doi=10.1093/mnras/stt1477 |doi-access=free |issn=0035-8711}} 16.5 {{Jupiter mass}},{{Cite journal |last1=Pascucci |first1=I. |last2=Testi |first2=L. |last3=Herczeg |first3=G. J. |last4=Long |first4=F. |last5=Manara |first5=C. F. |last6=Hendler |first6=N. |last7=Mulders |first7=G. D. |last8=Krijt |first8=S. |last9=Ciesla |first9=F. |last10=Henning |first10=Th |last11=Mohanty |first11=S. |last12=Drabek-Maunder |first12=E. |last13=Apai |first13=D. |last14=Szűcs |first14=L. |last15=Sacco |first15=G. |date=November 2016 |title=A Steeper than Linear Disk Mass-Stellar Mass Scaling Relation |journal=The Astrophysical Journal |language=en |volume=831 |issue=2 |pages=125 |arxiv=1608.03621 |bibcode=2016ApJ...831..125P |doi=10.3847/0004-637X/831/2/125 |doi-access=free |issn=0004-637X}} 17.8 {{±|6.7|4.6}} {{Jupiter mass}},{{Cite journal |last1=Akeson |first1=Rachel L. |last2=Jensen |first2=Eric L. N. |last3=Carpenter |first3=John |last4=Ricci |first4=Luca |last5=Laos |first5=Emily |last6=Nogueira |first6=Natasha F. |last7=Suen-Lewis |first7=Emma M. |date=February 2019 |title=Resolved Young Binary Systems and Their Disks |journal=The Astrophysical Journal |language=en |volume=872 |issue=2 |pages=158 |arxiv=1901.05029 |bibcode=2019ApJ...872..158A |doi=10.3847/1538-4357/aaff6a |doi-access=free |issn=0004-637X}} 12.7 {{±|1.6|1.8}} {{Jupiter mass}}

style="border:4px ridge indigo; background:#000000; text-align:center;" |112x112px

| TrES-4
(GSC 06200-00648 Ab)

| data-sort-value="1.838"|1.838 {{±|0.240|0.238}}

| style="text-align:center;" |←

| data-sort-value="0.78"|0.78 ± 0.19

| Largest confirmed exoplanet ever found at the time of discovery. This planet has a density of 0.17 g/cm3, comparable to that of balsa wood, less than Saturn's 0.7 g/cm3.

style="background:#FFF8DC"

|

| HIP 78530 b
(HIP 78530 B)

| data-sort-value="1.821"|1.83 {{±|0.16|0.14}}{{Cite journal |last1=Petrus |first1=S. |last2=Bonnefoy |first2=M. |last3=Chauvin |first3=G. |last4=Babusiaux |first4=C. |last5=Delorme |first5=P. |last6=Lagrange |first6=A.-M. |last7=Florent |first7=N. |last8=Bayo |first8=A. |last9=Janson |first9=M. |last10=Biller |first10=B. |last11=Manjavacas |first11=E. |last12=Marleau |first12=G.-D. |last13=Kopytova |first13=T. |date=January 2020 |title=A new take on the low-mass brown dwarf companions on wide orbits in Upper-Scorpius |url=https://www.aanda.org/10.1051/0004-6361/201935732 |journal=Astronomy & Astrophysics |volume=633 |pages=A124 |arxiv=1910.00347 |bibcode=2020A&A...633A.124P |doi=10.1051/0004-6361/201935732 |issn=0004-6361}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="28"|28 ± 10

| Most likely a brown dwarf. Because HIP 78530 b's characteristics blend the line between whether or not it is a brown dwarf or a planet, astronomers have tried to determine what HIP 78530 b is by predicting whether it was created in a planet-like or star-like manner.{{cite journal |last1=Lafrenière |first1=D. |last2=Jayawardhana |first2=R. |date=2011 |title=DISCOVERY OF A ~23 MJup BROWN DWARF ORBITING ~700 AU FROM THE MASSIVE STAR HIP 78530 IN UPPER SCORPIUS |journal=Astrophysical Journal |volume= 730|issue= 1|page= 42|doi=10.1088/0004-637x/730/1/42 |arxiv = 1101.4666 |bibcode = 2011ApJ...730...42L |s2cid=119113383 }}

| HAT-P-33b

| data-sort-value="1.827"|1.827 ± 0.29,{{efn|name="elliptical"|Assuming elliptical orbit (most likely)}}
1.85 ± 0.49,
1.686 ± 0.045{{efn|name="circular"|Assuming circular orbit}}

| style="text-align:center;" |←

| data-sort-value="0.72"|0.72 {{±|0.13|0.12}}

| rowspan="2" |Due to high level of jitter, it is difficult to constrain both planets' eccentricities with accuracy. Most of their defined characteristics are based on the assumption that HAT-P-32b and HAT-P-33b have their elliptical orbits, although their discoverers have also derived the planets' characteristics on the assumption that they have their circular orbits. The elliptical model has been chosen because it is considered to be the more likely scenario.

| HAT-P-32b
(HAT-P-32 Ab)

| data-sort-value="1.822"|1.822 {{±|0.350|0.236}},
2.04 ± 0.10,{{efn|name="elliptical"}}
1.789 ± 0.025{{efn|name="circular"}}

| style="text-align:center;" |←

| data-sort-value="0.941"|0.941 ± 0.166,
0.860 ± 0.164

style="border:4px ridge red; background:#222222; text-align:center"|112px

| KELT-20b
(MASCARA-2b)

| data-sort-value="1.821"|1.821{{±|0.045}}

| style="text-align:center;" |←

| data-sort-value="3.355"|3.355{{±|0.062|0.063}}

| An ultra-hot Jupiter.

style="background:#FFF8DC"

|style="border:4px ridge blue; background:#000000; text-align:center;"| 112x112px

| YSES 1 b
(TYC 8998-760-1 b)

| data-sort-value="1.821"|{{nowrap|1.82 ± 0.08{{snd}}3.0 {{±|0.2|0.7}}}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="21.8"|21.8 ± 3

| Likely a brown dwarf. First substellar object to have an isotope (13C) in its atmosphere.{{cite news |last=Starr |first=Michelle |title=Isotopes Detected in The Atmosphere of an Exoplanet For The First Time |url=https://www.sciencealert.com/for-the-first-time-isotopes-have-been-detected-in-the-atmosphere-of-an-exoplanet |date=14 July 2021 |work=ScienceAlert |access-date=14 July 2021}} First directly imaged planetary system having multiple bodies orbiting a Sun-like star.{{cite web |last1=ESO/Bohn |title=First ever image of a multi-planet system around a Sun-like star (uncropped, with annotations) |url=https://www.eso.org/public/images/eso2011b/ |website=ESO |publisher=European Southern Observatory |access-date=24 July 2020 |archive-url=https://web.archive.org/web/20200724161316/https://www.eso.org/public/images/eso2011b/ |archive-date=24 July 2020 |date=22 July 2020}}{{cite news |last=Wall |first=Mike |title=Multiplanet system around sunlike star photographed for 1st time ever - The two newly imaged planets are huge — 14 and 6 times more massive than Jupiter. |url=https://www.space.com/multiplanet-system-sun-like-star-first-photo.html |date=22 July 2020 |work=Space.com |access-date=22 July 2020}}

style="background:pink;"

|style="border:4px ridge blue; background:#000000; text-align:center;"|112x112px

| Barnard's Star
(Proxima Ophiuchi)

| data-sort-value="1.82"|1.82 ± 0.01
(0.187 ± 0.001 {{val|ul=Solar radius}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="168.7"|168.7 {{±|3.8|3.7}}
(0.1610 {{±|0.0036|0.0035}} {{val|ul=solar mass}})

| Second nearest planetary system to the Sun at the distance of {{cvt|1.83|pc|ly|2|order=flip}} and closest star in the northern celestial hemisphere. Also the highest proper motion of any stars of 10.3 arcseconds per year relative to the Sun.
Has 4 confirmed planet, Barnard b (Barnard's Star b), c, d and e,{{cite journal |last1=Basant |first1=Ritvik |last2=Luque |first2=Rafael |display-authors=etal |date=March 2025 |title=Four Sub-Earth Planets Orbiting Barnard's Star from MAROON-X and ESPRESSO |journal=The Astrophysical Journal Letters |volume=982 |issue= 1|pages=L1 |doi=10.3847/2041-8213/adb8d5 |doi-access=free |arxiv=2503.08095|bibcode=2025ApJ...982L...1B }} making this system the closest planetary system to host multiple planets
Reported for reference.

style="border:4px ridge red; background:#000000; text-align:center;"|112px

| CoRoT-1b

| data-sort-value="1.805"|1.805 {{±|0.132|0.131}}

| style="text-align:center;" |←

| data-sort-value="1.03"|1.03 ± 0.12

| First exoplanet for which optical (as opposed to infrared) observations of phases were reported.{{cite journal|title=The changing phases of extrasolar planet CoRoT-1b|journal=Nature|volume= 459|issue=7246|pages=543–545|date=2009-05-28|pmid=19478779|doi=10.1038/nature08045|author1=Ignas A. G. Snellen|author2=Ernst J. W. de Mooij|author3=Simon Albrecht|bibcode = 2009Natur.459..543S |arxiv = 0904.1208 |s2cid=4347612}}

| WTS-2b

| data-sort-value="1.804"|1.804 {{±|0.144|0.158}}

| style="text-align:center;" |←

| data-sort-value="1.12"|1.12 ± 0.16

|

style="border:4px ridge red; background:#000000; text-align:center;"|112px

| Saffar
({{nowrap|υ And Ab}})

| data-sort-value="1.8"|~1.8

| style="text-align:center;" |←

| data-sort-value="1.70"|1.70 {{±|0.33|0.24}}

| Radius estimated using the phase curve of reflected light. The planet orbits very close to Titawin (υ And A) at the distance of 0.0595 AU, completing an orbit in 4.617 days. First multiple-planet system to be discovered around a main-sequence star, and first multiple-planet system known in a multiple-star system.

| HAT-P-40b

| data-sort-value="1.799"|1.799 {{±|0.237|0.260}}

| style="text-align:center;" |←

| data-sort-value="0.48"|0.48 ± 0.13

| A very puffy hot Jupiter

| WASP-122b
(KELT-14b)

| data-sort-value="1.795"|1.795 {{±|0.107|0.079}}

| style="text-align:center;" |←

| data-sort-value="1.284"|1.284 ± 0.032{{Cite journal |last1=Turner |first1=O. D. |last2=Anderson |first2=D. R. |last3=Cameron |first3=A. Collier |last4=Delrez |first4=L. |last5=Evans |first5=D. F. |last6=Gillon |first6=M. |last7=Hellier |first7=C. |last8=Jehin |first8=E. |last9=Lendl |first9=M. |last10=Maxted |first10=P. F. L. |last11=Pepe |first11=F. |last12=Pollacco |first12=D. |last13=Queloz |first13=D. |last14=Ségransan |first14=D. |last15=Smalley |first15=B. |date=2016-06-01 |title=WASP-120 b, WASP-122 b, and WASP-123 b: Three Newly Discovered Planets from the WASP-South Survey |url=https://iopscience.iop.org/article/10.1088/1538-3873/128/964/064401 |journal=Publications of the Astronomical Society of the Pacific |volume=128 |issue=964 |page=064401 |arxiv=1509.02210 |bibcode=2016PASP..128f4401T |doi=10.1088/1538-3873/128/964/064401 |hdl=10023/10795 |issn=0004-6280}}

|

| KELT-12b

| data-sort-value="1.79"|1.79 {{±|0.18|0.17}}

| style="text-align:center;" |←

| data-sort-value="0.95"|0.95 ± 0.14

|

style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| Tylos
(WASP-121b)

| data-sort-value="1.773"|1.773 {{±|0.041|0.033}}

| style="text-align:center;" |←

| data-sort-value="1.157"|1.157 ± 0.07

| First exoplanet found to contain water on its stratosphere. Tylos is suspected to have an exomoon analogous to Jupiter's Io due to the detection of sodium absorption spectroscopy around it.

| TOI-640 Ab

| data-sort-value="1.771"|1.771 {{±|0.060|0.056}}

| style="text-align:center;" |←

| data-sort-value="0.88"|0.88 ± 0.16

| This planet orbits its host star nearly over poles, misalignment between the orbital plane and equatorial plane of the star been equal to 104 ± 2°{{citation|arxiv=2302.01702|year=2023|title=A puffy polar planet. The low density, hot Jupiter TOI-640 b is on a polar orbit|doi=10.1051/0004-6361/202245301 |last1=Knudstrup |first1=E. |last2=Albrecht |first2=S. H. |last3=Gandolfi |first3=D. |last4=Marcussen |first4=M. L. |last5=Goffo |first5=E. |last6=Serrano |first6=L. M. |last7=Dai |first7=F. |last8=Redfield |first8=S. |last9=Hirano |first9=T. |last10=Csizmadia |first10=Sz. |last11=Deeg |first11=H. J. |last12=Fridlund |first12=M. |last13=Lam |first13=K. W. F. |last14=Livingston |first14=J. H. |last15=Luque |first15=R. |last16=Narita |first16=N. |last17=Palle |first17=E. |last18=Persson |first18=C. M. |last19=Van Eylen |first19=V. |author20=Vincent Van Eylen |journal=Astronomy & Astrophysics |volume=671 |bibcode=2023A&A...671A.164K |s2cid=256537549 }}

| WASP-187b

| data-sort-value="1.766"|1.766 ± 0.036

| style="text-align:center;" |←

| data-sort-value="0.801"|0.801 {{±|0.084|0.083}}

|

| WASP-94 Ab

| data-sort-value="1.761"|1.761 {{±|0.194|0.191}}

| style="text-align:center;" |←

| data-sort-value="0.5"|{{val|0.5|0.13}}

|

| TOI-2669b

| data-sort-value="1.76"|1.76 ± 0.16

| style="text-align:center;" |←

| data-sort-value="0.61"|0.61 ± 0.19

|

style="background:#FFE8DC"

|

| WISE J0528+0901

| data-sort-value="1.752"|1.752 {{±|0.292|0.195}}{{Cite journal |last1=Burgasser |first1=Adam J. |last2=Lopez |first2=Mike A. |last3=Mamajek |first3=Eric E. |last4=Gagné |first4=Jonathan |last5=Faherty |first5=Jacqueline K. |last6=Tallis |first6=Melisa |last7=Choban |first7=Caleb |last8=Tamiya |first8=Tomoki |last9=Escala |first9=Ivanna |last10=Aganze |first10=Christian |date=2016-03-20 |title=THE FIRST BROWN DWARF/PLANETARY-MASS OBJECT IN THE 32 ORIONIS GROUP* |journal=The Astrophysical Journal |volume=820 |issue=1 |pages=32 |arxiv=1602.03022 |bibcode=2016ApJ...820...32B |doi=10.3847/0004-637X/820/1/32 |doi-access=free |issn=0004-637X}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="13.002"|13 {{±|3|6}}

|Brown dwarf or rogue planet.

| HATS-26b

| data-sort-value="1.75"|1.75 ± 0.21

| style="text-align:center;" |←

| data-sort-value="0.650"|0.650 ± 0.076

|

| Kepler-12b

| data-sort-value="1.7454"|1.7454 {{±|0.076|0.072}}

| style="text-align:center;" |←

| data-sort-value="0.431"|0.431 ± 0.041

| Least-irradiated of four Hot Jupiters at the time of discovery

| HAT-P-65b

| data-sort-value="1.744"|1.744 {{±|0.165|0.215}}

| style="text-align:center;" |←

| data-sort-value="0.527"|0.527 ± 0.083

| This planet has been suffering orbital decay due to its close proximity to HAT-P-65; 0.04 AU.{{Cite journal|last1=Alvarado-Montes|first1=Jaime A|last2=García-Carmona|first2=Carolina|date=2019-07-01|title=Orbital decay of short-period gas giants under evolving tides|url=https://academic.oup.com/mnras/article/486/3/3963/5470968|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=486|issue=3|pages=3963–3974|doi=10.1093/mnras/stz1081|doi-access=free |issn=0035-8711|arxiv=1904.07596}}

style="background:#FFE8DC"

|

| 2MASS J2352-1100

| data-sort-value="1.742"|1.742 {{±|0.035|0.036}}

| style= "text-align:center;" |{{dagger}}

| data-sort-value="12.4"|12.4 {{±|9.4|5.5}}

| Brown dwarf or rogue planet.

| KELT-15b

| data-sort-value="1.741"|1.74 ± 0.20

| style="text-align:center;" |←

| data-sort-value="1.31"|1.31 ± 0.43

|

| HAT-P-57b

| data-sort-value="1.74"|1.74 ± 0.36

| style="text-align:center;" |←

| data-sort-value="1.4101"|1.41 ± 1.52

|

| WASP-93b

| data-sort-value="1.737"|1.737 {{±|0.121|0.170}}

| style="text-align:center;" |←

| data-sort-value="1.47"|1.47 ± 0.29

|

| WASP-82b

| data-sort-value="1.726"|1.726 {{±|0.163|0.195}}

| style="text-align:center;" |←

| data-sort-value="1.17"|1.17 ± 0.20

|

style="border:4px ridge red; background:#000000; text-align:center;"| 112x112px

| Ditsö̀
(WASP-17b)

| data-sort-value="1.720"|1.720 {{±|0.004|0.005}},
1.83 ± 0.01{{Cite journal |last1=Grant |first1=David |last2=Lewis |first2=Nikole K. |last3=Wakeford |first3=Hannah R. |last4=Batalha |first4=Natasha E. |last5=Glidden |first5=Ana |last6=Goyal |first6=Jayesh |last7=Mullens |first7=Elijah |last8=MacDonald |first8=Ryan J. |last9=May |first9=Erin M. |last10=Seager |first10=Sara |last11=Stevenson |first11=Kevin B. |last12=Valenti |first12=Jeff A. |last13=Visscher |first13=Channon |last14=Alderson |first14=Lili |last15=Allen |first15=Natalie H. |date=2023-10-01 |title=JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b |journal=The Astrophysical Journal Letters |volume=956 |issue=2 |pages=L32 |doi=10.3847/2041-8213/acfc3b |doi-access=free |arxiv=2310.08637 |bibcode=2023ApJ...956L..32G |issn=2041-8205}}

| style="text-align:center;" |←

| data-sort-value="0.512"|0.512 ± 0.037

| First planet discovered to have a retrograde orbit and first to have quartz (crystalline silica, SiO2) in its clouds.{{cite news |url=https://esawebb.org/images/WASP17b/ |title=Composition of cloud particles - hot gas giant exoplanet WASP-17b. |date=October 20, 2023}} {{nowrap|Has an exteremely low density of 0.08 {{val|ul=g/cm3}}}}, the lowest of any exoplanet when it was discovered, and was possibly the largest exoplanet at the time of discovery, with a radius of {{Jupiter radius|1.92|link=y}}.

| KELT-19 Ab

| data-sort-value="1.717"|1.717 {{±|0.094|0.093}}

| style="text-align:center;" |←

| data-sort-value="3.98"|3.98{{±|0.32|0.33}}

| First exoplanet found to have its orbit flipped (obliquity of 155 {{±|17|21}}°) due to constraints on stellar rotational velocity, sky-projected obliquity and limb-darkening coefficients (see Kozai–Lidov mechanism).{{cite journal |url=https://academic.oup.com/mnras/article/528/1/270/7485918 |title=The flipped orbit of KELT-19Ab inferred from the symmetric TESS transit light curves |last1=Kawai |first1=Yugo |last2=Narita |first2=Norio |last3=Fukui |first3=Akihiko |last4=Watanabe |first4=Noriharu |last5=Inaba |first5=Satoshi |display-authors=1 | journal=Monthly Notices of the Royal Astronomical Society |volume=528 |issue=1 |pages=270–280 |date=20 December 2023 |doi=10.1093/mnras/stad3915|doi-access=free |arxiv=2312.11815 }}

| HAT-P-39b

| data-sort-value="1.712"|{{val|1.712|0.140|0.115}}

| style="text-align:center;" |←

| data-sort-value="0.599"|{{val|0.60|0.10}}

|

| KELT-4Ab

| data-sort-value="1.706" |1.706 {{±|0.085|0.076}}

| style="text-align:center;" |←

| data-sort-value="0.878" |0.878 {{±|0.070|0.067}}

| Fourth planet found in triple star system.{{cite web|author1=Bob Yirka|title=Planet with triple-star system found|url=http://phys.org/news/2016-04-planet-triple-star.html|website=Phys.org|access-date=3 April 2016|date=1 April 2016}} KELT-4A is the brightest host (V~10) of a Hot Jupiter in a hierarchical triple stellar system found.{{cite web | url=http://www.scientificamerican.com/article/new-alien-planet-boasts-rare-triple-suns/ | title=New Alien Planet Boasts Rare Triple Suns | author=Nola Taylor Redd | website=Scientific American | date=31 March 2016 | access-date=2 April 2016}}

| Pollera
(WASP-79b)

| data-sort-value="1.704"|1.704 {{±|0.195|0.180}},
2.09 ± 0.14

| style="text-align:center;" |←

| data-sort-value="0.850"|0.850 {{±|0.180|0.180}}

| This planet is orbiting the host star at nearly-polar orbit with respect to star's equatorial plane, inclination being equal to −95.2{{±|0.9|1.0}}°.{{citation|arxiv=1610.00600|title=Rossiter–Mc Laughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems|year=2016|doi=10.1093/mnras/stw2316 |last1=Brown |first1=D. J. A. |last2=Triaud |first2=A. H. M. J. |last3=Doyle |first3=A. P. |last4=Gillon |first4=M. |last5=Lendl |first5=M. |last6=Anderson |first6=D. R. |last7=Collier Cameron |first7=A. |last8=Hébrard |first8=G. |last9=Hellier |first9=C. |last10=Lovis |first10=C. |last11=Maxted |first11=P. F. L. |last12=Pepe |first12=F. |last13=Pollacco |first13=D. |last14=Queloz |first14=D. |last15=Smalley |first15=B. |journal=Monthly Notices of the Royal Astronomical Society |volume=464 |issue=1 |pages=810–839 |doi-access=free |bibcode=2017MNRAS.464..810B }}

| HAT-P-64b

| data-sort-value="1.703"|1.703 ± 0.070

| style="text-align:center;" |←

| data-sort-value="0.58"|0.58 {{±|0.18|0.13}}

|

| WASP-78b

| data-sort-value="1.702"|1.70 ± 0.04,
1.93 ± 0.45

| style="text-align:center;" |←

| data-sort-value="0.89"|0.89 ± 0.08

| This planet has likely undergone in the past a migration from the initial highly eccentric orbit.

| Qatar-7b

| data-sort-value="1.701"|1.70 ± 0.03

| style="text-align:center;" |←

| data-sort-value="1.88"|1.88 ± 0.25

|

style="background:#FFE8DC"

|

| {{anchor|SSTB213 J041757 b}} | SSTB213 J041757 b

| data-sort-value="1.70"|1.70{{Cite EPE|name=SSTB213 J041757 b|id=9835}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="1.50"|1.50

| In a binary with a #SSTB213 J041757 a rogue planet.

| CoRoT-17b

| data-sort-value="1.694" |1.694 {{±|0.139|0.193}}

| style="text-align:center;" |←

| data-sort-value="2.430" |2.430{{±|0.300}}

| Hot Jupiter

| TOI-615b

| data-sort-value="1.69"|1.69{{±|0.06|0.05}}{{Cite journal |last1=Psaridi |first1=Angelica |last2=Bouchy |first2=François |last3=Lendl |first3=Monika |last4=Akinsanmi |first4=Babatunde |last5=Stassun |first5=Keivan G. |last6=Smalley |first6=Barry |last7=Armstrong |first7=David J. |last8=Howard |first8=Saburo |last9=Ulmer-Moll |first9=Solène |last10=Grieves |first10=Nolan |last11=Barkaoui |first11=Khalid |last12=Rodriguez |first12=Joseph E. |last13=Bryant |first13=Edward M. |last14=Suárez |first14=Olga |last15=Guillot |first15=Tristan |date=2023-07-01 |title=Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS: TOI-615b, TOI-622b, and TOI-2641b |url=https://ui.adsabs.harvard.edu/abs/2023A&A...675A..39P/abstract |journal=Astronomy and Astrophysics |volume=675 |pages=A39 |doi=10.1051/0004-6361/202346406 |arxiv=2303.15080 |bibcode=2023A&A...675A..39P |issn=0004-6361}}

|style="text-align:center;"|←

| data-sort-value="0.43"|0.43{{±|0.09|0.08}}

|

| CoRoT-35b

| data-sort-value="1.68"|1.68 ± 0.11{{citation|arxiv=2207.08742|year=2022|title=Sub-stellar companions of intermediate-mass stars with CoRoT: CoRoT–34b, CoRoT–35b, and CoRoT–36b|doi=10.1093/mnras/stac2131 |last1=Sebastian |first1=D. |last2=Guenther |first2=E. W. |last3=Deleuil |first3=M. |last4=Dorsch |first4=M. |last5=Heber |first5=U. |last6=Heuser |first6=C. |last7=Gandolfi |first7=D. |last8=Grziwa |first8=S. |last9=Deeg |first9=H. J. |last10=Alonso |first10=R. |last11=Bouchy |first11=F. |last12=Csizmadia |first12=Sz |last13=Cusano |first13=F. |last14=Fridlund |first14=M. |last15=Geier |first15=S. |last16=Irrgang |first16=A. |last17=Korth |first17=J. |last18=Nespral |first18=D. |last19=Rauer |first19=H. |last20=Tal-Or |first20=L. |journal=Monthly Notices of the Royal Astronomical Society |volume=516 |pages=636–655 |doi-access=free }}

|style="text-align:center;"|←

| data-sort-value="1.10"|1.10 ± 0.37

|

style="background:#D1E231"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| 1RXS 1609 b
(1RXS J160929.1−210524 b,
1RXS J1609 b)

| data-sort-value="1.664" |~ 1.664,{{Cite journal |last1=Lafrenière |first1=David |last2=Jayawardhana |first2=Ray |last3=van Kerkwijk |first3=Marten H. |date=2008-12-20 |title=Direct Imaging and Spectroscopy of a Planetary-Mass Candidate Companion to a Young Solar Analog |url=https://iopscience.iop.org/article/10.1086/595870 |journal=The Astrophysical Journal |language=en |volume=689 |issue=2 |pages=L153–L156 |arxiv=0809.1424 |bibcode=2008ApJ...689L.153L |doi=10.1086/595870 |issn=0004-637X}}
1.7{{Cite journal |last1=Wu |first1=Ya-Lin |last2=Close |first2=Laird M. |last3=Males |first3=Jared R. |last4=Barman |first4=Travis S. |last5=Morzinski |first5=Katie M. |last6=Follette |first6=Katherine B. |last7=Bailey |first7=Vanessa P. |last8=Rodigas |first8=Timothy J. |last9=Hinz |first9=Philip |last10=Puglisi |first10=Alfio |last11=Xompero |first11=Marco |last12=Briguglio |first12=Runa |date=2015-06-30 |title=New Extinction and Mass Estimates of the Low-Mass Companion 1Rxs 1609 B with the Magellan Ao System: Evidence of an Inclined Dust Disk |url=https://iopscience.iop.org/article/10.1088/2041-8205/807/1/L13 |journal=The Astrophysical Journal |volume=807 |issue=1 |pages=L13 |arxiv=1506.05816 |bibcode=2015ApJ...807L..13W |doi=10.1088/2041-8205/807/1/L13 |issn=2041-8213}}

| style="text-align:center;" |!

| data-sort-value="14" |14 {{±|2|3}},{{Cite journal |last1=Pecaut |first1=Mark J. |last2=Mamajek |first2=Eric E. |last3=Bubar |first3=Eric J. |date=2012-02-20 |title=A Revised Age for Upper Scorpius and the Star Formation History Among the F-Type Members of the Scorpius-Centaurus Ob Association |url=https://iopscience.iop.org/article/10.1088/0004-637X/746/2/154 |journal=The Astrophysical Journal |volume=746 |issue=2 |pages=154 |arxiv=1112.1695 |bibcode=2012ApJ...746..154P |doi=10.1088/0004-637X/746/2/154 |issn=0004-637X}}
12.6{{snd}}15.7,
12 ± 2{{Cite journal |last1=Wu |first1=Ya-Lin |last2=Bowler |first2=Brendan P. |last3=Sheehan |first3=Patrick D. |last4=Andrews |first4=Sean M. |last5=Herczeg |first5=Gregory J. |last6=Kraus |first6=Adam L. |last7=Ricci |first7=Luca |last8=Wilner |first8=David J. |last9=Zhu |first9=Zhaohuan |date=2020-05-01 |title=ALMA 0.88 mm Survey of Disks around Planetary-mass Companions |journal=The Astronomical Journal |volume=159 |issue=5 |pages=229 |arxiv=2003.08658 |bibcode=2020AJ....159..229W |doi=10.3847/1538-3881/ab818c |doi-access=free |issn=0004-6256}}

| Thought to be the lightest known exoplanet at the time of announcement orbiting its host at a large separation of 330 {{val|ul=AU}} and third announced directly imaged exoplanet orbiting a sun-like star (after GQ Lup b and AB Pic b).
1RXS 1609 b's location far from 1RXS 1609 presents serious challenges to current models of planetary formation: the timescale to form a planet by core accretion at this distance from the star would be longer than the age of the system itself. One possibility is that the planet may have formed closer to the star and migrated outwards as a result of interactions with the disk or with other planets in the system. An alternative is that the planet formed in situ via the disk instability mechanism, where the disk fragments because of gravitational instability, though this would require an unusually massive protoplanetary disk.
With the upward revision in the age of the Upper Scorpius group from 5 million to 11 million years, the estimated mass of 1RXS J1609b is approximately 14 {{Jupiter mass}}, i.e. above the deuterium-burning limit. An older age for the J1609 system implies that the luminosity of J1609b is consistent with a much more massive object, making more likely that J1609b may be simply a brown dwarf which formed in a manner similar to that of other low-mass and substellar companions.

| TOI-1855 b

| data-sort-value="1.65"|1.65 {{±|0.52|0.37}}{{cite journal |mode=cs2 |last1=Schulte |first1=Jack |title=Migration and Evolution of giant ExoPlanets (MEEP) I: Nine Newly Confirmed Hot Jupiters from the TESS Mission |date=2024-01-11 |last2=Rodriguez |first2=Joseph E. |last3=Bieryla |first3=Allyson |last4=Quinn |first4=Samuel N. |last5=Collins |first5=Karen A. |last6=Yee |first6=Samuel W. |last7=Nine |first7=Andrew C. |last8=Soares-Furtado |first8=Melinda |last9=Latham |first9=David W.|journal=The Astronomical Journal |volume=168 |issue=1 |page=32 |doi=10.3847/1538-3881/ad4a57 |doi-access=free |arxiv=2401.05923 |bibcode=2024AJ....168...32S }}

|style="text-align:center;"|←

| data-sort-value="1.133"|1.133 ± 0.096

|

style="background:#CEE0F2"

|

| TOI-3807 b

| data-sort-value="1.6499" |>1.65 (95% lower limit)

| style="text-align:center;" | →

| data-sort-value="1.04" |1.04 {{±|0.15|0.14}}

| Grazing planet, a large radius of {{jupiter radius|2.00}} derived from transit data is unreliable due to its grazing nature.

style="border:4px ridge orange; background:#000000; text-align:center;" |112x112px

| HAT-P-7b
(Kepler-2b)

| data-sort-value="1.642"|1.64 ± 0.11{{cite journal|arxiv=2004.07971|last1=Rhodes|first1=Michael D.|last2=Puskullu|first2=Caglar|last3=Budding|first3=Edwin|last4=Banks|first4=Timothy S.|title=Exoplanet system Kepler-2 with comparisons to Kepler-1 and 13|journal=Astrophysics and Space Science|year=2020|volume=365|issue=4|page=77 |doi=10.1007/s10509-020-03789-3|bibcode=2020Ap&SS.365...77R |s2cid=215814387}}

|style="text-align:center;"|←

| data-sort-value="1.806"|1.806 ± 0.036

| Second planet discovered to have a retrograde orbit (after Ditsö̀)[https://www.newscientist.com/article/dn17613-second-backwards-planet-found-a-day-after-the-first.html Second backwards planet found, a day after the first ]{{cite journal | title=HAT-P-7: A Retrograde or Polar Orbit, and a Third Body | last1=Winn | first1=Joshua N. | last2=Johnson | first2=John Asher | last3=Albrecht | first3=Simon | last4=Howard | first4=Andrew W. | last5=Marcy | first5=Geoffrey W. | last6=Crossfield | first6=Ian J. | last7=Holman | first7=Matthew J. | display-authors=1 | journal=The Astrophysical Journal Letters | volume=703 | issue=2 | pages=L99–L103 | year=2009 | arxiv=0908.1672 | bibcode=2009ApJ...703L..99W | bibcode-access=free | doi=10.1088/0004-637X/703/2/L99 | doi-access=free }} and first exoplanet to be detected by ellipsoidal light variations{{cite journal | title=The Discovery of Ellipsoidal Variations in the Kepler Light Curve of HAT-P-7 | last1=Welsh | first1=William F. | last2=Orosz | first2=Jerome A. | last3=Seager | first3=Sara | last4=Fortney | first4=Jonathan J. | last5=Jenkins | first5=Jon | last6=Rowe | first6=Jason F. | last7=Koch | first7=David | last8=Borucki | first8=William J. | display-authors=1 | journal=The Astrophysical Journal Letters | volume=713 | issue=2 | pages=L145–L149 | year=2010 | arxiv=1001.0413 | bibcode=2010ApJ...713L.145W | bibcode-access=free | doi=10.1088/2041-8205/713/2/L145 | doi-access=free}}

| NGTS-33 b

| data-sort-value="1.641"|1.64 ± 0.07{{cite journal |last1=Alves |first1=Douglas R. |last2=Jenkins |first2=James S. |last3=Vines |first3=Jose I. |last4=Battley |first4=Matthew P. |last5=Lendl |first5=Monika |last6=Bouchy |first6=François |last7=Nielsen |first7=Louise D. |last8=Gill |first8=Samuel |last9=Moyano |first9=Maximiliano |last10=Anderson |first10=D. R. |last11=Burleigh |first11=Matthew R. |last12=Casewell |first12=Sarah L. |last13=Goad |first13=Michael R. |last14=Hawthorn |first14=Faith |last15=Kendall |first15=Alicia |last16=McCormac |first16=James |last17=Osborn |first17=Ares |last18=Smith |first18=Alexis M. S. |last19=Udry |first19=Stéphane |last20=Wheatley |first20=Peter J. |last21=Saha |first21=Suman |last22=Parc |first22=Léna |last23=Nigioni |first23=Arianna |last24=Apergis |first24=Ioannis |last25=Ramsay |first25=Gavin |title=NGTS-33b: A Young Super-Jupiter Hosted by a Fast Rotating Massive Hot Star |journal=Monthly Notices of the Royal Astronomical Society |date=2024-11-13 |volume=536 |issue=2 |pages=1538–1554 |doi=10.1093/mnras/stae2582 |doi-access=free |arxiv=2411.08960 |bibcode=2025MNRAS.536.1538A}}

|style="text-align:center;"|←

| data-sort-value="3.6"|3.6 ± 0.3

|

| HAT-P-64b

| data-sort-value="1.631"|1.631 ± 0.070

| style="text-align:center;" |←

| data-sort-value="0.574"|0.574 ± 0.038

|

| WASP-82b

| data-sort-value="1.6201"|1.62 ± 0.13

|style="text-align:center;"|←

| data-sort-value="1.17"|1.17 ± 0.20

|

| KELT-8b

| data-sort-value="1.62"|1.62 ± 0.10

|style="text-align:center;"|←

| data-sort-value="0.66"|0.66 ± 0.12

|

| WASP-189 b

| data-sort-value="1.619"|1.619 ± 0.021{{Cite journal |last1=Lendl |first1=M. |last2=Csizmadia |first2=Sz. |last3=Deline |first3=A. |last4=Fossati |first4=L. |last5=Kitzmann |first5=D. |last6=Heng |first6=K. |last7=Hoyer |first7=S. |last8=Salmon |first8=S. |last9=Benz |first9=W. |last10=Broeg |first10=C. |last11=Ehrenreich |first11=D. |last12=Fortier |first12=A. |last13=Queloz |first13=D. |last14=Bonfanti |first14=A. |last15=Brandeker |first15=A. |date=2020-11-01 |title=The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS |url=https://ui.adsabs.harvard.edu/abs/2020A&A...643A..94L/abstract |journal=Astronomy and Astrophysics |volume=643 |pages=A94 |doi=10.1051/0004-6361/202038677 |arxiv=2009.13403 |bibcode=2020A&A...643A..94L |issn=0004-6361}}

|style="text-align:center;"|←

| data-sort-value="1.99"|1.99 {{±|0.16|0.14}}

| Fifth hottest known exoplanets of {{Convert|3435|K|C F}}.

| HAT-P-65b

| data-sort-value="1.6102"|1.611 ± 0.024{{Citation |last1=Kang |first1=Huiyi |title=Simultaneous multicolour transit photometry of hot Jupiters HAT-P-19b, HAT-P-51b, HAT-P-55b, and HAT-P-65b |date=2024-05-29 |arxiv=2401.03715 |last2=Chen |first2=Guo |last3=Palle |first3=Enric |last4=Murgas |first4=Felipe |last5=Garcia |first5=Nestor Abreu |last6=Leon |first6=Jerome de |last7=Enoc |first7=Gareb |last8=Esparza-Borges |first8=Emma |last9=Fukuda |first9=Izuru|journal=Monthly Notices of the Royal Astronomical Society |volume=528 |issue=2 |pages=1930–1944 |doi=10.1093/mnras/stae072 |doi-access=free}}

|style="text-align:center;"|←

| data-sort-value="0.554"|0.554 {{±|0.092|0.091}}

| This planet has been suffering orbital decay due to its proximity.

| K2-52b

| data-sort-value="1.6101"|1.61 ± 0.20{{Cite journal |last1=Livingston |first1=John H. |last2=Crossfield |first2=Ian J. M. |last3=Werner |first3=Michael W. |last4=Gorjian |first4=Varoujan |last5=Petigura |first5=Erik A. |last6=Ciardi |first6=David R. |last7=Dressing |first7=Courtney D. |last8=Fulton |first8=Benjamin J. |last9=Hirano |first9=Teruyuki |last10=Schlieder |first10=Joshua E. |last11=Sinukoff |first11=Evan |last12=Kosiarek |first12=Molly |last13=Akeson |first13=Rachel |last14=Beichman |first14=Charles A. |last15=Benneke |first15=Björn |date=2019-03-01 |title=Spitzer Transit Follow-up of Planet Candidates from the K2 Mission |journal=The Astronomical Journal |volume=157 |issue=3 |pages=102 |doi=10.3847/1538-3881/aaff69 |doi-access=free |arxiv=1901.05855 |bibcode=2019AJ....157..102L |issn=0004-6256}}

|style="text-align:center;"|←

| 0.40 ± 0.35

|

| NGTS-31 b

| data-sort-value="1.61"|1.61 ± 0.16{{Cite journal |last1=Vines |first1=Jose I |last2=Jenkins |first2=James S |last3=Anderson |first3=David R |last4=Alves |first4=Douglas R |last5=Moyano |first5=Maximiliano |last6=Acton |first6=Jack S |last7=Apergis |first7=Ioannis |last8=Barkaoui |first8=Khalid |last9=Bayliss |first9=Daniel |last10=Bouchy |first10=Francois |last11=Bryant |first11=Edward M |last12=Burleigh |first12=Matthew R |last13=Casewell |first13=Sarah L |last14=Christiansen |first14=Jessie L |last15=Collins |first15=Karen A |date=2024-11-28 |title=NGTS-31b and NGTS-32b: Two Inflated hot Jupiters Orbiting Subgiant Stars |journal=Monthly Notices of the Royal Astronomical Society |volume=536 |issue=3 |pages=2011–2024 |doi=10.1093/mnras/stae2616 |doi-access=free |issn=0035-8711}}

|style="text-align:center;"|←

| data-sort-value="1.12"|1.12 ± 0.12

|

| HATS-11b
(EPIC 216414930b)

| data-sort-value="1.609"|1.609 ± 0.064{{Cite journal |last1=Livingston |first1=John H. |last2=Crossfield |first2=Ian J. M. |last3=Petigura |first3=Erik A. |last4=Gonzales |first4=Erica J. |last5=Ciardi |first5=David R. |last6=Beichman |first6=Charles A. |last7=Christiansen |first7=Jessie L. |last8=Dressing |first8=Courtney D. |last9=Henning |first9=Thomas |last10=Howard |first10=Andrew W. |last11=Isaacson |first11=Howard |last12=Fulton |first12=Benjamin J. |last13=Kosiarek |first13=Molly |last14=Schlieder |first14=Joshua E. |last15=Sinukoff |first15=Evan |date=2018-12-01 |title=Sixty Validated Planets from K2 Campaigns 5-8 |journal=The Astronomical Journal |volume=156 |issue=6 |pages=277 |doi=10.3847/1538-3881/aae778 |doi-access=free |arxiv=1810.04074 |bibcode=2018AJ....156..277L |issn=0004-6256}}

|style="text-align:center;"|←

| data-sort-value="0.85"|0.85

|

| KELT-7b

| data-sort-value="1.601"|1.60 ± 0.06

| style="text-align:center;"|←

| data-sort-value="1.39"|1.39 ± 0.22

|

colspan="6" style="background:#efefef" data-sort-value="1.699999" | A few notable examples with radii below 1.6 {{Jupiter radius}} ({{#expr: (71492 * 1.6) / 6378 round 2}} {{Earth radius|link=y}}).
style="background:pink;"

|style="border:4px ridge red; background:#000000; text-align:center;" rowspan="2" |112x112px

| 2M1510 A
(2MASS J1510–28 A,
2M1510 Aa)
{{efn|name="2M1510"|While inner binaries commonly use lower cases, planets also do use lower cases. For the case of 2M1510 inner binary, the binary is used as 2M1510AB.}}

| data-sort-value="1.575" rowspan="2"|1.575{{cite journal |last1=Triaud|first1=Amaury H. M. J.|last2=Burgasser |first2=Adam J. |last3=Burdanov|first3=Artem|last4=Kunovac Hodžić|first4=Vedad |last5=Alonso|first5=Roi|last6=Bardalez Gagliuffi |first6=Daniella |last7=Delrez|first7=Laetitia|last8=Demory|first8=Brice-Olivier |last9=de Wit|first9=Julien|last10=Ducrot|first10=Elsa |last11=Hessman|first11=Frederic V.|date=January 2020 |title=An Eclipsing Substellar Binary in a Young Triple System discovered by SPECULOOS |journal=Nature Astronomy|volume=4|issue=7|pages=650–657|doi=10.1038/s41550-020-1018-2 |language=en|arxiv=2001.07175 |bibcode=2020NatAs...4..650T|s2cid=210839528}}
(0.16185 {{val|ul=Solar radius}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="34.676"|34.676 ± 0.076
(0.033101(73) {{val|ul=Solar mass}})

| rowspan="2" |Second eclipsing binary brown dwarf system discovered and first kind of system to be directly imaged, orbiting around 20.9 days.{{Cite journal |last1=Calissendorff |first1=Per |last2=Janson |first2=Markus |last3=Asensio-Torres |first3=Rubén |last4=Köhler |first4=Rainer |date=July 2019 |title=Spectral characterization of newly detected young substellar binaries with SINFONI |journal=Astronomy & Astrophysics |language=en |volume=627 |pages=A167 |arxiv=1906.05871 |bibcode=2019A&A...627A.167C |doi=10.1051/0004-6361/201935319 |issn=0004-6361 |s2cid=189898015}} The members of 2M1510 triple (likely) or quadruple system. Age: 45 ± 5 Myr
Have a strong candidate planet, 2M1510 b (2M1510Aab b), that orbits polar around 2M1510AB (or 2M1510Aab),{{efn|name="2M1510"}} making this planet the first planet discovered orbiting polar around a binary system.{{Cite journal |last1=Baycroft |first1=Thomas A. |last2=Sairam |first2=Lalitha |last3=Triaud |first3=Amaury H. M. J. |last4=Correia |first4=Alexandre C. M. |date=2025-04-16 |title=Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brown dwarfs |journal=Science Advances |volume=11 |issue=16 |pages=eadu0627 |doi=10.1126/sciadv.adu0627|doi-access=free |pmid=40238865 |pmc=12002110 |arxiv=2504.12209 |bibcode=2025SciA...11..627B }}{{Cite web |last=information@eso.org |title="Big surprise": astronomers find planet in perpendicular orbit around pair of stars |url=https://www.eso.org/public/news/eso2508/ |access-date=2025-04-16 |website=www.eso.org |language=en}}{{cite web |url=https://www.space.com/the-universe/exoplanets/scientists-discover-bizarre-double-star-system-with-exoplanet-on-a-sideways-orbit-video| title=Scientists discover bizarre double-star system with exoplanet on a sideways orbit (video) |website=SPACE.com | date=16 April 2025 |access-date=17 April 2025}}
Reported for reference.

style="background:pink;"

| 2M1510 B
(2MASS J1510–28 B,
2M1510 Ab)
{{efn|name="2M1510"}}

| style="text-align:center;" |{{number sign}}

| data-sort-value="34.792" |34.792 ± 0.072
(0.033212(69) {{val|ul=Solar mass}})

style="border:4px ridge red; background:#000000; text-align:center;"|112px

| Kepler-7b

| data-sort-value="1.574"|1.574 {{±|0.075|0.071}}

| style="text-align:center;" |←

| data-sort-value="0.433"|0.433 {{±|0.040|0.041}}

| One of the first five exoplanets to be confirmed by the Kepler spacecraft, within 34 days of Kepler's science operations, and the first exoplanet to have a crude map of cloud coverage.

style="border:4px ridge red; background:#000000; text-align:center;" |112px

| WASP-103b

| data-sort-value="1.528" |1.528 {{±|0.073|0.047}}

| style="text-align:center;" |←

| data-sort-value="1.455" |1.455 {{±|0.090|0.091}}

| First exoplanet to have a deformation detected

style="background:#FFE8DC"

| style="border:4px ridge blue; background:#000030; text-align:center;"|112x112px

| 2MASS J1115+1937

| data-sort-value="1.501"|1.5 ± 0.1{{Cite journal |last1=Viswanath |first1=Gayathri |title=ExoplaNeT accRetion mOnitoring sPectroscopic surveY (ENTROPY) |date=2024-09-01 |arxiv=2409.12187 |last2=Ringqvist |first2=Simon C. |last3=Demars |first3=Dorian |last4=Janson |first4=Markus |last5=Bonnefoy |first5=Mickaël |last6=Aoyama |first6=Yuhiko |last7=Marleau |first7=Gabriel-Dominique |last8=Dougados |first8=Catherine |last9=Szulágyi |first9=Judit|journal=Astronomy & Astrophysics |volume=691 |pages=A64 |doi=10.1051/0004-6361/202450881 }}

| style="text-align:center;" |{{dagger}}

| data-sort-value="6"|6 {{±|8|4}}

| Nearest rogue planet surrounded by planetary disk at the distance of {{cvt|147 ± 7|ly|pc|lk=on|abbr=off}}.

style="background:pink;"

| style="border:4px ridge blue; background:#000000; text-align:center;"|112x112px

| Proxima
(Proxima Centauri,
Alpha Centauri C)

| data-sort-value="1.50"|1.50 ± 0.04
(0.1542 ± 0.0045 {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="127.9"|127.9 ± 2.3
{{nowrap|(0.1221 ± 0.0022 {{Solar mass|link=y}})}}

| Nearest (flare) star and planetary system to the Sun, at a distance of {{cvt|4.24|ly|pc|lk=on|abbr=off}}, orbiting around Alpha Centauri AB System, the nearest star system to the Sun. Age: 4.85 Gyr.
Has a confirmed planet, Proxima b (Proxima Centauri b), a disputed planet, Proxima c,{{cite journal|last1=Artigau|first1=Étienne |last2=Cadieux|first2=Charles |last3=Cook|first3=Neil J.|last4=Doyon|first4=René|last5=Vandal|first5=Thomas|last6=Donati|first6=Jean-Françcois|last7=Moutou |first7=Claire|last8=Delfosse|first8=Xavier|last9=Fouqué|first9=Pascal|last10=Martioli|first10=Eder|last11=Bouchy |first11=François |last12=Parsons|first12=Jasmine|last13=Carmona|first13=Andres|last14=Dumusque|first14=Xavier|last15=Astudillo-Defru|first15=Nicola |last16=Bonfils|first16=Xavier|last17=Mignon|first17=Lucille|display-authors=5 |title=Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry |journal=The Astronomical Journal|volume=164:84|issue=3|pages=18pp |arxiv=2207.13524 |bibcode=2022AJ....164...84A|doi=10.3847/1538-3881/ac7ce6|doi-access=free|date=June 23, 2022|publication-date=August 8, 2022}} and an unconfirmed planet, Proxima d.{{cite journal |last1=Suárez Mascareño |first1=A. |last2=Faria |first2=J. P. |last3=Figueira |first3=P. |last4=Lovis |first4=C. |last5=Damasso |first5=M. |last6=González Hernández |first6=J. I. |last7=Rebolo |first7=R. |last8=Cristiano |first8=S. |last9=Pepe |first9=F. |last10=Santos |first10=N. C. |last11=Zapatero Osorio |first11=M. R. |display-authors=2 |date=11 May 2020 |title=Revisiting Proxima with ESPRESSO |url=https://www.aanda.org/articles/aa/full_html/2020/07/aa37745-20/aa37745-20.html |journal=Astronomy & Astrophysics |volume=639 |pages=24 |arxiv=2005.12114 |bibcode=2020A&A...639A..77S |doi=10.1051/0004-6361/202037745 |issn=0004-6361 |doi-access=free |first16=M. |last16=Abreu |first15=F. |last15=Murgas |first14=A. |last14=Sozzetti |first13=S. |last13=Hojjatpanah |first12=V. |last12=Adibekyan}}{{cite journal |last1=Faria |first1=J. P. |last2=Suárez Mascareño |first2=A. |last3=Figueira |first3=P. |last4=Silva |first4=A. M. |last5=Damasso |first5=M. |last6=Demangeon |first6=O. |last7=Pepe |first7=F. |last8=Santos |first8=N. C. |last9=Rebolo |first9=R. |last10=Cristiani |first10=S. |last11=Adibekyan |first11=V. |display-authors=2 |date=January 4, 2022 |title=A candidate short-period sub-Earth orbiting Proxima Centauri |url=https://www.eso.org/public/archives/releases/sciencepapers/eso2202/eso2202a.pdf |journal=Astronomy & Astrophysics |publisher=European Southern Observatory |volume=658 |pages=17 |arxiv=2202.05188 |bibcode=2022A&A...658A.115F |doi=10.1051/0004-6361/202142337 |doi-access=free |last35=Tabernero |last23=Lo Curto |first18=X. |last19=Ehrenreich |first19=D. |last20=González Hernández |first20=J. I. |last21=Hara |last15=Cabral |first22=J. |first28=G. |last24=Lovis |first23=G. |first17=P. |first24=C. |last25=Martins |first25=C. J. A. P. |last26=Mégevand |first26=D. |last27=Mehner |first27=A. |last28=Micela |first21=N. |last18=Dumusque |last17=Di Marcantonio |first30=N. J. |first36=S. |last31=Pallé |first31=E. |last32=Poretti |first32=E. |last33=Sousa |first33=S. G. |last34=Sozzetti |first34=A. |last36=Udry |first15=A. |first29=P. |last37=Zapatero Osorio |first16=V. |first37=M. R. |first14=S. C. C. |last14=Barros |first13=R. |last13=Allart |first12=Y. |last12=Alibert |last30=Nunes |last29=Molaro |last16=D’Odorico |last22=Lillo-Box |first35=H.}}{{efn|It is argued that Proxima d is confirmed because it could be detected via different methods of measuring the same radial velocity data from which Proxima d was discovered. This should make Proxima System the nearest planetary system to host more than one planet. However, it is still considered a candidate exoplanet by its discoverers and the NASA Exoplanet Archive, because it has not been independently confirmed by more than one observatory.}}
Reported for reference.

style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| Najsakopajk
(HIP 65426 b)

| data-sort-value="1.44"|1.44 ± 0.03{{cite journal |last1=Carter |first1=Aarynn L. |last2=Hinkley |first2=Sasha |last3=Kammerer |first3=Jens |last4=Skemer |first4=Andrew |last5=Biller |first5=Beth A. |last6=Leisenring |first6=Jarron M. |last7=Millar-Blanchaer |first7=Maxwell A. |last8=Petrus |first8=Simon |last9=Stone |first9=Jordan M. |last10=Ward-Duong |first10=Kimberly |last11=Wang |first11=Jason J. |last12=Girard |first12=Julien H. |last13=Hines |first13=Dean C. |last14=Perrin |first14=Marshall D. |last15=Pueyo |first15=Laurent |title=The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I: High Contrast Imaging of the Exoplanet HIP 65426 b from 2-16 μm |arxiv=2208.14990 | doi=10.3847/2041-8213/acd93e | journal=The Astrophysical Journal Letters | date=2023-07-06 | volume=951 | issue=1 | pages=L20 |doi-access=free | bibcode=2023ApJ...951L..20C}}

| style="text-align:center;" |←

| data-sort-value="7.1"|7.1 ± 1.2, 9.9 {{±|1.1|1.8}},
10.9 {{±|1.4|2.0}}

| First exoplanet to be imaged by the James Webb Space Telescope.Alise Fisher, NASA’s Webb Takes Its First-Ever Direct Image of Distant World Posted on September 1, [https://blogs.nasa.gov/webb/2022/09/01/nasas-webb-takes-its-first-ever-direct-image-of-distant-world/ blogs.nasa.gov] The JWST direct imaging observations tightly constrained its bolometric luminosity, which provides a robust mass constraint of 7.1 ± 1.2 {{Jupiter mass|link=y}}. The atmospheric fitting of both temperature and radius are in disagreement with evolutionary models. Moreover, this planet is around 14 million years old which is however not associated with a debris disk, despite its young age,{{Cite web|url=http://www.sci-news.com/astronomy/super-jupiter-hip-65426-05023.html|title=Astronomers Directly Image Super-Jupiter around HIP 65426 {{!}} Astronomy {{!}} Sci-News.com|website=Breaking Science News {{!}} Sci-News.com|language=en-US|access-date=2019-08-02}}{{Cite web|url=https://exoplanets.nasa.gov/news/1477/holiday-special-eight-nights-of-exoplanet-light/|title=Holiday Special: Eight nights of Exoplanet Light|publisher=NASA|website=Exoplanet Exploration: Planets Beyond our Solar System|date=14 December 2017 |access-date=2019-08-03}} causing it to not fit current models for planetary formation.{{Cite web|url=https://phys.org/news/2017-07-discovery-exoplanet-spherevlt.html|title=Odd planetary system around fast-spinning star doesn't quite fit existing models of planet formation|website=phys.org|language=en-us|access-date=2019-08-03}}

style="border:4px ridge red; background:#000000; text-align:center;"| 112x112px

| Banksia
(WASP-19b)

| data-sort-value="1.386"|1.386 ± 0.032{{cite encyclopedia|url=https://exoplanet.eu/catalog/wasp_19_b--525/|encyclopedia=Extrasolar Planets Encyclopaedia|title=Notes for planet WASP-19b|access-date=2009-12-10}}

| style="text-align:center;" |←

| data-sort-value="1.168"|1.168 ± 0.023

| First exoplanet to have its secondary eclipse and orbital phases observed from the ground-based observations{{Cite journal |arxiv = 1303.0973|doi = 10.1051/0004-6361/201220351|title = The secondary eclipses of WASP-19b as seen by the ASTEP 400 telescope from Antarctica|journal = Astronomy & Astrophysics|volume = 553|pages = A49|year = 2013|last1 = Abe|first1 = L.|last2 = Gonçalves|first2 = I.|last3 = Agabi|first3 = A.|last4 = Alapini|first4 = A.|last5 = Guillot|first5 = T.|last6 = Mékarnia|first6 = D.|last7 = Rivet|first7 = J.-P.|last8 = Schmider|first8 = F.-X.|last9 = Crouzet|first9 = N.|last10 = Fortney|first10 = J.|last11 = Pont|first11 = F.|last12 = Barbieri|first12 = M.|last13 = Daban|first13 = J.-B.|last14 = Fanteï-Caujolle|first14 = Y.|last15 = Gouvret|first15 = C.|last16 = Bresson|first16 = Y.|last17 = Roussel|first17 = A.|last18 = Bonhomme|first18 = S.|last19 = Robini|first19 = A.|last20 = Dugué|first20 = M.|last21 = Bondoux|first21 = E.|last22 = Péron|first22 = S.|last23 = Petit|first23 = P.-Y.|last24 = Szulágyi|first24 = J.|last25 = Fruth|first25 = T.|last26 = Erikson|first26 = A.|last27 = Rauer|first27 = H.|last28 = Fressin|first28 = F.|last29 = Valbousquet|first29 = F.|last30 = Blanc|first30 = P.-E.|display-authors = 29|bibcode = 2013A&A...553A..49A|s2cid = 119227468}} and first to have titanium oxide (TiO) detected in an exoplanet atmosphere.{{cite journal | title=Detection of titanium oxide in the atmosphere of a hot Jupiter | last1=Sedaghati | first1=Elyar | last2=Boffin | first2=Henri M. J. | last3=MacDonald | first3=Ryan J. | last4=Gandhi | first4=Siddharth | last5=Madhusudhan | first5=Nikku | last6=Gibson | first6=Neale P. | last7=Oshagh | first7=Mahmoudreza | last8=Claret | first8=Antonio | last9=Rauer | first9=Heike | display-authors=1 | journal=Nature | volume=549 | issue=7671 | pages=238–241 | year=2017 | arxiv=1709.04118 | bibcode=2017Natur.549..238S | doi=10.1038/nature23651 | pmid=28905896 | s2cid=205259502 }}{{cite press release | title=Inferno World with Titanium Skies | date=September 13, 2017 | publisher=European Southern Observatory | url=https://www.eso.org/public/news/eso1729/ | access-date=December 24, 2017 }}

style="border:4px ridge red; background:black; text-align:center;"|112px

| HD 209458 b
("Osiris")

| data-sort-value="1.359"|1.359 {{±|0.016|0.019}}

| style="text-align:center;" |←

| data-sort-value="0.682"|0.682 {{±|0.014|0.015}}

| Represents multiple milestones in exoplanetary discovery, such as the first exoplanet known observed to transit its host star, the first exoplanet with a precisely measured radius, one of first two exoplanets (other being HD 189733 Ab) to be observed spectroscopically{{Cite web |title=NASA's Spitzer First To Crack Open Light of Faraway Worlds |url=http://www.spitzer.caltech.edu/Media/releases/ssc2007-04/release.shtml |archive-url=https://web.archive.org/web/20070715071155/http://www.spitzer.caltech.edu/Media/releases/ssc2007-04/release.shtml |archive-date=July 15, 2007}}{{cite journal |last1=Richardson |first1=L. Jeremy |last2=Deming |first2=D |last3=Horning |first3=K |last4=Seager |first4=S |last5=Harrington |first5=J |display-authors=etal |date=2007 |title=A spectrum of an extrasolar planet |journal=Nature |volume=445 |issue=7130 |pages=892–895 |arxiv=astro-ph/0702507 |bibcode=2007Natur.445..892R |doi=10.1038/nature05636 |pmid=17314975 |s2cid=4415500}} and the first to have an atmosphere detected, containing evaporating hydrogen, and oxygen and carbon. First extrasolar gas giant to have its superstorm measured. Nicknamed "Osiris".

style="background:pink;"

| style="border:4px ridge blue; background:#000000; text-align:center;"|116px

| Teide 1

| data-sort-value="1.311"|1.311 {{±|0.120|0.075}}
(0.1347 {{±|0.0123|0.0077}} {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="52"|52 {{±|15|10}}
(0.0496 {{±|0.0143|0.0095}} {{val|ul=Solar mass}})

| The first brown dwarf to be confirmed.{{Cite journal |last1=Rebolo |first1=R. |last2=Osorio |first2=M. R. Zapatero |last3=Martín |first3=E. L. |date=1995-09-14 |title=Discovery of a brown dwarf in the Pleiades star cluster |url=https://www.nature.com/articles/377129a0 |journal=Nature |language=en |volume=377 |issue=6545 |pages=129–131 |bibcode=1995Natur.377..129R |doi=10.1038/377129a0 |issn=0028-0836}} It is located in the Pleiades and has an age of 70{{snd}}140Myr.{{Cite journal |last1=Rebolo |first1=R. |last2=Martín |first2=E. L. |last3=Basri |first3=G. |last4=Marcy |first4=G. W. |last5=Zapatero-Osorio |first5=M. R. |date=1996-09-20 |title=Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test |url=https://iopscience.iop.org/article/10.1086/310263 |journal=The Astrophysical Journal |volume=469 |issue=1 |pages=L53–L56 |arxiv=astro-ph/9607002 |bibcode=1996ApJ...469L..53R |doi=10.1086/310263}}
Reported for reference.

style="border:4px ridge purple; background:white; text-align:center;"|112x112px

| OGLE-TR-56b

| data-sort-value="1.30"|1.30 ± 0.05

| style="text-align:center;" |←

| data-sort-value="1.29"|1.29 ± 0.12

| First discovered exoplanet using the transit method.{{cite journal |author=Harvard University and Smithsonian Institution |date=2003-01-08 |title=New World of Iron Rain |url=http://www.astrobio.net/pressrelease/352/new-world-of-iron-rain |url-status=usurped |journal=Astrobiology Magazine |archive-url=https://web.archive.org/web/20100110135215/http://www.astrobio.net/pressrelease/352/new-world-of-iron-rain |archive-date=2010-01-10 |access-date=2010-01-25}}

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| BD+60 1417b

| data-sort-value="1.2901"|1.29 ± 0.06{{Cite journal |arxiv=2407.01694 |last1=Phillips |first1=Caprice L. |title=Retrieving Young Cloudy L-Dwarfs: A Nearby Planetary-Mass Companion BD+60 1417B and Its Isolated Red Twin W0047 |date=2024-07-01 |last2=Faherty |first2=Jacqueline K. |last3=Burningham |first3=Ben |last4=Vos |first4=Johanna M. |last5=Gonzales |first5=Eileen |last6=Griffith |first6=Emily J. |last7=Merchan |first7=Sherelyn Alejandro |last8=Calamari |first8=Emily |last9=Visscher |first9=Channon|journal=The Astrophysical Journal |volume=972 |issue=2 |page=172 |doi=10.3847/1538-4357/ad5d57 |doi-access=free |bibcode=2024ApJ...972..172P }}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="13.47"|13.47 ± 5.67

| First directly imaged exoplanet discovered by a citizen scientist. This planet orbits around BD+60 1417 at the distance of 1662 AU, making this host star the only main sequence star with about 1 {{Solar mass|link=y}} that is orbited by a planetary-mass object at a separation larger than 1000 AU.{{cite journal |arxiv=2112.04678|doi=10.3847/1538-4357/ac2499|title=A Wide Planetary Mass Companion Discovered through the Citizen Science Project Backyard Worlds: Planet 9|year=2021|last1=Faherty|first1=Jacqueline K.|author1-link=Jackie Faherty|last2=Gagné|first2=Jonathan |last3=Popinchalk|first3=Mark|last4=Vos|first4=Johanna M.|last5=Burgasser|first5=Adam J.|last6=Schümann|first6=Jörg|last7=Schneider |first7=Adam C.|last8=Kirkpatrick|first8=J. Davy|last9=Meisner|first9=Aaron M.|last10=Kuchner|first10=Marc J.|last11=Bardalez Gagliuffi |first11=Daniella C.|last12=Marocco|first12=Federico|last13=Caselden|first13=Dan|last14=Gonzales|first14=Eileen C.|last15=Rothermich |first15=Austin|last16=Casewell|first16=Sarah L.|last17=Debes|first17=John H.|last18=Aganze|first18=Christian|last19=Ayala |first19=Andrew|last20=Hsu|first20=Chih-Chun|last21=Cooper|first21=William J.|last22=Smart|first22=R. L.|last23=Gerasimov|first23=Roman |last24=Theissen|first24=Christopher A.|author25=The Backyard Worlds: Planet 9 Collaboration|journal=The Astrophysical Journal|volume=923|issue=1|page=48|bibcode=2021ApJ...923...48F|s2cid=245005964 |doi-access=free}}
Its status of exoplanet is unclear; according to the NASA Exoplanet Archive BD+60 1417b is an exoplanet{{Cite web |title=BD+60 1417 {{!}} NASA Exoplanet Archive |url=https://exoplanetarchive.ipac.caltech.edu/overview/BD+60%201417%20b#planet_BD-60-1417-b_collapsible |access-date=2022-08-10 |website=exoplanetarchive.ipac.caltech.edu}} and it falls within their definition: An object with a minimum mass lower than 30 {{Jupiter mass|link=y}} and a not free-floating object with sufficient follow-up. However, the official working definition by the International Astronomical Union allows only exoplanets with a maximum mass of 13 {{Jupiter mass}} and according to current knowledge BD+60 1417b could be more massive than this limit and might be a brown dwarf.

style="border:4px ridge blue; background:#370A00; text-align:center;"|112x112px

| TOI-157b

| data-sort-value="1.29"|1.29 ± 0.02{{Cite journal |last1=Nielsen |first1=L. D. |last2=Brahm |first2=R. |last3=Bouchy |first3=F. |last4=Espinoza |first4=N. |last5=Turner |first5=O. |last6=Rappaport |first6=S. |last7=Pearce |first7=L. |last8=Ricker |first8=G. |last9=Vanderspek |first9=R. |last10=Latham |first10=D. W. |last11=Seager |first11=S. |last12=Winn |first12=J. N. |last13=Jenkins |first13=J. M. |last14=Acton |first14=J. S. |last15=Bakos |first15=G. |date=July 2020 |title=Three short-period Jupiters from TESS: HIP 65Ab, TOI-157b, and TOI-169b |url=https://www.aanda.org/10.1051/0004-6361/202037941 |journal=Astronomy & Astrophysics |volume=639 |pages=A76 |arxiv=2003.05932 |bibcode=2020A&A...639A..76N |doi=10.1051/0004-6361/202037941 |issn=0004-6361}}

| style="text-align:center;" |←

| data-sort-value="1.18"|1.18 ± 0.13

| Oldest confirmed planet at the age of 12.9 {{±|1.4|0.69}} Gyr

style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| HD 203030 b

| data-sort-value="1.27" |1.27 {{±|0.06|0.04}}

| style="text-align:center;" |←

| data-sort-value="11" |11 {{±|4|3}}{{cite journal| title=The Prototypical Young L/T-Transition Dwarf HD 203030B Likely Has Planetary Mass|year=2017| display-authors=1 | last1=Miles-Páez | first1=Paulo A.| last2=Metchev | first2=Stanimir | last3=Luhman | first3=Kevin L.| last4=Marengo | first4=Massimo | last5=Hulsebus | first5=Alan| journal=The Astronomical Journal| volume=154 | issue=6 | page=262| arxiv=1710.11274 | doi=10.3847/1538-3881/aa9711| bibcode=2017AJ....154..262M | s2cid=67821107 |doi-access=free}}

| Currently third exoplanet candidate with mass likely below the deuterium burning limit discovered by direct imaging (after DH Tau b and AB Pic b). Previously believed to be a likely brown dwarf, with an estimated mass of 0.023 {{±|0.008|0.011}} {{Solar mass|link=y}} ({{#expr: 0.023 * 1047.569 round 2}} {{±|{{#expr: 0.008 * 1047.569 round 2}}|{{#expr: 0.011 * 1047.569 round 2}}}} {{Jupiter mass|link=y}}),{{cite journal| title=HD 203030B: An Unusually Cool Young Substellar Companion near the L/T Transition | last1=Metchev | first1=Stanimir A. | last2=Hillenbrand | first2=Lynne A. | journal=The Astrophysical Journal | volume=651 | issue=2 | pages=1166–1176 | year=2006 | arxiv=astro-ph/0607514 | doi=10.1086/507836 | bibcode=2006ApJ...651.1166M | s2cid=16571973}} in 2017, a reanalysis indicated that the star HD 203030 is probably very young with the age of 100 {{±|50|70}} Myr, and therefore both the primary and the observed companion are less massive than previously thought, placing HD 203030 b at the planetary mass boundary.

style="border:4px ridge red; background:#000000; text-align:center;"| 112x112px

| Bocaprins
(WASP-39b)

| data-sort-value="1.27"|1.27 ± 0.04{{cite encyclopedia |title=Planet WASP-39 b |url=https://exoplanet.eu/catalog/wasp_39_b--818/ |date=2018 |encyclopedia=Extrasolar Planets Encyclopaedia |access-date=1 March 2018 }}

| style="text-align:center;" |←

| data-sort-value="0.28"|0.28 ± 0.03

| First exoplanet found to contain carbon dioxide{{Cite web |last=Adkins |first=Jamie |date=2022-08-25 |title=NASA's Webb Detects Carbon Dioxide in Exoplanet Atmosphere |url=http://www.nasa.gov/feature/goddard/2022/nasa-s-webb-detects-carbon-dioxide-in-exoplanet-atmosphere |access-date=2022-08-28 |website=NASA}}{{cite news |last=Overbye |first=Dennis |author-link=Dennis Overbye |title=Webb Telescope Sees a Carbon Dioxide Atmosphere Way Out There - WASP-39b, a distant world with a mass equivalent to Saturn's, is the first exoplanet known to harbor the gas. |url=https://www.nytimes.com/2022/08/26/science/space/webb-telescope-wasp-exoplanet.html |date=26 August 2022 |work=The New York Times |access-date=27 August 2022 }} and sulfur dioxide{{citation |arxiv=2211.10488 |last1=Alderson |first1=Lili; et al. |title=Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H|journal=Nature |year=2023 |volume=614 |issue=7949 |pages=664–669 |doi=10.1038/s41586-022-05591-3 |pmid=36623549 |pmc=9946835 |bibcode=2023Natur.614..664A }} in its atmosphere.

style="border:4px ridge red; background:#846000; text-align:center;"|112x112px

| TrES-2
(Kepler-1 Ab)

| data-sort-value="1.265"|1.265 {{±|0.054|0.051}}

| style="text-align:center;" |←

| data-sort-value="1.199"|1.199 ± 0.052

| Darkest known exoplanet due to an extremely low geometric albedo of 0.0136, absorbing 99% of light.

style="background:#FFE8DC"

|style="border:4px ridge red; background:#000000; text-align:center;"| 112x112px

| SIMP0136
(SIMP J013656.5+093347)

| data-sort-value="1.22"|1.22 ± 0.01{{Cite journal |last1=Gagné |first1=Jonathan |last2=Faherty |first2=Jacqueline K. |author2-link=Jackie Faherty |last3=Burgasser |first3=Adam J. |last4=Artigau |first4=Étienne |last5=Bouchard |first5=Sandie |last6=Albert |first6=Loïc |last7=Lafrenière |first7=David |last8=Doyon |first8=René |last9=Bardalez-Gagliuffi |first9=Daniella C. |date=2017-05-15 |title=SIMP J013656.5+093347 is Likely a Planetary-Mass Object in the Carina-Near Moving Group |journal=The Astrophysical Journal |volume=841 |issue=1 |pages=L1 |arxiv=1705.01625 |bibcode=2017ApJ...841L...1G |doi=10.3847/2041-8213/aa70e2 |issn=2041-8213 |s2cid=119024210 |doi-access=free}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="12.7"|12.7 ± 1.0

| First exoplanet to have its aurora and first to be detected by auroral radio emission;{{cite web |last=Starr |first=Michelle |date=3 August 2018 |title=There Is an Absolutely Gigantic Rogue Planet Wandering Our Galactic Neighbourhood |url=https://www.sciencealert.com/giant-rogue-exoplanet-simp-j01365663-0933473-magnetic-field-aurora-brown-dwarf |access-date=3 August 2018 |work=ScienceAlert.com}} SIMP0136 might be considered a rogue planet rather than a brown dwarf as it seems to be a member of the relatively young, 200 million-year-old Carina-Near stellar moving group.

style="border:4px ridge red; background:#000000; text-align:center;"|112px

| Dimidium
(51 Pegasi b)

| data-sort-value="1.2001"|1.2 ± 0.1{{Cite journal|arxiv=2201.03600 |doi=10.1051/0004-6361/202142314 |title=Black Mirror: The impact of rotational broadening on the search for reflected light from 51 Pegasi b with high resolution spectroscopy |date=2022 |last1=Spring |first1=E. F. |last2=Birkby |first2=J. L. |last3=Pino |first3=L. |last4=Alonso |first4=R. |last5=Hoyer |first5=S. |last6=Young |first6=M. E. |last7=Coelho |first7=P. R. T. |last8=Nespral |first8=D. |last9=López-Morales |first9=M. |journal=Astronomy & Astrophysics |volume=659 |pages=A121 |bibcode=2022A&A...659A.121S |s2cid=245853836}}

| style="text-align:center;" |←

| data-sort-value="0.46"|0.46 {{±|0.06|0.01}}

| First exoplanet to be discovered orbiting a main-sequence star.{{cite web |url=https://physicsworld.com/a/first-visible-light-detected-directly-from-an-exoplanet/ |title=First visible light detected directly from an exoplanet |date=2015-04-22 |work=Physicworld}} Prototype of the hot Jupiters.

style="border:4px ridge blue; background:#000000; text-align:center;" rowspan="4" |112px

| HR 8799 b

| data-sort-value="1.2" rowspan="3" |1.2 ± 0.1{{cite journal |last1=Marois |first1=Christian |date=November 2008 |title=Direct Imaging of Multiple Planets Orbiting the Star HR 8799 |journal=Science |volume=322 |issue=5906 |pages=1348–1352 |doi=10.1126/science.1166585 |arxiv=0811.2606 |pmid=19008415 |bibcode = 2008Sci...322.1348M |last2=Macintosh|first2=Bruce|last3=Barman |first3=Travis |last4=Zuckerman |first4=B. |last5=Song |first5=Inseok |last6=Patience |first6=Jennifer |last7=Lafrenière |first7=David |last8=Doyon |first8=René |s2cid=206516630 }}

| style="text-align:center;" |←

| data-sort-value="6" |6.0 ± 0.3{{Cite journal |last1=Nasedkin |first1=E. |last2=Mollière |first2=P. |last3=Lacour |first3=S. |last4=Nowak |first4=M. |last5=Kreidberg |first5=L. |last6=Stolker |first6=T. |last7=Wang |first7=J. J. |last8=Balmer |first8=W. O. |last9=Kammerer |first9=J. |last10=Shangguan |first10=J. |last11=Abuter |first11=R. |last12=Amorim |first12=A. |last13=Asensio-Torres |first13=R. |last14=Benisty |first14=M. |last15=Berger |first15=J.-P. |date=July 2024 |title=Four-of-a-kind? Comprehensive atmospheric characterisation of the HR 8799 planets with VLTI/GRAVITY |url=https://www.aanda.org/10.1051/0004-6361/202449328 |journal=Astronomy & Astrophysics |volume=687 |pages=A298 |arxiv=2404.03776 |bibcode=2024A&A...687A.298N |doi=10.1051/0004-6361/202449328 |issn=0004-6361}}

| rowspan="4" | First directly imaged planetary system having multiple exoplanets. HR 8799 e is also the first exoplanet to be directly observed using optical interferometry. All four planets will cool and shrink to about the same size as Jupiter, see Kelvin–Helmholtz mechanism. The outer planet orbits inside a dusty disk like the Solar Kuiper belt.

HR 8799 c

| style="text-align:center;" |←

| data-sort-value="8.5" |8.5 ± 0.4

HR 8799 d

| style="text-align:center;" |←

| data-sort-value="9.2" | 9.2 ± 0.1

HR 8799 e

| data-sort-value="1.17" |1.17 {{±|0.13|0.11}}{{Cite journal |last1=Lacour |first1=S. |last2=Nowak |first2=M. |last3=Wang |first3=J. |last4=Pfuhl |first4=O. |last5=Eisenhauer |first5=F. |last6=Abuter |first6=R. |last7=Amorim |first7=A. |last8=Anugu |first8=N. |last9=Benisty |first9=M. |last10=Berger |first10=J. P. |last11=Beust |first11=H. |last12=Blind |first12=N. |last13=Bonnefoy |first13=M. |last14=Bonnet |first14=H. |last15=Bourget |first15=P. |date=March 2019 |title=First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e |journal=Astronomy & Astrophysics |volume=623 |pages=L11 |doi=10.1051/0004-6361/201935253 |arxiv=1903.11903 |bibcode=2019A&A...623L..11G |s2cid=85542913 |issn=0004-6361}}

| style="text-align:center;" |←

| data-sort-value="9.6" |9.6 {{±|1.9|1.8}}{{Cite journal |last1=Brandt |first1=G. Mirek |last2=Brandt |first2=Timothy D. |last3=Dupuy |first3=Trent J. |last4=Michalik |first4=Daniel |last5=Marleau |first5=Gabriel-Dominique |date=2021-07-01 |title=The First Dynamical Mass Measurement in the HR 8799 System |journal=The Astrophysical Journal Letters |volume=915 |issue=1 |pages=L16 |arxiv=2105.12820 |bibcode=2021ApJ...915L..16B |doi=10.3847/2041-8213/ac0540 |doi-access=free |issn=2041-8205}}

style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| Ahra
(WD 0806-661 b)

| data-sort-value="1.17"|1.17 ± 0.07{{cite journal|arxiv=2503.04531 |last1=Voyer |first1=Maël |last2=Changeat |first2=Quentin |last3=Lagage |first3=Pierre-Olivier |last4=Tremblin |first4=Pascal |last5=Waters |first5=Rens |last6=Güdel |first6=Manuel |last7=Henning |first7=Thomas |last8=Absil |first8=Olivier |last9=Barrado |first9=David |last10=Boccaletti |first10=Anthony |last11=Bouwman |first11=Jeroen |last12=Coulais |first12=Alain |last13=Decin |first13=Leen |last14=Glauser |first14=Adrian |last15=Pye |first15=John |last16=Glasse |first16=Alistair |last17=Gastaud |first17=René |last18=Kendrew |first18=Sarah |last19=Patapis |first19=Polychronis |last20=Rouan |first20=Daniel |author21=Ewine van Dishoeck |last22=Östlin |first22=Göran |last23=Ray |first23=Tom |last24=Wright |first24=Gillian |title=MIRI-LRS Spectrum of a Cold Exoplanet around a White Dwarf: Water, Ammonia, and Methane Measurements |journal=The Astrophysical Journal Letters |date=2025 |volume=982 |issue=2 |pages=L38 |doi=10.3847/2041-8213/adbd46 |doi-access=free |bibcode=2025ApJ...982L..38V }}

| style="text-align:center;" |←

| data-sort-value="6.8"|6.8 – 9.0{{Cite journal |last1=Dupuy |first1=Trent J. |last2=Kraus |first2=Adam L. |date=2013-09-27 |title=Distances, Luminosities, and Temperatures of the Coldest Known Substellar Objects |url=https://doi.org/10.1126/science.1241917 |arxiv=1309.1422 |journal=Science |volume=341 |issue=6153 |pages=1492–1495 |doi=10.1126/science.1241917 |pmid=24009359 |bibcode=2013Sci...341.1492D |issn=0036-8075}}

| First exoplanet discovered around a single (as opposed to binary) white dwarf, and the coldest directly imaged exoplanet when discovered.
Possibly formed closer to Maru (WD 0806−661) when it was a main sequence star, this object migrated further away as it reached the end of its life (see stellar evolution), with a current separation of about {{val|2500|ul=AU}}.
Might be considered an exoplanet or a sub-brown dwarf, the dimmest sub-brown dwarf. The IAU considers objects below the {{val|p=~|13|ul=Jupiter mass}} limiting mass for deuterium fusion that orbit stars (or stellar remnants) to be planets, regardless on how they formed.

style="background:pink;"

| style="border:4px ridge red; background:black; text-align:center;" |112x112px

| TRAPPIST-1

| data-sort-value="1.16" |1.16 ± 0.01{{Cite journal |last1=Agol |first1=Eric |last2=Dorn |first2=Caroline |last3=Grimm |first3=Simon L. |last4=Turbet |first4=Martin |last5=Ducrot |first5=Elsa |last6=Delrez |first6=Laetitia |last7=Gillon |first7=Michaël |last8=Demory |first8=Brice-Olivier |last9=Burdanov |first9=Artem |last10=Barkaoui |first10=Khalid |last11=Benkhaldoun |first11=Zouhair |last12=Bolmont |first12=Emeline |last13=Burgasser |first13=Adam |last14=Carey |first14=Sean |last15=de Wit |first15=Julien |date=2021-02-01 |title=Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides |journal=The Planetary Science Journal |volume=2 |issue=1 |pages=1 |arxiv=2010.01074 |bibcode=2021PSJ.....2....1A |doi=10.3847/PSJ/abd022 |doi-access=free |issn=2632-3338}}
(0.1192 ± 0.0013 {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="94.1" |94.1 ± 2.4
{{nowrap|(0.0898 ± 0.0023 {{Solar mass|link=y}})}}

| Coldest and smallest known star hosting exoplanets.{{Cite journal |last1=Delrez |first1=L. |last2=Murray |first2=C. A. |last3=Pozuelos |first3=F. J. |last4=Narita |first4=N. |last5=Ducrot |first5=E. |last6=Timmermans |first6=M. |last7=Watanabe |first7=N. |last8=Burgasser |first8=A. J. |last9=Hirano |first9=T. |last10=Rackham |first10=B. V. |last11=Stassun |first11=K. G. |last12=Van Grootel |first12=V. |last13=Aganze |first13=C. |last14=Cointepas |first14=M. |last15=Howell |first15=S. |date=November 2022 |title=Two temperate super-Earths transiting a nearby late-type M dwarf |url=https://www.aanda.org/10.1051/0004-6361/202244041 |journal=Astronomy & Astrophysics |volume=667 |pages=A59 |arxiv=2209.02831 |bibcode=2022A&A...667A..59D |doi=10.1051/0004-6361/202244041 |issn=0004-6361}} All seven exoplanets are rocky planets, orbiting closer to the star than Mercury. Their orbits' inclinations of 0.1 degrees{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=14}} makes TRAPPIST-1 system the flattest planetary system.{{cite journal |last1=Heising |first1=Matthew Z. |last2=Sasselov |first2=Dimitar D. |last3=Hernquist |first3=Lars |last4=Luisa Tió Humphrey |first4=Ana |title=How Flat Can a Planetary System Get? I. The Case of TRAPPIST-1 |journal=The Astrophysical Journal |date=1 June 2021 |volume=913 |issue=2 |bibcode=2021ApJ...913..126H |doi=10.3847/1538-4357/abf8a8 |s2cid=219262616 |language=en|doi-access=free|page=126}} Age: 7.6 ± 2.2 Gyr.{{Cite journal |last1=Burgasser |first1=Adam J. |last2=Mamajek |first2=Eric E. |date=2017-08-20 |title=On the Age of the TRAPPIST-1 System |journal=The Astrophysical Journal |volume=845 |issue=2 |pages=110 |arxiv=1706.02018 |bibcode=2017ApJ...845..110B |doi=10.3847/1538-4357/aa7fea |doi-access=free |issn=0004-637X}}
Reported for reference.

style="border:4px ridge red; background:#000000; text-align:center;" |112x112px

| HD 189733 Ab

| data-sort-value="1.138" |1.138 ± 0.027

| style="text-align:center;" |←

| data-sort-value="1.123" |1.123 ± 0.045

| First exoplanet to have its thermal map constructed, its overall color (deep blue) determined, its transit viewed in the X-ray spectrum, one of first two exoplanets (other being "Osiris") to be observed spectroscopically{{cite journal |last1=Richardson |first1=L. Jeremy |last2=Deming |first2=D |last3=Horning |first3=K |last4=Seager |first4=S |last5=Harrington |first5=J |display-authors=etal |date=2007 |title=A spectrum of an extrasolar planet |journal=Nature |volume=445 |issue=7130 |pages=892–895 |arxiv=astro-ph/0702507 |bibcode=2007Natur.445..892R |doi=10.1038/nature05636 |pmid=17314975 |s2cid=4415500}} and first to have carbon dioxide confirmed as being present in its atmosphere.
Such the rich cobalt blue colour of HD 189733 Ab may be the result of Rayleigh scattering. The wind can blow up to {{convert|8700|km/h|mph|abbr=on}} from the day side to the night side.

style="border:4px ridge yellow; background:#000000; text-align:center;" |112x112px

| SWEEPS-11

| data-sort-value="1.1301" |1.13 ± 0.21{{Cite journal |last1=Sahu |first1=Kailash C. |last2=Casertano |first2=Stefano |last3=Bond |first3=Howard E. |last4=Valenti |first4=Jeff |last5=Ed Smith |first5=T. |last6=Minniti |first6=Dante |last7=Zoccali |first7=Manuela |last8=Livio |first8=Mario |last9=Panagia |first9=Nino |last10=Piskunov |first10=Nikolai |last11=Brown |first11=Thomas M. |last12=Brown |first12=Timothy |last13=Renzini |first13=Alvio |last14=Rich |first14=R. Michael |last15=Clarkson |first15=Will |display-authors=1 |year=2006 |title=Transiting extrasolar planetary candidates in the Galactic bulge |journal=Nature |language=en |volume=443 |issue=7111 |pages=534–540 |arxiv=astro-ph/0610098 |bibcode=2006Natur.443..534S |doi=10.1038/nature05158 |issn=0028-0836 |pmid=17024085 |s2cid=4403395 |last16=Lubow |first16=Stephen}} ([https://arxiv.org/abs/astro-ph/0610098 web Preprint])

| style="text-align:center;" |←

| data-sort-value="9.7" |9.7 ± 5.6

| One of two most distant planets (other being SWEEPS-04) discovered at a distance of 27 710 ly (8500 pc).{{Cite web |title=HEC: Top 10 Exoplanets |url=http://phl.upr.edu/projects/habitable-exoplanets-catalog/top10 |url-status=dead |archive-url=https://web.archive.org/web/20131217224149/http://phl.upr.edu/projects/habitable-exoplanets-catalog/top10 |archive-date=17 December 2013 |access-date=16 July 2018 |website=Planetary Habitability Laboratory @ UPR Arecibo}}

style="background:#FFE8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| 2M1207 b
(TWA 27b)

| data-sort-value="1.13"|1.13

| style="text-align:center;" |{{dagger}}

| data-sort-value="5.5"|5.5 ± 0.5

| First planetary body in an orbit discovered via direct imaging, and the first around a brown dwarf.{{Cite web |title=2M1207 b - First image of an exoplanet - NASA Science |url=https://science.nasa.gov/resource/2m1207-b-first-image-of-an-exoplanet/ |access-date=2025-01-07 |website=science.nasa.gov |date=26 April 2010 |language=en-US}}{{Cite web |title=2M1207b - first image of an exoplanet |url=https://www.eso.org/public/unitedkingdom/images/26a_big-vlt/?lang |access-date=2025-01-07 |website=European Southern Observatory |language=en-gb}} It could be considered a sub-brown dwarf due to its large mass in relation to its host: 2M1207 b is around six times more massive than Jupiter, but orbits a {{Jupiter mass|26|link=y}} brown dwarf, a ratio much larger than the 1:1000 of Jupiter and Sun for example. The IAU defined that exoplanets must have a mass ratio to the central object less than 0.04,{{cite web |title=Official Working Definition of an Exoplanet |url=https://www.iau.org/science/scientific_bodies/commissions/F2/info/documents/ |access-date=29 November 2020 |work=IAU position statement}} which would make 2M1207b a sub-brown dwarf. Nevertheless, 2M1207b has been considered an exoplanet by press media and websites,{{Cite web |last=Britt |first=Robert Roy |date=April 30, 2005 |title=Fresh Debate over First Photo of Extrasolar Planet |url=https://www.space.com/1023-fresh-debate-photo-extrasolar-planet.html |access-date=June 16, 2008 |website=Space.com}}{{Cite web |title=The brown dwarf 2M1207 and its planetary companion |url=https://www.eso.org/public/unitedkingdom/images/eso0515a/?lang |access-date=2025-01-07 |website=European Southern Observatory |language=en-gb}}{{Cite web |title=Artist's View of a Super-Jupiter around a Brown Dwarf (2M1207) |url=https://esahubble.org/images/opo1605a/ |access-date=2025-01-07 |website=Esa Hubble |language=en}} exoplanet databases{{Cite Exoplanet Archive|2MASS J12073346-3932539}}{{Cite EPE|name=2M1207 b|id=237}} and alternative definitions.{{Citation |last1=Margot |first1=Jean-Luc |title=Quantitative Criteria for Defining Planets |date=2024-07-10 |arxiv=2407.07590 |last2=Gladman |first2=Brett |last3=Yang |first3=Tony|journal=The Planetary Science Journal |volume=5 |issue=7 |page=159 |doi=10.3847/PSJ/ad55f3 |doi-access=free |bibcode=2024PSJ.....5..159M}} It will shrink to a size slightly smaller than Jupiter as it cools over the next few billion years, see Kelvin–Helmholtz mechanism.

style="border:4px ridge red; background:#000000; text-align:center;" |112px

| WASP-47 b

| data-sort-value="1.1277" |{{#expr: 12.64/11.209 round 3}} ± {{#expr: 0.15/11.209 round 3}}{{cite journal | title=A new dynamical modeling of the WASP-47 system with CHEOPS observations | last1=Nascimbeni | first1=V. | last2=Borsato | first2=L. | last3=Zingales | first3=T. | last4=Piotto | first4=G. | last5=Pagano | first5=I. | last6=Beck | first6=M. | last7=Broeg | first7=C. | last8=Ehrenreich | first8=D. | last9=Hoyer | first9=S. | last10=Majidi | first10=F. Z. | last11=Granata | first11=V. | last12=Sousa | first12=S. G. | last13=Wilson | first13=T. G. | last14=Van Grootel | first14=V. | last15=Bonfanti | first15=A. | last16=Salmon | first16=S. | last17=Mustill | first17=A. J. | last18=Delrez | first18=L. | last19=Alibert | first19=Y. | last20=Alonso | first20=R. | last21=Anglada | first21=G. | last22=Bárczy | first22=T. | last23=Barrado | first23=D. | last24=Barros | first24=S. C. C. | last25=Baumjohann | first25=W. | last26=Beck | first26=T. | last27=Benz | first27=W. | last28=Bergomi | first28=M. | last29=Billot | first29=N. | last30=Bonfils | first30=X. | display-authors=1 | journal=Astronomy and Astrophysics | volume=673 | article-number=A42 | page= | year=2023 | arxiv=2302.01352 | bibcode=2023A&A...673A..42N | bibcode-access=free | doi=10.1051/0004-6361/202245486 | doi-access=free }}

| style="text-align:center;" |←

| data-sort-value="1.144" |{{#expr: 363.6/317.827 round 3}} ± {{#expr: 7.3/317.827 round 3}}{{Cite journal | title=Precise Masses in the WASP-47 System | last1=Vanderburg | first1=Andrew | last2=Becker | first2=Juliette C. | last3=Buchhave | first3=Lars A. | last4=Mortier | first4=Annelies | last5=Lopez | first5=Eric | last6=Malavolta | first6=Luca | last7=Haywood | first7=Raphaëlle D. | last8=Latham | first8=David W. | last9=Charbonneau | first9=David | display-authors=1 | journal=The Astronomical Journal | volume=154 | issue=6 | article-number=237 | page= | date=2017-11-16 | arxiv=1710.00026 | bibcode=2017AJ....154..237V | bibcode-access=free | doi=10.3847/1538-3881/aa918b | doi-access=free | s2cid=54750116}}

| Rocky WASP-47 e orbits even closer than hot Jupiter WASP-47 b and both super Earth WASP-47 d and hot Neptune WASP-47 c orbit further than the hot Jupiter, making WASP-47 system the only planetary system to have both planets near the hot Jupiter and another planet much further out.{{cite web|url=https://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=WASP-47&type=PLANET_HOST|title=WASP-47|website=exoplanetarchive.ipac.caltech.edu}}

style="background:pink;"

| style="border:4px ridge red; background:#000000; text-align:center;" |112px

| 2MASS J0523−1403

| data-sort-value="1.126"|1.126 ± 0.063{{Cite journal |last1=Cifuentes |first1=C. |last2=Caballero |first2=J. A. |last3=Cortés-Contreras |first3=M. |last4=Montes |first4=D. |last5=Abellán |first5=F. J. |last6=Dorda |first6=R. |last7=Holgado |first7=G. |last8=Zapatero Osorio |first8=M. R. |last9=Morales |first9=J. C. |last10=Amado |first10=P. J. |last11=Passegger |first11=V. M. |last12=Quirrenbach |first12=A. |last13=Reiners |first13=A. |last14=Ribas |first14=I. |last15=Sanz-Forcada |first15=J. |date=October 2020 |title=CARMENES input catalogue of M dwarfs: V. Luminosities, colours, and spectral energy distributions |url=https://www.aanda.org/10.1051/0004-6361/202038295 |journal=Astronomy & Astrophysics |volume=642 |pages=A115 |arxiv=2007.15077 |bibcode=2020A&A...642A.115C |doi=10.1051/0004-6361/202038295 |issn=0004-6361}}
(0.116 ± 0.006 {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="103"|103 ± 11
(0.0983 ± 0.0011 {{Solar mass|link=y}})
or
67.54 ± 12.79{{cite journal |last1=Filippazzo |first1=Joseph C. |last2=Rice |first2=Emily L. |last3=Faherty |first3=Jacqueline |author3-link=Jackie Faherty |last4=Cruz |first4=Kelle L. |last5=Van Gordon |first5=Mollie M. |last6=Looper |first6=Dagny L. |year=2015 |title=Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime |journal=The Astrophysical Journal |volume=810 |issue=2 |pages=158 |arxiv=1508.01767 |bibcode=2015ApJ...810..158F |doi=10.1088/0004-637X/810/2/158 |s2cid=89611607}}
(0.0644 ± 0.0122 {{Solar mass|link=y}})

| Coolest main sequence star with effective temperature 1939 K (1666 {{val|ul=°C}}; 3031 {{val|ul=°F}}) and one of the smallest stars, in both radius and mass.{{cite journal | last1 = Dieterich | first1 = Sergio B. | last2 = Henry | first2 = Todd J. | last3 = Jao | first3 = Wei-Chun | last4 = Winters | first4 = Jennifer G. | last5 = Hosey | first5 = Altonio D. | last6 = Riedel | first6 = Adric R. | last7 = Subasavage | first7 = John P. | title = The Solar Neighborhood XXXII. The Hydrogen Burning Limit | journal = The Astronomical Journal | volume = 147 | issue = 5 | at = article id 94 | date = May 2014 | doi = 10.1088/0004-6256/147/5/94 | bibcode = 2014AJ....147...94D | arxiv = 1312.1736 | s2cid = 21036959}}
Reported for reference.

style="background:#FFF8DC"

| style="border:4px ridge yellow; background:#000000; text-align:center;" |112px

| CoRoT-3 Ab

| data-sort-value="1.085"|1.08 ± 0.05

| style="text-align:center;" |{{asterisk}}

| data-sort-value="21.66"|21.66 ± 1.00

| Might be considered either a planet or a brown dwarf, depending on the definition chosen for these terms. If the brown dwarf/planet limit is defined by mass regime using the deuterium burning limit as the delimiter (i.e. {{val|13|u=Jupiter mass}}), CoRoT-3b is a brown dwarf. If formation is the criterion, CoRoT-3 Ab may be a planet given that some models of planet formation predict that planets with masses up to 25–30 Jupiter masses can form via core accretion. However, it is unclear which method of formation created CoRoT-3A b.

style="background:#D1E231"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| Gliese 504 b
(59 Virginis b)

| data-sort-value="1.08" |1.08 {{±|0.04|0.03}}{{Cite journal |last1=Mâlin |first1=Mathilde |last2=Boccaletti |first2=Anthony |last3=Perrot |first3=Clément |last4=Baudoz |first4=Pierre |last5=Rouan |first5=Daniel |last6=Lagage |first6=Pierre-Olivier |last7=Waters |first7=Rens |last8=G"udel |first8=Manuel |last9=Henning |first9=Thomas |last10=Vandenbussche |first10=Bart |last11=Absil |first11=Olivier |last12=Barrado |first12=David |last13=Charnay |first13=Benjamin |last14=Choquet |first14=Elodie |last15=Cossou |first15=Christophe |date=2025-01-01 |title=First unambiguous detection of ammonia in the atmosphere of a planetary mass companion with JWST/MIRI coronagraphs |journal=Astronomy & Astrophysics |volume=693 |pages=A315 |language=en |doi=10.1051/0004-6361/202452695 |arxiv=2501.00104 |bibcode=2025A&A...693A.315M |issn=0004-6361}}

| style="text-align:center;" |!

| data-sort-value="1.00001" |1.0 {{±|1.8|0.3}} – 17

| First directly imaged planet containing methane absorption in the infrared H band{{cite journal |title = Direct Imaging Detection of Methane in the Atmosphere of GJ 504 b |author = Janson, M. |author2 = Brandt, T. D. |author3 = Kuzuhara, M.|display-authors = etal |date = 2013 |journal = The Astrophysical Journal Letters |volume = 778 |issue = 1 |pages = L4 |doi = 10.1088/2041-8205/778/1/L4 |bibcode = 2013ApJ...778L...4J |arxiv = 1310.4183 |s2cid = 53394946}} and ammonia in the atmosphere.
The mass of Gliese 504 b is hard to measure, as it depends on the host star's age, which is poorly known. The discoverers adopted an age value 0.16{{±|0.35|0.06}} Gyr and estimated mass as 4.0 {{±|4.5|1.0}} {{Jupiter mass|link=y}}{{Cite journal|arxiv=1307.2886|title=Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504|journal=The Astrophysical Journal|volume=774|issue=11|pages=11|date=2013|last1= Kuzuhara|first1=M.|last2= Tamura|first2=M.|last3= Kudo|first3=T.|last4= Janson|first4=M.|last5= Kandori|first5=R.|last6= Brandt|first6=T. D.|last7= Thalmann|first7=C.|last8= Spiegel|first8=D.|last9= Biller|first9=B.|last10= Carson|first10=J.|last11= Hori|first11=Y.|last12= Suzuki|first12=R.|last13= Burrows|first13=A.|last14= Henning|first14=T.|last15= Turner|first15=E. L.|last16= McElwain|first16=M. W.|last17= Moro-Martin|first17=A.|last18= Suenaga|first18=T.|last19= Takahashi|first19=Y. H.|last20= Kwon|first20=J.|last21= Lucas|first21=P.|last22= Abe|first22=L.|last23= Brandner|first23=W.|last24= Egner|first24=S.|last25= Feldt|first25=M.|last26= Fujiwara|first26=H.|last27= Goto|first27=M.|last28= Grady|first28=C. A.|last29= Guyon|first29=O.|last30= Hashimoto|first30=J.|display-authors=9|doi=10.1088/0004-637X/774/1/11|bibcode = 2013ApJ...774...11K |s2cid=53343537 }} while other astronomers obtained an age value of 4.5 {{±|2.0|1.5}} Gyr, which corresponds to 20 – 30 {{Jupiter mass}}. In this case, the object is a brown dwarf rather than a planet. Intermediate ages were proposed in 2025, ranging from 400 million to one billion years, which would imply a mass between one and 17 {{Jupiter mass}}, still not sufficient to confirm the nature of GJ 504 b. Measuring the abundance of ammonia in the planet's atmosphere could constrain its mass, current measurements suggest a mass likely within the planetary-mass regime, while the mid-infrared brightness seems to place the object at a higher age and mass. Ages between 360 million and 2.5 billion years were proposed in another 2025 study.{{Cite journal |last1=Pezzotti |first1=C. |last2=Buldgen |first2=G. |last3=Magaudda |first3=E. |last4=Farnir |first4=M. |last5=Grootel |first5=V. Van |last6=Bellotti |first6=S. |last7=Poppenhaeger |first7=K. |title=Planetary inward migration as the potential cause of GJ 504's fast rotation and bright X-ray luminosity |journal=Astronomy & Astrophysics |date=2025-01-13 |volume=694 |pages=A179 |doi=10.1051/0004-6361/202452580 |arxiv=2501.07402}}

style="border:5px ridge blue; background:#000000; text-align:center;" |112x112px

| Epsilon Indi Ab
(ε Ind b)

| data-sort-value="1.08"|1.08{{efn|name=L/Teff}}

| style="text-align:center;" |←

| data-sort-value="6.31"|6.31 {{±|0.60|0.56}}

| Nearest and one of the two coldest extrasolar planets directly imaged. Second closest Jovian exoplanet to the Solar System, after AEgir (ε Eridani b).

style="border:4px ridge red; background:#000000; text-align:center;" |112px

| Kepler-1647 b

| data-sort-value="1.05932"|1.05932 ± 0.01228{{cite web |url=http://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=Kepler-1647+b&type=CONFIRMED_PLANET |title=Kepler-1647b – NASA Exoplanet Archive | access-date=June 14, 2016}}

| style="text-align:center;" |←

| data-sort-value="1.52"|1.52 ± 0.65

| Longest transit orbital period of any confirmed transiting exoplanet discovered at the duration of 1107 days{{cite web |url=https://www.nasa.gov/feature/goddard/2016/new-planet-is-largest-discovered-that-orbits-two-suns |title=New Planet Is Largest Discovered That Orbits Two Suns |publisher=NASA |date=June 13, 2016 |access-date=June 14, 2016}} and largest circumbinary planet discovered.{{cite journal |title=Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet |arxiv=1512.00189 |last1=Kostov |first1=Veselin B. |last2=Orosz |first2=Jerome A. |last3=Welsh |first3=William F. |last4=Doyle |first4=Laurance R. |last5=Fabrycky |first5=Daniel C. |last6=Haghighipour |first6=Nader |last7=Quarles |first7=Billy |last8=Short |first8=Donald R. |last9=Cochran |first9=William D. |last10=Endl |first10=Michael |last11=Ford |first11=Eric B. |last12=Gregorio |first12=Joao |last13=Hinse |first13=Tobias C. |last14=Isaacson |first14=Howard |last15=Jenkins |first15=Jon M. |last16=Jensen |first16=Eric L. N. |last17=Kane |first17=Stephen |last18=Kull |first18=Ilya |last19=Latham |first19=David W. |last20=Lissauer |first20=Jack J. |last21=Marcy |first21=Geoffrey W. |last22=Mazeh |first22=Tsevi |last23=Muller |first23=Tobias W. A. |last24=Pepper |first24=Joshua |last25=Quinn |first25=Samuel N. |last26=Ragozzine |first26=Darin |last27=Shporer |first27=Avi |last28=Steffen |first28=Jason H. |last29=Torres |first29=Guillermo |last30=Windmiller |first30=Gur |display-authors=15 |year=2015 |doi=10.3847/0004-637X/827/1/86 |volume=827 |issue=1 |journal=The Astrophysical Journal |page=86 |bibcode=2016ApJ...827...86K |s2cid=55162101 |doi-access=free}} This planet is located within the habitable zone of binary star system Kepler-1647 and thus could theoretically have a habitable Earth-like exomoon.{{cite journal |last1=Barbosa |first1=G O |last2=Winter |first2=O C |last3=Amarante |first3=A |last4=Macau |first4=E E N |title=Formation of Earth-sized planets within the Kepler-1647 system habitable zone |journal=Monthly Notices of the Royal Astronomical Society |date=2021-05-25 |volume=504 |issue=4 |pages=6144–6156 |doi=10.1093/mnras/stab1165|doi-access=free |arxiv=2104.11628}}

style="background:#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| Luhman 16 B
(WISE 1049−5319 B)

| data-sort-value="1.04"|~1.04{{Cite journal|title=Individual, Model-Independent Masses of the Closest Known Brown Dwarf Binary to the Sun |journal=The Astrophysical Journal |volume=846 |issue=2 |pages=97 |arxiv=1708.02714 |first1=E. Victor |last1=Garcia |first2=S. Mark |last2=Ammons |first3=Maissa |last3=Salama |first4=Ian |last4=Crossfield |first5=Eduardo |last5=Bendek |first6=Jeffrey |last6=Chilcote |first7=Vincent |last7=Garrel |first8=James R. |last8=Graham |first9=Paul |last9=Kalas |first10=Quinn |last10=Konopacky |first11=Jessica R. |last11=Lu |first12=Bruce |last12=Macintosh |first13=Eduardo |last13=Marin |first14=Christian |last14=Marois |first15=Eric |last15=Nielsen |first16=Benoît |last16=Neichel |first17=Don |last17=Pham |first18=Robert J. |last18=De Rosa |first19=Dominic M. |last19=Ryan |first20=Maxwell |last20=Service |first21=Gaetano |last21=Sivo |display-authors=5 |year=2017|doi=10.3847/1538-4357/aa844f |bibcode=2017ApJ...846...97G |s2cid=119231762 |doi-access=free }}{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="29.4"|29.4 ± 0.2{{Cite journal |last1=Bedin |first1=L. R. |last2=Dietrich |first2=J. |last3=Burgasser |first3=A. J. |last4=Apai |first4=D. |last5=Libralato |first5=M. |last6=Griggio |first6=M. |last7=Fontanive |first7=C. |last8=Pourbaix |first8=D. |date=8 Mar 2024 |title=HST astrometry of the closest Brown Dwarfs -- II. Improved parameters and constraints on a third body |journal=Astronomische Nachrichten |volume=345 |issue=1 |arxiv=2403.08865 |doi=10.1002/asna.20230158|bibcode=2024AN....34530158B }}

| Closest-known brown dwarfs and the closest system found since the measurement of the proper motion of Barnard's Star,{{r|PennState|Plait}} and the third-closest-known system to the Sun at a distance of {{cvt|6.51|ly|pc|lk=on|abbr=off}} (after the Alpha Centauri system and Barnard's Star). While Luhman 16 B is commonly brown dwarf, NASA Exoplanet Archive list Luhman 16 B as exoplanet that is orbiting around Luhman 16 A, being the most massive among the list.

style="border:5px ridge blue; background:#000000; text-align:center;" |112x112px

| 14 Herculis c
(14 Her c)

| data-sort-value="1.03"|1.03 ± 0.01

| style="text-align:center;" |←

| data-sort-value="7.9"|7.9 {{±|1.6|1.2}}

| One of the two coldest extrasolar planets directly imaged and possibly the oldest at age 4.6 {{±|3.8|1.3}} Gyr, comparable to the age of the Solar System.

style="border:4px ridge indigo; background:#000000; text-align:center;" |112px

| Kepler-90h

| data-sort-value="1.01"|1.01 ± 0.09

| style="text-align:center;" |←

| data-sort-value="0.639"|0.639 ± 0.016

| Located in the Kepler-90 system with eight known exoplanets, whose architecture is similar to that of the Solar System, with rocky planets being closer to the star and gas giants being more distant. This planet is located at 1.01 AU from its star, which is within the habitable zone of Kepler-90 and thus could theoretically have a habitable Earth-like exomoon.

style="background:pink;"

|style="border:4px ridge cyan; background:#000000; text-align:center;"|112px

| Jupiter

| data-sort-value="1"|1
({{val|11.209|ul=Earth radius}}){{efn|name="pressure"|Refers to the level of 1 bar atmospheric pressure}}
(71 492 km)

| style="text-align:center;" |{{number sign}}

| data-sort-value="1"|1
({{val|317.827|ul=Earth mass}})
(1.898 125 × 1027 kg)

| Oldest, largest and most massive planet in the Solar System; this planet hosts 95 known moons including the Galilean moons.
Reported for reference.

style="border:4px ridge red; background:#000000; text-align:center;" |112px

| IRAS 04125+2902 b
(TIDYE-1 b)

| data-sort-value="0.958"|0.958 {{±|0.077|0.075}}{{Cite journal |last1=Barber |first1=Madyson G. |last2=Mann |first2=Andrew W. |last3=Vanderburg |first3=Andrew |last4=Krolikowski |first4=Daniel |last5=Kraus |first5=Adam |last6=Ansdell |first6=Megan |last7=Pearce |first7=Logan |last8=Mace |first8=Gregory N. |last9=Andrews |first9=Sean M. |last10=Boyle |first10=Andrew W. |last11=Collins |first11=Karen A. |last12=De Furio |first12=Matthew |last13=Dragomir |first13=Diana |last14=Espaillat |first14=Catherine |last15=Feinstein |first15=Adina D. |date=November 2024 |title=A giant planet transiting a 3-Myr protostar with a misaligned disk |url=https://www.nature.com/articles/s41586-024-08123-3 |journal=Nature |language=en |volume=635 |issue=8039 |pages=574–577 |doi=10.1038/s41586-024-08123-3 |pmid=39567788 |issn=1476-4687 |arxiv=2411.18683 |bibcode=2024Natur.635..574B}}

| style="text-align:center;" |←

| data-sort-value="0.3"|< 0.3
(< 90 {{val|ul=Earth mass}})

| Youngest transiting exoplanet discovered, with an age of just three Myr. This planet will shed its outer layers during its evolution, becoming either a sub-Neptune, super-Earth or a sub-Saturn, with the radius shrinking to 1.5 – 4 {{val|ul=Earth radius}} if the planet becomes a super-Neptune or 4 – 7 {{val|ul=Earth radius}} if it becomes a sub-Saturn.{{Cite web |last=Wenz |first=John |date=2024-11-20 |title=Young, shrouded super-Neptune could help teach us how such worlds form |url=https://www.astronomy.com/science/this-young-shrouded-super-neptune-could-help-teach-us-how-such-planets-form/ |access-date=2024-11-20 |website=Astronomy Magazine |language=en-US}}

style="border:4px ridge red; background:#000000; text-align:center;" |112px

| WD 1856b
(WD 1856+534 b,
Gliese 229–20 Cb)

| 0.946 ± 0.017{{cite journal |title = A giant planet candidate transiting a white dwarf |display-authors = etal |first1 = Andrew |last1 = Vanderburg |first2 = Saul A. |last2 = Rappaport |first3 = Siyi |last3 = Xu |first4 = Ian J. M. |last4 = Crossfield |first5 = Juliette C. |last5 = Becker |first6 = Bruce |last6 = Gary |date = September 2020 |journal = Nature |volume = 585 |issue = 7825 |pages = 363–367 |doi = 10.1038/s41586-020-2713-y |pmid = 32939071 |arxiv = 2009.07282 |bibcode = 2020Natur.585..363V|s2cid = 221738865}}

| style="text-align:center;" |←

| data-sort-value="0.84" |0.84{{Cite journal |last1=Xu |first1=Siyi |last2=Diamond-Lowe |first2=Hannah |last3=MacDonald |first3=Ryan J. |last4=Vanderburg |first4=Andrew |last5=Blouin |first5=Simon |last6=Dufour |first6=P. |last7=Gao |first7=Peter |last8=Kreidberg |first8=Laura |last9=Leggett |first9=S. K. |last10=Mann |first10=Andrew W. |last11=Morley |first11=Caroline V. |last12=Stephens |first12=Andrew W. |last13=O'Connor |first13=Christopher E. |last14=Thao |first14=Pa Chia |last15=Lewis |first15=Nikole K. |date=2021-12-01 |title=Gemini/GMOS Transmission Spectroscopy of the Grazing Planet Candidate WD 1856+534 b |journal=The Astronomical Journal |volume=162 |issue=6 |pages=296 |arxiv=2110.14106 |bibcode=2021AJ....162..296X |doi=10.3847/1538-3881/ac2d26 |doi-access=free |issn=0004-6256}} – 5.2 {{±|0.7|0.8}}

| Coldest exoplanet directly detected at a temperature of 186 {{±|6|7}} {{val|ul=K}}{{cite journal |last1=Limbach |first1=Mary Anne |last2=Vanderburg |first2=Andrew |display-authors=etal |date=April 2025 |title=Thermal Emission and Confirmation of the Frigid White Dwarf Exoplanet WD 1856+534b |journal=The Astrophysical Journal Letters |volume= 984|issue= 1|pages= L28|doi= 10.3847/2041-8213/adc9ad|doi-access=free |arxiv=2504.16982|bibcode=2025ApJ...984L..28L }} and first and only transiting true planet to be observed orbiting a white dwarf.
This gas giant orbits its host star closely at a distance of 0.02 AU. This indicates that the planet may have migrated inward after its host star evolved from a red giant to a white dwarf, otherwise it would have been engulfed by its star. This migration may be related to the fact that WD 1856+534 belongs to a hierarchical triple-star system: the white dwarf and its planet are gravitationally bound to a distant companion, Gliese 229–20AB, which itself is a binary system of two red dwarf stars. Gravitational interactions with the companion stars may have triggered the planet's migration through the Lidov–Kozai mechanism{{Cite journal|last1=Muñoz|first1=Diego J.|last2=Petrovich|first2=Cristobal|date=2020-11-19|title=Kozai Migration Naturally Explains the White Dwarf Planet WD1856b|journal=The Astrophysical Journal|volume=904|issue=1|pages=L3|doi=10.3847/2041-8213/abc564|issn=2041-8213|arxiv=2010.04724|bibcode=2020ApJ...904L...3M|s2cid=222290559 |doi-access=free}}{{Cite journal|last1=O'Connor|first1=Christopher E.|last2=Liu|first2=Bin|last3=Lai|first3=Dong|date=2020-11-30|title=Enhanced Lidov-Kozai migration and the formation of the transiting giant planet WD1856+534b|journal=Monthly Notices of the Royal Astronomical Society|volume=501 |pages=507–514|doi=10.1093/mnras/staa3723|doi-access=free |issn=0035-8711|arxiv=2010.04163|s2cid=222272242}}{{cite journal|last1=Stephan|first1=Alexander P.|last2=Naoz|first2=Smadar |last3=Gaudi|first3=B. Scott|title=Giant Planets, Tiny Stars: Producing Short-period Planets around White Dwarfs with the Eccentric Kozai–Lidov Mechanism|journal=The Astrophysical Journal|year=2021|volume=922|issue=1 |page=4|doi=10.3847/1538-4357/ac22a9|arxiv=2010.10534|bibcode=2021ApJ...922....4S |s2cid=224819085 |doi-access=free}} in a manner similar to some hot Jupiters. Another alternative hypothesis is that the planet instead has survived a common envelope phase.{{citation|arxiv=2010.09747|title=WD 1856 b: a close giant planet around a white dwarf that could have survived a common-envelope phase|year=2021|doi=10.1093/mnras/staa3703|last1=Lagos|first1=F.|last2=Schreiber|first2=M. R.|last3=Zorotovic |first3=M.|last4=Gänsicke|first4=B. T.|last5=Ronco|first5=M. P.|last6=Hamers|first6=Adrian S.|journal=Monthly Notices of the Royal Astronomical Society|volume=501|issue=1|pages=676–682|doi-access=free |bibcode=2021MNRAS.501..676L|s2cid=224802868}} In the latter scenario, other planets engulfed before may have contributed to the expulsion of the stellar envelope.{{citation |arxiv=2011.11106 |title=Successive common envelope events from multiple planets|year=2021|last1=Chamandy|first1=Luke|last2=Blackman|first2=Eric G. |last3=Nordhaus|first3=Jason|last4=Wilson|first4=Emily|journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=502|pages=L110–L114|doi=10.1093/mnrasl/slab017|doi-access=free}} JWST observations seem to disfavour the formation via common envelope and instead favour high eccentricity migration.{{Cite journal |last1=O'Connor |first1=Christopher |last2=Lai |first2=Dong |last3=MacDonald |first3=Ryan |last4=The JWST WD1856b Team |date=2024-08-01 |title=The thermal evolution of WD1856b reveals its migration history |url=https://ui.adsabs.harvard.edu/abs/2024DDA....5540101O/abstract |journal=AAS Division on Dynamical Astronomy Meeting #55, Id. 401.01 |volume=56 |issue=6 |pages=401.01 |bibcode=2024DDA....5540101O}}

style="border:4px ridge red; background:#000000; text-align:center;" |112px

| TOI-6894 b

| data-sort-value="0.855"|0.855 ± 0.022{{Cite journal |last1=Bryant |first1=E.M. |last2=Jordán |first2=A. |last3=Hartman |first3=Joel D. |date=4 June 2025 |title=A transiting giant planet in orbit around a 0.2-solar-mass host star |journal=Nature Astronomy |language=en |volume=635 |issue=8039 |pages=574–577 |doi=10.1038/s41550-025-02552-4|doi-access=free |arxiv=2506.07931 |bibcode=2025NatAs.tmp..129B }}

| style="text-align:center;" |←

| data-sort-value="0.168"|0.168 ± 0.022

| Its formation is unclear; this planet might have begun its formation through a core-accretion process but did not undergo runaway gas accretion. Instead, an intermediate phase of heavy-element accretion occurred, accompanied by a steady accretion of gas onto the forming protoplanet. While TOI-6894 b orbits its host star very close like a hot Jupiter, the planet is unusually cold for a gas giant, with a temperature of 420 K (146.85 {{val|ul=°C}}) due to TOI-6894 being the lowest mass star to host a giant planet with a mass of 0.207 ± 0.011 {{Solar mass|link=y}}.

style="background:pink;"

|style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| Saturn

| data-sort-value="0.84298"|{{val|{{#expr: 9.449/11.209 round 5}}}}
({{val|9.449|ul=Earth radius}}){{efn|name="pressure"}}{{cite web |url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html |title=Saturn Fact Sheet |publisher=NASA |last=Williams |first=David R. |access-date=12 October 2017 |date=23 December 2016 |archive-url=https://web.archive.org/web/20170717071200/https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html |archive-date=17 July 2017 |url-status=dead }}

| style="text-align:center;" |{{number sign}}

| data-sort-value="0.29942"|0.299 42
({{val|95.16|ul=Earth mass}})

| Second oldest and least dense planet in the Solar System;{{Cite web |url=http://www.preservearticles.com/201101233659/saturn-the-most-beautiful-planet-of-our-solar-system.html |title=Saturn – The Most Beautiful Planet of our solar system |work=Preserve Articles |date=23 January 2011 |access-date=24 July 2011 |archive-url=https://web.archive.org/web/20120120134152/http://www.preservearticles.com/201101233659/saturn-the-most-beautiful-planet-of-our-solar-system.html |archive-date=20 January 2012 |url-status=live }} this planet hosts the most number of moons of 274 known moons including Rhea and Titan.
While the gas giants do have ring systems, Saturn is the most notable for its visible ring system.
Reported for reference.

style="background:pink;"

|style="border:4px ridge purple; background:white; text-align:center;"|112px

| EBLM J0555-57Ab

| data-sort-value="0.817404"|0.8174{{Cite journal |last1=Boetticher |first1=Alexander von |last2=Triaud |first2=Amaury H. M. J. |last3=Queloz |first3=Didier |last4=Gill |first4=Sam |last5=Maxted |first5=Pierre F. L. |last6=Almleaky |first6=Yaseen |last7=Anderson |first7=David R. |last8=Bouchy |first8=François |last9=Burdanov |first9=Artem |last10=Cameron |first10=Andrew Collier |last11=Delrez |first11=Laetitia |last12=Ducrot |first12=Elsa |last13=Faedi |first13=Francesca |last14=Gillon |first14=Michaël |last15=Chew |first15=Yilen Gómez Maqueo |date=2019-05-01 |title=The EBLM Project - V. Physical properties of ten fully convective, very-low-mass stars |journal=Astronomy & Astrophysics |language=en |volume=625 |pages=A150 |doi=10.1051/0004-6361/201834539 |bibcode=2019A&A...625A.150V |issn=0004-6361|arxiv=1903.10808 }}
(0.084 {{Solar radius|link=y}})

| style="text-align:center;" |{{number sign}}

| data-sort-value="87.9"|87.9 ± 4.0
(0.0839 ± 0.0038 {{Solar mass|link=y}})

| Smallest red dwarf star currently known.
Reported for reference.

class="sortbottom"

| colspan="6" | For smaller exoplanets, see the list of smallest exoplanets or other lists of exoplanets. For exoplanets with milestones, see the list of exoplanet extremes and list of exoplanet firsts.

= Notes =

{{notelist}}

Candidates for largest exoplanets

=Exoplanets with uncertain radii=

This list contains planets with uncertain radii that could be below or above the adopted cut-off of 1.6 {{Jupiter radius|link=y}}, depending on the estimate.

class="wikitable" style="margin:0px 15px 0px 0px"

|+Key (Classification)

| bgcolor="#FFF8DC" width=40px style="text-align:center;"|{{asterisk}}

! Probably brown dwarfs (≳ 13 {{Jupiter mass}}) (based on mass)

style="text-align:center;"| ←

! Probably planets (≲ 13 {{Jupiter mass|link=y}}) (based on mass)

bgcolor="#CFF7C1" style="text-align:center;"|?

! Status uncertain (inconsistency in age or mass of planetary system)

bgcolor="#CEE0F2" width="40px" style="text-align:center;" | →

! Planets with grazing transit, hindering radius determination

class="wikitable"

|+Key (Illustration)

style="border:4px ridge blue;"|

! Direct imaging telescopic observation

colspan="2"|
style="border:4px ridge green;"|

! Composite image of direct observations

colspan="2"|
style="border:4px ridge orange;"|

! Artist's impression size comparison

{{sticky header}}

class="wikitable sortable sticky-header"

! class="unsortable"| Illustration

! Name
(Alternates)

! data-sort-type=number| Radius
({{Jupiter radius|link=y}})

! class="unsortable"| Key

! data-sort-type=number| Mass
({{Jupiter mass|link=y}})

! class="unsortable"| Notes

style="background:#CEE0F2"

|

| TOI-1408 b

| data-sort-value="2.23" |2.23 ± 0.36,{{Efn|1=Converted from {{val|25|4|ul=Earth radius}}.}}
2.4 ± 0.5,
> 1, 1.5,{{efn|estimate}}

| style="text-align:center;" | →

| data-sort-value="1.86" |1.86 ± 0.02

| A large radius of {{val|2.23

2.4|u=Jupiter radius}} has been derived from transit photometry, but this value is likely inaccurate due to the grazing transit of TOI-1408 b; it transits only part of the star's surface, thus hindering a precise measurement of planet-to-star size ratio. The study revealed a clear transit timing variations (TTV) signal for TOI-1408 b, discovering super-Neptune TOI-1408 c which locates closer to TOI-1408, and claims that their photodynamical modeling could constrain TOI-1408 b’s radius more reliably, which needs to be confirmed.
style="background:#cff7c1"

| style="border:4px ridge blue; background:#000000; text-align:center;" |112x112px

| SR 12 c
(SR 12 (AB) b,
SR 12 C)

| data-sort-value="1.6" |~ 1.6,
2.38 {{±|0.27|0.32}}

| style="text-align:center;" |?

| data-sort-value="11" |13 ± 2

| The planet is at the very edge of the deuterium burning limit. This object orbits around SR 12 AB at the distance of 980 {{val|ul=AU}} but has a circumplanetary disk, detected in sub-mm with ALMA.
Other sources of masses includes 14 {{±|7|8}} {{Jupiter mass|link=y}}, 12{{snd}}15 {{Jupiter mass|link=y}} and 11 ± 3 {{Jupiter mass|link=y}}.

style="background:#cff7c1"

| style="border:4px ridge blue; background:#000000; text-align:center;"| 112px

| Delorme 1b
(2MASS J0103-5515 (AB) b,
2MASS0103(AB)b)

| data-sort-value="1.59" |~ 1.59{{Cite journal |last1=Eriksson |first1=Simon C. |last2=Asensio Torres |first2=Rubén |last3=Janson |first3=Markus |last4=Aoyama |first4=Yuhiko |last5=Marleau |first5=Gabriel-Dominique |last6=Bonnefoy |first6=Mickael |last7=Petrus |first7=Simon |date=June 2020 |title=Strong H α emission and signs of accretion in a circumbinary planetary mass companion from MUSE |url=https://www.aanda.org/10.1051/0004-6361/202038131 |journal=Astronomy & Astrophysics |volume=638 |pages=L6 |arxiv=2005.11725 |bibcode=2020A&A...638L...6E |doi=10.1051/0004-6361/202038131 |issn=0004-6361}}

| style="text-align:center;" |?

| data-sort-value="13" |13 ± 1{{Cite journal |last1=Delorme |first1=P. |last2=Gagné |first2=J. |last3=Girard |first3=J. H. |last4=Lagrange |first4=A. M. |last5=Chauvin |first5=G. |last6=Naud |first6=M. -E. |last7=Lafrenière |first7=D. |last8=Doyon |first8=R. |last9=Riedel |first9=A. |last10=Bonnefoy |first10=M. |last11=Malo |first11=L. |date=2013-05-01 |title=Direct-imaging discovery of a 12-14 Jupiter-mass object orbiting a young binary system of very low-mass stars |journal=Astronomy and Astrophysics |volume=553 |pages=L5 |doi=10.1051/0004-6361/201321169 |bibcode=2013A&A...553L...5D |issn=0004-6361|doi-access=free |arxiv=1303.4525 }}

| The formation is unclear. The high accretion is in better agreement with a formation via disk fragmentation, hinting that it might have formed from a circumstellar disk.{{Cite journal |last1=Betti |first1=S. K. |last2=Follette |first2=K. B. |last3=Ward-Duong |first3=K. |last4=Aoyama |first4=Y. |last5=Marleau |first5=G. -D. |last6=Bary |first6=J. |last7=Robinson |first7=C. |last8=Janson |first8=M. |last9=Balmer |first9=W. |last10=Chauvin |first10=G. |last11=Palma-Bifani |first11=P. |date=2022-08-01 |title=Near-infrared Accretion Signatures from the Circumbinary Planetary-mass Companion Delorme 1 (AB)b |journal=The Astrophysical Journal |volume=935 |issue=1 |pages=L18 |arxiv=2208.05016 |bibcode=2022ApJ...935L..18B |doi=10.3847/2041-8213/ac85ef |doi-access=free |issn=0004-637X}} Giant planets and brown dwarfs are thought to form via disk fragmentation in rare cases in the outer regions of a disk (r > 50 AU).{{Cite journal |last1=Rice |first1=Ken |last2=Lopez |first2=Eric |last3=Forgan |first3=Duncan |last4=Biller |first4=Beth |date=2015-12-01 |title=Disc fragmentation rarely forms planetary-mass objects |url=https://academic.oup.com/mnras/article/454/2/1940/1048443 |journal=Monthly Notices of the Royal Astronomical Society |volume=454 |issue=2 |pages=1940–1947 |arxiv=1508.06528 |bibcode=2015MNRAS.454.1940R |doi=10.1093/mnras/stv1997 |doi-access=free |issn=0035-8711}} Teasdale & Stamatellos modelled three formation scenarios in which the planet could have formed. In the first two scenarios the planet forms in a massive disk via gravitational instability. The first two scenarios produce planets that have accretion and separation comparable to the observed ones, but the resulting planets are more massive than Delorme 1 b. In a third scenario the planet forms via core accretion in a less massive disk much closer to the binary. In this third scenario the mass and accretion are similar to the observed ones, but the separation is smaller.{{Cite journal |last1=Teasdale |first1=Matthew |last2=Stamatellos |first2=Dimitris |date=2024-08-01 |title=On the potential origin of the circumbinary planet Delorme 1 (AB)b |url=https://academic.oup.com/mnras/article/533/2/2294/7733105 |journal=Monthly Notices of the Royal Astronomical Society |volume=533 |issue=2 |pages=2294–2302 |arxiv=2408.06231 |bibcode=2024MNRAS.533.2294T |doi=10.1093/mnras/stae1964 |doi-access=free |issn=0035-8711}}

style="border:4px ridge blue; background:#000000; text-align:center;"| 112x112px

| AB Pictoris b
(AB Pic b)

| data-sort-value="1.57"|1.57 ± 0.07{{snd}}1.8 ± 0.3,
1.4 – 2.2

| style="text-align:center;" |←

| data-sort-value="10"|10 ± 1

|{{nowrap| Previously believed to be a likely brown dwarf, with}} mass estimates of {{val|13

14|u=Jupiter mass}} to {{val|70|u=Jupiter mass}}, its mass is now estimated to be {{Val|10|1|u=Jupiter mass}}, with an age of {{val|13.3|1.1|0.6}} million years.
style="background:#CEE0F2"

|

| TOI-2193 Ab

| data-sort-value="1.55" |> 1.55{{efn|name="uncertain"|95% lower limit}}

| style="text-align:center;" | →

| data-sort-value="0.94" |{{nowrap|0.94 ± 0.18}}

| Grazing planet, a large reported radius of {{Jupiter radius|1.77}} is unreliable. Whether it is larger than {{Jupiter radius|1.6}} is unknown.

style="border:4px ridge orange; background:#000000;" |112x112px

| XO-6b

| data-sort-value="2.17" |{{nowrap|1.517 ± 0.176}}{{snd}}2.17 ± 0.2

| style="text-align:center;" |←

| data-sort-value="4.47" |4.47 ± 0.12

| A very puffy Hot Jupiter. Large size needs confirmation due to size discrepancy.

style="background:#FFF8DC"

| style="border:4px ridge green; background:#000000; text-align:center;" |112x112px

| GSC 06214-00210 b

| data-sort-value="1.49" |{{nowrap|1.49 {{±|0.10|0.12}}}} {{snd}}2.0,{{Cite journal |last1=Demars |first1=D. |last2=Bonnefoy |first2=M. |last3=Dougados |first3=C. |last4=Aoyama |first4=Y. |last5=Thanathibodee |first5=T. |last6=Marleau |first6=G.-D. |last7=Tremblin |first7=P. |last8=Delorme |first8=P. |last9=Palma-Bifani |first9=P. |last10=Petrus |first10=S. |last11=Bowler |first11=B. P. |last12=Chauvin |first12=G. |last13=Lagrange |first13=A.-M. |date=August 2023 |title=Emission line variability of young 10–30 M Jup companions: I. The case of GQ Lup b and GSC 06214-00210 b |url=https://www.aanda.org/10.1051/0004-6361/202346221 |journal=Astronomy & Astrophysics |volume=676 |pages=A123 |arxiv=2305.09460 |bibcode=2023A&A...676A.123D |doi=10.1051/0004-6361/202346221 |issn=0004-6361}}
1.91 ± 0.07

| style="text-align:center;" | *

| data-sort-value="21" |21 ± 6
15.5 ± 0.5

| Has a circumsubstellar disk found by polarimetry.

style="border:4px ridge green; background:#000000; text-align:center;"|112x112px

| Beta Pictoris b
(β Pic b)

| data-sort-value="1.46"|1.46 ± 0.01{{snd}}1.65 ± 0.06{{Cite journal |last1=Currie |first1=Thayne |last2=Burrows |first2=Adam |last3=Madhusudhan |first3=Nikku |last4=Fukagawa |first4=Misato |last5=Girard |first5=Julien H. |last6=Dawson |first6=Rebekah |last7=Murray-Clay |first7=Ruth |last8=Kenyon |first8=Scott |last9=Kuchner |first9=Marc |last10=Matsumura |first10=Soko |last11=Jayawardhana |first11=Ray |last12=Chambers |first12=John |last13=Bromley |first13=Ben |date=2013-09-20 |title=A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE OF THE DIRECTLY IMAGED PLANET, β PICTORIS b |url=https://iopscience.iop.org/article/10.1088/0004-637X/776/1/15 |journal=The Astrophysical Journal |volume=776 |issue=1 |pages=15 |arxiv=1306.0610 |bibcode=2013ApJ...776...15C |doi=10.1088/0004-637X/776/1/15 |issn=0004-637X}}

| style="text-align:center;" |←

| data-sort-value="11.729"|{{nowrap|11.729 {{±|2.337|2.135}}}}

| First exoplanet to have its rotation rate measured{{cite news |url=http://www.eso.org/public/news/eso1414/ |title=Length of Exoplanet Day Measured for First Time / VLT measures the spin of Beta Pictoris b |date=April 30, 2014}}{{Cite journal | doi = 10.1038/nature.2014.15132| title = First exoplanet seen spinning| journal = Nature| date = April 30, 2014| last1 = Cowen | first1 = R. | s2cid = 123849861}} and fastest-spinning planet discovered at the equator speed of {{convert|19.9 ± 1.0|km/s|mi/s|abbr=on}} or {{convert|71640 ± 3600|km/h|mph|abbr=on}}.{{cite journal |last1=Landman |first1=R. |last2=Stolker |first2=T. |display-authors=etal |date=February 2024 |title=β Pictoris b through the eyes of the upgraded CRIRES+. Atmospheric composition, spin rotation, and radial velocity |journal=Astronomy & Astrophysics |volume=682 |issue= |pages=A48 |doi=10.1051/0004-6361/202347846 |arxiv=2311.13527 |bibcode=2024A&A...682A..48L }} Beta Pictoris b is suspected to have an exomoon due to the former's predicted obliquity misalignment.{{Cite journal |last1=Poon |first1=Michael |last2=Rein |first2=Hanno |last3=Pham |first3=Dang |title=A potential exomoon from the predicted planet obliquity of β Pictoris b |journal=The Open Journal of Astrophysics |date=2024-12-08 |volume=7 |doi=10.33232/001c.127130 |arxiv=2412.05988}}

style="background:#CEE0F2"

|

| TOI-3540 b

| data-sort-value="1.44" |> 1.44{{efn|name="uncertain"}}

| style="text-align:center;" | →

| data-sort-value="1.18" |1.18 ± 0.14

| Grazing planet, a large reported radius of {{Jupiter radius|2.10}} is unreliable. Whether it is larger than {{Jupiter radius|1.6}} is unknown.

style="border:4px ridge blue; background:#000000; text-align:center;"|112x112px

| HD 106906 b

| data-sort-value="1.3"|1.30 ± 0.06{{snd}}1.74 ± 0.06,{{Cite journal |last1=Adams |first1=Arthur D. |last2=Meyer |first2=Michael R. |last3=Howe |first3=Alex R. |last4=Burningham |first4=Ben |last5=Daemgen |first5=Sebastian |last6=Fortney |first6=Jonathan |last7=Line |first7=Mike |last8=Marley |first8=Mark |last9=Quanz |first9=Sascha P. |last10=Todorov |first10=Kamen |date=2023-11-01 |title=Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared |journal=The Astronomical Journal |volume=166 |issue=5 |pages=192 |arxiv=2309.10188 |bibcode=2023AJ....166..192A |doi=10.3847/1538-3881/acfb87 |doi-access=free |issn=0004-6256}}
1.54 {{±|0.04|0.05}}

| style="text-align:center;" |←

| data-sort-value="11"|11 ± 2{{cite journal |title=HD 106906 b: A planetary-mass companion outside a massive debris disk |journal=The Astrophysical Journal Letters |first1=Vanessa |last1=Bailey |first2=Tiffany |last2=Meshkat |first3=Megan |last3=Reiter |first4=Katie |last4=Morzinski |first5=Jared |last5=Males |first6=Kate Y. L. |last6=Su |first7=Philip M. |last7=Hinz |first8=Matthew |last8=Kenworthy |first9=Daniel |last9=Stark |first10=Eric |last10=Mamajek |first11=Runa |last11=Briguglio |first12=Laird M. |last12=Close |first13=Katherine B. |last13=Follette |first14=Alfio |last14=Puglisi |first15=Timothy |last15=Rodigas |first16=Alycia J. |last16=Weinberger |first17=Marco |last17=Xompero |display-authors=1 |volume=780 |issue=1 |page=L4 |date=January 2014 |arxiv=1312.1265 |doi=10.1088/2041-8205/780/1/L4 |bibcode=2014ApJ...780L...4B|s2cid=119113709}}

| This planet orbits around HD 106906 at the separation of 738 AU, a distance much larger than what is possible for a planet formed within a protoplanetary disk.{{cite news |last=Osborne |first=Hannah |date=December 6, 2013 |title=Mystery Planet 'That Shouldn't Exist' Baffles Astronomers |url=http://www.ibtimes.co.uk/articles/528146/20131206/mystery-planet-exist-location-young-star-formation.htm |url-status=dead |archive-url=https://web.archive.org/web/20131213065309/http://www.ibtimes.co.uk/articles/528146/20131206/mystery-planet-exist-location-young-star-formation.htm |archive-date=December 13, 2013 |access-date=December 8, 2013 |work=International Business Times}} Observations made by the Hubble Space Telescope strengthened the case for the planet having an unusual orbit that perturbed it from its host star's debris disk causing NASA and several news outlets to compare it to the hypothetical Planet Nine.{{Cite web|url=http://www.nasa.gov/feature/goddard/2020/hubble-pins-down-weird-exoplanet-with-far-flung-orbit|title=Hubble Pins Down Weird Exoplanet with Far-Flung Orbit|first=Lynn|last=Jenner|date=December 9, 2020|website=NASA}}{{Cite web|url=https://scitechdaily.com/hubble-discovers-a-strange-exoplanet-that-resembles-the-long-sought-planet-nine/|title=Hubble Discovers a Strange Exoplanet That Resembles the Long-Sought "Planet Nine"|date=December 11, 2020}}{{efn|Hypothetical Planet Nine may be challenged by the discovery of 2017 OF201{{cite arXiv | eprint=2505.15806 | last1=Cheng | first1=Sihao | last2=Li | first2=Jiaxuan | last3=Yang | first3=Eritas | title=Discovery of a dwarf planet candidate in an extremely wide orbit: 2017 OF201 | date=2025 | class=astro-ph.EP }} which its orbit is anti-aligned to the calculated orbit of Planet Nine. The existence of {{mp|2017 OF|201}}, which also means that there are likely many other similar objects that are just obscured from earth observation, challenges one of the leading arguments for Planet Nine, that its gravity causes trans-Neptunian objects to cluster into a distinct region.{{cite web |last1=Chandler |first1=David L. |title=Another Dwarf Planet in Our Solar System? |url=https://skyandtelescope.org/astronomy-news/another-dwarf-planet-in-our-solar-system/ |website=Sky & Telescope |date=27 May 2025 |access-date=29 May 2025}}
It is suggested hypothetical Planet Nine would have ejected {{mp|2017 OF|201}} from its current orbit over times scales of less than 100 million years, though it could be in a temporary orbit.{{Cite press release |title=An Extreme Cousin for Pluto? Possible Dwarf Planet Discovered at Solar System's Edge |date=2025-05-20 |publisher=Institute for Advanced Study |url=https://www.ias.edu/news/extreme-cousin-pluto-possible-dwarf-planet-discovered-solar-systems-edge |language=en |access-date=2025-05-23 |website=www.ias.edu}}
Nevertheless, it is possible that Planet Nine's existence is still there as the simulations do not disprove Planet Nine.{{cite web |last1=Chang |first1=Kenneth |title = Scientists Say They've Found a Dwarf Planet Very Far From the Sun |url = https://www.nytimes.com/2025/05/29/science/dwarf-planet-nine-discovery.html |archive-url = https://web.archive.org/web/20250531194826/https://www.nytimes.com/2025/05/29/science/dwarf-planet-nine-discovery.html |archive-date = 2025-05-31 |work = The New York Times |date=29 May 2025 |access-date=1 June 2025}}}} It was later found that its carbon-to-oxygen ratio is similar to the stellar association it is located, not ruling out formation in a star-like manner.{{Cite journal |last1=Adams |first1=Arthur D. |last2=Meyer |first2=Michael R. |last3=Howe |first3=Alex R. |last4=Burningham |first4=Ben |last5=Daemgen |first5=Sebastian |last6=Fortney |first6=Jonathan |last7=Line |first7=Mike |last8=Marley |first8=Mark |last9=Quanz |first9=Sascha P. |last10=Todorov |first10=Kamen |date=2023-11-01 |title=Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared |journal=The Astronomical Journal |volume=166 |issue=5 |pages=192 |arxiv=2309.10188 |bibcode=2023AJ....166..192A |doi=10.3847/1538-3881/acfb87 |issn=0004-6256 |doi-access=free}}

style="background:#FFF8DC"

|

| GSC 08047-00232 b

| data-sort-value="1.17" |1.17 – 1.85

| style="text-align:center;" | *

| data-sort-value="25" |25 ± 10{{Cite journal |last1=Chauvin |first1=G. |last2=Lagrange |first2=A.-M. |last3=Lacombe |first3=F. |last4=Dumas |first4=C. |last5=Mouillet |first5=D. |last6=Zuckerman |first6=B. |last7=Gendron |first7=E. |last8=Song |first8=I. |last9=Beuzit |first9=J.-L. |last10=Lowrance |first10=P. |last11=Fusco |first11=T. |date=February 2005 |title=Astrometric and spectroscopic confirmation of a brown dwarf companion to GSC 08047-00232: VLT/NACO deep imaging and spectroscopic observations |url=http://www.aanda.org/10.1051/0004-6361:20041353 |journal=Astronomy & Astrophysics |volume=430 |issue=3 |pages=1027–1033 |arxiv=astro-ph/0412548 |bibcode=2005A&A...430.1027C |doi=10.1051/0004-6361:20041353 |issn=0004-6361}}

|

== Notes ==

{{notelist}}

=Unconfirmed exoplanets=

These planets are also larger than 1.6 times the size of the largest planet in the Solar System, Jupiter, but have yet to be confirmed or are disputed.
Note: Some data may be unreliable or incorrect due to unit or conversion errors and some objects are confirmed exoplanets such as TOI-7081 b and TOI-7018 b

class="wikitable" style="margin:0px 15px 0px 0px"

|+Key (Classification)

bgcolor="#FFF8DC" style="text-align:center;"|{{asterisk}}

! Probably brown dwarfs (≳ 13 {{Jupiter mass}}) (based on mass)

bgcolor="#FFE8DC" style="text-align:center;"|{{dagger}}

! Probably sub-brown dwarfs (≲ 13 {{Jupiter mass}}) (based on mass and location)

style="text-align:center;"| ←

! Probably planets (≲ 13 {{Jupiter mass}}) (based on mass)

bgcolor="#FE9F9F" style="text-align:center;"| X

! Unclassified object (unknown mass)

bgcolor="#FAECC8" style="text-align:center;"| ↘

! Destroyed planet

bgcolor="#E6E6E6" width=40px style="text-align:center;"| –

! Theoretical planet size restrictions

class="wikitable"

|+Key (Illustration)

style="border:4px ridge red;"|

! Artist's impression

colspan="2"|
style="border:4px ridge blue;"|

! Direct imaging telescopic observation

colspan="2"|
style="border:4px ridge green;"|

! Composite image of direct observations

{{sticky header}}

class="wikitable sortable sticky-header"
class="unsortable"| Illustration

! Name
(Alternates)
(Status)

! data-sort-type=number| Radius
({{Jupiter radius|link=y}})

! class="unsortable"| Key

! data-sort-type=number| Mass
({{Jupiter mass|link=y}})

! class="unsortable" | Notes

style="background:#e6e6e6"

|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| New born planet limit

| data-sort-value="30"|~ 30{{Cite journal |last1=Nayakshin |first1=Sergei |last2=Elbakyan |first2=Vardan |date=2024-01-23 |title=On the origin of accretion bursts in FU Ori |url=https://academic.oup.com/mnras/article/528/2/2182/7513777 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=528 |issue=2 |pages=2182–2198 |arxiv=2309.12072 |bibcode=2024MNRAS.528.2182N |doi=10.1093/mnras/stae049 |issn=0035-8711 |doi-access=free}}

| style="text-align:center;"|–

| data-sort-value="20"|≤ 20
{{nowrap|(≤ 13)}}

| Theoretical size limit of a newly-formed planet.

style="background:#e6e6e6"

|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| Young Hot Jupiter limit

| data-sort-value="20"|~ 20{{Cite journal |last1=Nayakshin |first1=Sergei |last2=Owen |first2=James E |last3=Elbakyan |first3=Vardan |date=2023-05-23 |title=Extreme evaporation of planets in hot thermally unstable protoplanetary discs: the case of FU Ori |url=https://academic.oup.com/mnras/article/523/1/385/7161140 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=523 |issue=1 |pages=385–403 |arxiv=2305.03392 |bibcode=2023MNRAS.523..385N |doi=10.1093/mnras/stad1392 |issn=0035-8711 |doi-access=free}}

| style="text-align:center;"|–

| data-sort-value="10"|≤ 10

| Theoretical size limit of a newly-formed planet that needed 104 – 105 ({{val|10000}} – {{val|100000}}) years to migrate close to the host star, but has not yet interacted with it beforehand.

style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| {{nowrap|FU Orionis North b}}
(FU Ori Ab)
(unconfirmed)

| data-sort-value="10"|~ 9.8
(~ {{val|1.0|ul=Solar radius}})

| style="text-align:center;" |←

| data-sort-value="3"|~ 3

| Discovered using a variation of disk kinematics.{{Cite web |title=Planet FU Ori b |url=https://exoplanet.eu/catalog/fu_ori_b--9413/ |access-date=2024-10-11 |website=Encyclopaedia of exoplanetary systems / exoplanet.eu |language=en}} Tidal disruption and extreme evaporation made the planet radius shrink from the beginning of the burst ({{Jupiter radius|14}}) in 1937 to the present year by ~30 per cent and its mass is around half of its initial mass of {{Jupiter mass|6}}.

bgcolor="#FE9F9F"

|

| UCAC4 174-179953 b
(unclassified)

| 8.14 ± 0.40{{Cite journal |last1=Mékarnia |first1=D. |last2=Guillot |first2=T. |last3=Rivet |first3=J.-P. |last4=Schmider |first4=F.-X. |last5=Abe |first5=L. |last6=Gonçalves |first6=I. |last7=Agabi |first7=A. |last8=Crouzet |first8=N. |last9=Fruth |first9=T. |last10=Barbieri |first10=M. |last11=Bayliss |first11=D. D. R. |last12=Zhou |first12=G. |last13=Aristidi |first13=E. |last14=Szulagyi |first14=J. |last15=Daban |first15=J.-B. |date=2016-11-21 |title=Transiting planet candidates with ASTEP 400 at Dome C, Antarctica |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=463 |issue=1 |pages=45–62 |bibcode=2016MNRAS.463...45M |doi=10.1093/mnras/stw1934 |doi-access=free |issn=0035-8711}}
(0.84 {{Solar radius|link=y}})

| style="text-align:center;" |X

| Unknown

| rowspan="12" |Object cannot be classified as brown dwarf or exoplanet without a mass estimate.

bgcolor="#FE9F9F"

|

| UCAC4 220-040923 b
(unclassified)

| 4.65 ± 0.20

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| UCAC4 223-042828 b
(unclassified)

| 3.33 ± 0.50

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| UCAC4 185-192986 b
(unclassified)

| 3.3 ± 0.2

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| UCAC4 118-126574 b
(unclassified)

| 3.12 ± 0.10

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| UCAC4 171-187216 b
(unclassified)

| data-sort-value="2.751"|2.75 ± 0.20

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| KOI-7073 b
(unclassified)

| {{nowrap|2.699 {{±|0.473|0.794}}}}{{Cite web |title=The Extrasolar Planet Encyclopaedia — KOI-7073 b |url=https://exoplanet.eu/catalog/koi_7073_b--6240/ |website=Extrasolar Planets Encyclopaedia. Paris Observatory|date=2019}}

| style="text-align:center;" |X

| data-sort-value="1.0011" |Unknown

bgcolor="#FE9F9F"

|

| UCAC4 175-188215 b
(unclassified)

| 2.69 ± 0.50

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| UCAC4 116-118563 b
(unclassified)

| 2.62 ± 0.10

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| 19g-2-01326 b
(unclassified)

| {{nowrap|2.29 {{±|0.13|0.61}}}}{{Cite web |title=The Extrasolar Planet Encyclopaedia — 19g-2-01326 b |url=https://exoplanet.eu/catalog/19g_2_01326_b--1230/ |website=Extrasolar Planets Encyclopaedia. Paris Observatory|date=2013}}

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| SOI-2 b
(unclassified)

| data-sort-value="2.22"|2.22{{Cite journal |last1=Yakovlev |first1=O. Ya. |last2=Valeev |first2=A. F. |last3=Valyavin |first3=G. G. |last4=Tavrov |first4=A. V. |last5=Aitov |first5=V. N. |last6=Mitiani |first6=G. Sh. |last7=Beskin |first7=G. M. |last8=Korablev |first8=O. I. |last9=Galazutdinov |first9=G. A. |last10=Vlasyuk |first10=V. V. |last11=Emelyanov |first11=E. V. |last12=Fatkhullin |first12=T. A. |last13=Sasyuk |first13=V. V. |last14=Perkov |first14=A. V. |last15=Bondar’ |first15=S. F. |date=March 2023 |title=Eight Exoplanet Candidates in SAO Survey |url=https://link.springer.com/10.1134/S1990341323010108 |journal=Astrophysical Bulletin |language=en |volume=78 |issue=1 |pages=79–93 |arxiv=2304.01076 |bibcode=2023AstBu..78...79Y |doi=10.1134/S1990341323010108 |issn=1990-3413}}

| style="text-align:center;" |X

| data-sort-value="1.001" |Unknown

bgcolor="#FE9F9F"

|

| TIC 332350266.01
(unclassified)

| data-sort-value="2.21"|2.21{{±|3.18}}

| style="text-align:center;" |X

| Unknown

style="background:#e6e6e6"

|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| Old Hot Jupiter limit

| data-sort-value="2.2"|2.2

| style="text-align:center;" |–

| data-sort-value="0.4"|> ~0.4

| Theoretical limit for hot Jupiters close to a star, that are limited by tidal heating, resulting in 'runaway inflation'

bgcolor="#FE9F9F"

|

| TIC 138664795.01
(unclassified)

| 2.16 ± 0.16

| style="text-align:center;" |X

| Unknown

| rowspan="16" |Object cannot be classified as brown dwarf or exoplanet without a mass estimate.

bgcolor="#FE9F9F"

|

| UCAC4 221-041868 b
(unclassified)

| 2.1 ± 0.20

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| TOI-496 b
(unclassified)

| 2.05 {{±|0.63|0.29}}{{Cite journal |last1=Nardiello |first1=D |last2=Piotto |first2=G |last3=Deleuil |first3=M |last4=Malavolta |first4=L |last5=Montalto |first5=M |last6=Bedin |first6=L R |last7=Borsato |first7=L |last8=Granata |first8=V |last9=Libralato |first9=M |last10=Manthopoulou |first10=E E |date=2020-07-11 |title=A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS) – II. Search for exoplanets in open clusters of the Southern ecliptic hemisphere and their frequency |url=https://academic.oup.com/mnras/article/495/4/4924/5850378 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=495 |issue=4 |pages=4924–4942 |arxiv=2005.12281 |bibcode=2020MNRAS.495.4924N |doi=10.1093/mnras/staa1465 |doi-access=free |issn=0035-8711}}

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| SOI-7 b
(unclassified)

| data-sort-value="1.96"| 1.96

| style="text-align:center;" |X

| data-sort-value="1.0009" |Unknown

bgcolor="#FE9F9F"

|

| UCAC4 121-140615 b
(unclassified)

| 1.94 ± 0.20

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| UCAC4 123-150641 b
(unclassified)

| 1.93 ± 0.20

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| TIC 274508785.01
(unclassified)

| 1.92{{±|2.37}}

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| W74 b
(unclassified)

| 1.9{{Cite journal |last1=Wallace |first1=Joshua J. |last2=Hartman |first2=Joel D. |last3=Bakos |first3=Gáspár Á. |date=2020-03-01 |title=A Search for Transiting Planets in the Globular Cluster M4 with K2: Candidates and Occurrence Limits |journal=The Astronomical Journal |volume=159 |issue=3 |pages=106 |arxiv=2001.08362 |bibcode=2020AJ....159..106W |doi=10.3847/1538-3881/ab66b4 |doi-access=free |issn=0004-6256}}

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| TIC 116307482.01
(unclassified)

| 1.89 ± 1.46

| style="text-align:center;" |X

| Unknown

bgcolor="#FE9F9F"

|

| UCAC4 122-142653 b
(unclassified)

| 1.85 ± 0.10

| style="text-align:center;" |X

| data-sort-value="1.0007" |Unknown

bgcolor="FE9F9F"

|

| TIC 77173027.01
(unclassified)

| 1.84 ± 1.12

| style="text-align:center;" |X

| data-sort-value="1.0006" |Unknown

bgcolor="#FE9F9F"

|

| TOI-159 Ab
(unclassified)

| data-sort-value="1.81"|1.80 ± 0.77{{Cite journal |last1=Lester |first1=Kathryn V. |last2=Howell |first2=Steve B. |last3=Ciardi |first3=David R. |last4=Matson |first4=Rachel A. |date=2022-08-01 |title=Determining Which Binary Component Hosts the TESS Transiting Planet |journal=The Astronomical Journal |volume=164 |issue=2 |pages=56 |arxiv=2206.02825 |bibcode=2022AJ....164...56L |doi=10.3847/1538-3881/ac75ee |doi-access=free |issn=0004-6256}}

| style="text-align:center;" |X

| data-sort-value="1.0003" |Unknown

bgcolor="#FE9F9F"

|

| TIC 82205179.01
(TIC 82205179 b)
(unclassified)

| 1.76 ± 0.56{{Cite journal |last1=Nguyen |first1=Kendra T. |last2=Caldwell |first2=Douglas A. |last3=Twicken |first3=Joseph D. |last4=Striegel |first4=Stephanie L. |last5=Ting |first5=Eric B. |last6=Williams |first6=Rosemary H. |last7=Jenkins |first7=Jon M. |date=October 2022 |title=Release of TESS Objects of Interest from TESS-SPOC Sectors 48 to 50 Full Frame Images |journal=Research Notes of the AAS |language=en |volume=6 |issue=10 |pages=207 |doi=10.3847/2515-5172/ac983a |doi-access=free |bibcode=2022RNAAS...6..207N |issn=2515-5172}}

| style="text-align:center;" |X

| data-sort-value="1.00009"|Unknown

bgcolor="#FE9F9F"

|

| UCAC4 124-144273 b
(unclassified)

| 1.71 ± 0.10

| style="text-align:center;" |X

| data-sort-value="1.00007" |Unknown

bgcolor="#FE9F9F"

|

| TOI-710 b
(unclassified)

| 1.66 ± 1.10{{cite journal |last1=Bass |first1=Dillon |last2=Fabrycky |first2=Daniel |title=Validating the Orbital Periods of the Coolest TESS Planet Candidates |journal=The Astronomical Journal |date=2025 |volume=169 |issue=6 |page=299 |doi=10.3847/1538-3881/adcac6 |doi-access=free |arxiv=2411.17640|bibcode=2025AJ....169..299B }}

| style="text-align:center;" |X

| data-sort-value="1.012" |Unknown

bgcolor="#FE9F9F"

|

| TOI-7081 b
(unclassified)

| 1.65 ± 0.05{{Cite journal |last=Zhang |first=Elina Y. |date=2025-06-10 |title=Puffy but Cool: Investigating the Inflated Radii of TOI-7018.01 and TOI-7081.01 |journal=Research Notes of the AAS |volume=9 |issue=6 |pages=138 |bibcode=2025RNAAS...9..138Z |doi=10.3847/2515-5172/ade1ce |doi-access=free |issn=2515-5172}}

| style="text-align:center;" |X

| data-sort-value="1.012" |Unknown

style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| CVSO 30 c
(PTFO 8-8695 c)
(disputed)

| data-sort-value="1.63" |1.63 {{±|0.87|0.34}}{{Cite journal |last1=Schmidt |first1=T. O. B. |last2=Neuhäuser |first2=R. |last3=Briceño |first3=C. |last4=Vogt |first4=N. |last5=Raetz |first5=St. |last6=Seifahrt |first6=A. |last7=Ginski |first7=C. |last8=Mugrauer |first8=M. |last9=Buder |first9=S. |last10=Adam |first10=C. |last11=Hauschildt |first11=P. |last12=Witte |first12=S. |last13=Helling |first13=Ch. |last14=Schmitt |first14=J. H. M. M. |date=September 2016 |title=Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30 |url=http://www.aanda.org/10.1051/0004-6361/201526326 |journal=Astronomy & Astrophysics |volume=593 |pages=A75 |arxiv=1605.05315 |bibcode=2016A&A...593A..75S |doi=10.1051/0004-6361/201526326 |issn=0004-6361}}

| style="text-align:center;" |←

| data-sort-value="4.7" |4.7 {{±|5.5|2.0}}

| CVSO 30 c was discovered by direct imaging, with a calculated mass equal to 4.7 {{Jupiter mass}}.{{cite web |url=https://www.msn.com/en-gb/money/technology/amazing-photo-shows-likely-alien-planet-1200-light-years-away/ar-AAhocxR?ocid=spartandhp |title=Amazing Photo Shows Likely Alien Planet 1,200 Light-Years Away|publisher=MSN|date=21 June 2016|access-date=22 June 2016 |archive-url=https://web.archive.org/web/20160811163050/http://www.msn.com/en-gb/money/technology/amazing-photo-shows-likely-alien-planet-1200-light-years-away/ar-AAhocxR?ocid=spartandhp |archive-date=11 August 2016|url-status=dead}} However, the colors of the object suggest that it may actually be a background star, such as a K-type giant or a M-type subdwarf.{{cite journal |bibcode=2018ApJ...852L..24L|doi=10.3847/2041-8213/aaa40b |title=Evidence that the Planetary Candidate CVSO30c is a Background Star from Optical, Seeing-limited Data |journal=The Astrophysical Journal|volume=852|issue=2|pages=L24|year=2018|last1=Lee|first1=Chien-Hsiu |last2=Chiang |first2=Po-Shih |arxiv=1712.08727 |s2cid=119270170 |doi-access=free}} If confirmed in the future, it would be the furthest planet to be directly imaged at a dstance of about 1200 ly. Moreover, the phase of "dips" caused by suspected planet CVSO 30 b had drifted nearly 180 degrees from the expected value, thus ruling out the existence of the planet. CVSO 30 is also suspected to be a stellar binary, with the previously reported planetary orbital period equal to the rotation period of the companion star.{{cite journal |last1=Koen |first1=C. |last2=Winn |first2=J. N. |last3=Ricker |first3=G. R. |last4=Vanderspek |first4=R. |last5=Latham |first5=D. W. |last6=Seager |first6=S. |last7=Jenkins |first7=J. M. |last8=Barclay |first8=T. |last9=Collins |first9=K. A. |last10=Doty |first10=J. P. |last11=Louie |first11=D. R. |last12=Quinn |first12=S. N. |last13=Rose |first13=M. E. |last14=Smith |first14=J. C. |last15=Villaseñor |first15=J. |display-authors=1 |year=2020 |title=Properties of CVSO 30 from TESS measurements: Probably a binary T Tauri star with complex light curves and no obvious planets |journal=Monthly Notices of the Royal Astronomical Society |volume=494 |issue=3 |pages=4349–4356 |arxiv=2005.10253 |bibcode=2020AJ....160...86B |doi=10.1093/mnras/staa1038 |doi-access=free |last16=Wohler |first16=B.}}

bgcolor="#FE9F9F"

|

| TOI-7018 b
(unclassified)

| data-sort-value="1.61"|1.61 ± 0.04

|style="text-align:center;" |X

| Unknown

| Object cannot be classified as brown dwarf or exoplanet without a mass estimate.

colspan="6" style="background:#efefef" data-sort-value="1.60" | Exoplanets with known mass of ≥{{Jupiter mass|1|link=y}} but unknown radius
style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| CHXR 73 b
(CHXR 73 Ab)
(unconfirmed)

| data-sort-value="1.1" |Unknown

| style="text-align:center;" |←

| data-sort-value="12.6" |12.6 {{±|8.4|5.2}}{{Cite journal |last1=Luhman |first1=K. L. |last2=Wilson |first2=J. C. |last3=Brandner |first3=W. |last4=Skrutskie |first4=M. F. |last5=Nelson |first5=M. J. |last6=Smith |first6=J. D. |last7=Peterson |first7=D. E. |last8=Cushing |first8=M. C. |last9=Young |first9=E. |date=October 2006 |title=Discovery of a Young Substellar Companion in Chamaeleon |url=https://iopscience.iop.org/article/10.1086/506517 |journal=The Astrophysical Journal |language=en |volume=649 |issue=2 |pages=894–899 |arxiv=astro-ph/0609187 |bibcode=2006ApJ...649..894L |doi=10.1086/506517 |issn=0004-637X}}

|The common proper motion with respect to the host star is not yet proven, however, the probability that CHXR 73 and b are unrelated members of Chamaeleon I is ~0.1%. A radius is not yet published, but could be determined. Other members of the same star-forming region in this list, Cha 110913, CT Cha b, OTS 44, all have radii > 2 {{Jupiter radius|link=y}}.

bgcolor="#FFE8DC"

| style="border:4px ridge blue; background:#000053; text-align:center;" rowspan="2" |112px

| JuMBO 29 a
(unconfirmed)

| rowspan="2" |Unknown

| style="text-align:center;" |{{dagger}}

| data-sort-value="12.5" rowspan="2" |12.5 + 3{{cite journal| last = Luhman | first =K. L. | author-link=Kevin Luhman| date =14 Oct 2024 | title =Candidates for Substellar Members of the Orion Nebula Cluster from JWST/NIRCam | journal =The Astronomical Journal | volume =168 | issue =6 | page =230 | doi =10.3847/1538-3881/ad812a | doi-access =free | arxiv =2410.10406 | bibcode =2024AJ....168..230L }}

| rowspan="2" | The pair orbit around at the separation by 135 AU.

bgcolor="#FFE8DC"

| JuMBO 29 b
(unconfirmed)

| style="text-align:center;" |{{dagger}}

bgcolor="#FFE8DC"

| style="border:4px ridge blue; background:#000053; text-align:center;" rowspan="2" |112px

| JuMBO 24 a
(disputed)

| rowspan="2" |Unknown

| style="text-align:center;" |{{dagger}}

| data-sort-value="11.5" rowspan="2" |11.5{{cite journal |doi=10.3847/2041-8213/ad18ac |doi-access=free |title=A Radio Counterpart to a Jupiter-mass Binary Object in Orion |date=2024 |last1=Rodríguez |first1=Luis F. |last2=Loinard |first2=Laurent |last3=Zapata |first3=Luis A. |journal=The Astrophysical Journal Letters |volume=960 |issue=2 |pages=L14 |arxiv=2401.04905 |bibcode=2024ApJ...960L..14R }}

| rowspan="2" | The pair orbit around at the separation by 28 AU.

bgcolor="#FFE8DC"

| JuMBO 24 b
(disputed)

| style="text-align:center;" |{{dagger}}

bgcolor="#FAECC8"

| style="border:4px ridge red; background:#000000; text-align:center;"|112px

| SLRN-2020 (planet)
(ZTF 20aazusyv (planet))
(destroyed)

| data-sort-value="1.1" |Unknown

| style="text-align:center;" |↘

| data-sort-value="10" |≲10{{Cite journal |last1=Ryan |first1=M. Lau |last2=Jencson |first2=Jacob E. |last3=Salyk |first3=Colette |last4=De |first4=Kishalay |last5=Fox |first5=Ori D. |last6=Hankins |first6=Matthew J. |last7=Kasliwal |first7=Mansi M. |last8=Keyes |first8=Charles D. |last9=Macleod |first9=Morgan |last10=Ressler |first10=Michael E. |last11=Rose |first11=Sam |date=2025-04-10 |title=Revealing a Main-sequence Star that Consumed a Planet with JWST |journal=ApJ |volume=983 |issue=87|page=87 |doi=10.3847/1538-4357/adb429|doi-access=free|arxiv=2504.07275 |bibcode=2025ApJ...983...87L }}

| Either a former hot Jupiter or a hot Neptune. Third planet observed to be engulfed by its host and first one in an older age star.{{Cite journal |last=Soker |first=Noam |date=2023-09-01 |title=On the nature of the planet-powered transient event ZTF SLRN-2020 |journal=Monthly Notices of the Royal Astronomical Society |volume=524 |issue=1 |pages=L94–L97 |arxiv=2305.04909 |bibcode=2023MNRAS.524L..94S |doi=10.1093/mnrasl/slad086 |doi-access=free |issn=0035-8711}} This planet accreted mass from the star and launched some of this mass away in jets. As the planet orbited closer to the star, the star removed the accreted mass and formed a disk around the star and launched jets.

bgcolor="#FFE8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| J1407b
("Super Saturn")
(disputed)

| data-sort-value="1259" |Unknown{{efn|It's disk spans a radius of ~ 90 million kilometers (~ {{#expr: 90000000 / 71492 round 0}} {{Jupiter radius}}).}}

| style="text-align:center;" |{{dagger}}

| data-sort-value="6" |< 6{{cite journal |display-authors = etal |first1 = M. A. |last1 = Kenworthy |first2 = P. D. |last2 = Klaasen |first3 = M. |last3 = Min |first4 = N. |last4 = van der Marel |first5 = A. J. |last5 = Bohn |first6 = M. |last6 = Kama |title = ALMA and NACO observations towards the young exoring transit system J1407 (V1400 Cen) |journal = Astronomy & Astrophysics |date = January 2020 |volume = 633 |id = A115 |pages = 6 |doi-access = free |doi = 10.1051/0004-6361/201936141 |arxiv = 1912.03314 |bibcode = 2020A&A...633A.115K}}

| First exoplanet discovered with a ring system;{{cite news |title = The story of J1407b, the first exoplanet discovered with a ring system like Saturn |url = https://www.skyatnightmagazine.com/space-science/j1407b |first = Jenny |last = Winder |date = 27 February 2024 |work = BBC Sky at Night Magazine |publisher = BBC |accessdate = 23 July 2024 |url-status = live |archive-url = https://web.archive.org/web/20240611115813/https://www.skyatnightmagazine.com/space-science/j1407b |archive-date = 11 June 2024}} its circumplanetary disk or ring system has been frequently compared to that of Saturn's, which has led popular media outlets to dub it as a "Super Saturn"{{cite news |title = This Super-Saturn Alien Planet Might Be the New 'Lord of the Rings' |url = https://www.space.com/28435-super-saturn-alien-planet-rings.html |first = Shannon |last = Hall |work = Space.com |date = 3 February 2015 |accessdate = 24 July 2024 |url-status = live |archive-url = https://web.archive.org/web/20230604045248/https://www.space.com/28435-super-saturn-alien-planet-rings.html |archive-date = 4 June 2023}}
First detected by automated telescopes in 2007 when its disk eclipsed the star 1SWASP J1407–39 (J1407) and later discovered in 2010 and announced in 2012.{{cite journal |display-authors = etal |first1 = Eric E. |last1 = Mamajek |first2 = Alice C. |last2 = Quillen |first3 = Mark J. | last3 = Pecaut |first4 = Fred | last4 = Moolekamp |first5 = Erin L. | last5 = Scott |first6 = Matthew A. | last6 = Kenworthy |title = Planetary Construction Zones in Occultation: Discovery of an Extrasolar Ring System Transiting a Young Sun-like Star and Future Prospects for Detecting Eclipses by Circumsecondary and Circumplanetary Disks |journal = The Astronomical Journal |date = March 2012 |volume = 143 |issue = 3 |id = 72 |pages = 15 |doi-access = free |doi = 10.1088/0004-6256/143/3/72 |arxiv = 1108.4070 |bibcode = 2012AJ....143...72M |s2cid = 55818711 }} Its status is disputed as while the properties of the ALMA object appear to match those of J1407b, it has only been observed once, making it uncertain whether its motion aligns with the expected direction and speed. Recent studies found J1407b likely does not orbit V1400 Centauri and is instead a free-floating object{{cite journal |display-authors = etal |first1 = R. T. |last1 = Mentel |first2 = M. A. |last2 = Kenworthy |first3 = D. A. |last3 = Cameron |first4 = E. L. |last4 = Scott |first5 = S. N. |last5=Mellon |first6 = R. |last6 = Hudec |title = Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates |journal = Astronomy & Astrophysics |date = November 2018 |volume = 619 |id = A157 |pages = 7 |doi-access = free |doi = 10.1051/0004-6361/201834004 |arxiv = 1810.05171 |bibcode = 2018A&A...619A.157M |s2cid = 55015149}} with circumplanetary disk, or a large ring system composed of mainly dust.

style="border:4px ridge green; background:#000000; text-align:center;"|112px

| PDS 70 d
(unconfirmed)

| data-sort-value="2.1" |Unknown

| style="text-align:center;" |←

| data-sort-value="5.2" |5.2 {{±|3.3|3.5}}{{cite journal|arxiv=2504.11127 |doi=10.1093/mnras/staf586 |doi-access=free |title=Keplerian motion of a compact source orbiting the inner disc of PDS 70: A third protoplanet in resonance with b and c? |date=2025 |last1=Hammond |first1=Iain |last2=Christiaens |first2=Valentin |last3=Price |first3=Daniel J. |last4=Blakely |first4=Dori |last5=Trevascus |first5=David |last6=Bonse |first6=Markus J. |last7=Cantalloube |first7=Faustine |last8=Marleau |first8=Gabriel-Dominique |last9=Pinte |first9=Christophe |last10=Juillard |first10=Sandrine |last11=Samland |first11=Matthias |last12=Thompson |first12=William |last13=Wallace |first13=Alex |journal=Monthly Notices of the Royal Astronomical Society |volume=539 |issue=2 |pages=1613–1627 }}

| In 2019, a third object was detected 0.12 arcseconds from the star. Its spectrum is very blue, possibly due to star light reflected in dust which could be a feature of the inner disk. The possibility does still exist that this object is a planetary mass object enshrouded by a dust envelope. For this second scenario the mass of the planet would be on the order of a few tens {{val|ul=Earth mass}}.{{cite journal |last1=Mesa |first1=D. |last2=Keppler |first2=M. |display-authors=etal |date=December 2019 |title=VLT/SPHERE exploration of the young multiplanetary system PDS70 |journal=Astronomy & Astrophysics |volume=632 |issue= |pages=A25 |doi=10.1051/0004-6361/201936764 |arxiv=1910.11169 |bibcode=2019A&A...632A..25M|s2cid=204852148 }} In 2025 a team{{efn|presents VLT/SPHERE, VLT/NaCo, VLT/SINFONI and JWST/NIRcam observations}} detected Keplerian motion of the candidate. The orbit could be in resonance with the PDS 70 b and PDS 70 c. The spectrum in the infrared is mostly consistent with the star PDS 70, but beyond 2.3 μm an infrared excess was detected. This excess could be produced by the thermal emission of the protoplanet, by circumplanetary dust, variability or contamination. The source may not be a point-like source. The source is therefore interpreted as an outer spiral wake from protoplanet PDS 70 d with a dusty envelope. A feature of the inner disk is an alternative explanation of candidate PDS 70 d.
PDS 70 is the second multi-planet system to be directly imaged (after HR 8799).

style="border:4px ridge blue; background:#000053; text-align:center;"|112px

| HR 8799 f
(unconfirmed)

| data-sort-value="1.2" |Unknown

| style="text-align:center;" |←

| data-sort-value="4" |4{{snd}}7{{cite journal |bibcode=2023AJ....165...29T |title=Deep Orbital Search for Additional Planets in the HR 8799 System |last1=Thompson |first1=William |last2=Marois |first2=Christian |last3=Do ó |first3=Clarissa R. |last4=Konopacky |first4=Quinn |last5=Ruffio |first5=Jean-Baptiste |last6=Wang |first6=Jason |last7=Skemer |first7=Andy J. |last8=De Rosa |first8=Robert J. |last9=MacIntosh |first9=Bruce |journal=The Astronomical Journal |date=2023 |volume=165 |issue=1 |page=29 |doi=10.3847/1538-3881/aca1af |doi-access=free |arxiv=2210.14213 }}

| All four confirmed HR 8799 planets orbit inside and outside of dusty disks like the Solar Kuiper belt and asteroid belt, which leaves room for HR 8799 f to be discovered inside the inner disk.{{cite journal |first1=Christian |last1=Marois |first2=B. last2=Zuckerman |first3=Quinn M. |last3=Konopacky |first4=Bruce |last4=Macintosh |first5=Travis |last5=Barman |date=December 2010 |title=Images of a fourth planet orbiting HR 8799 |journal=Nature |volume=468 |issue=7327 |pages=1080–1083 |doi=10.1038/nature09684 |bibcode=2010Natur.468.1080M |arxiv=1011.4918 |pmid=21150902 |s2cid=4425891}} It is difficult to find planet(s) inside inner disks as these planets at smaller semi-major axes have much shorter orbital periods according to Kepler's third law. At a separation of ∼5 au, a planet in this system would move fast enough that observations taken more than a few months apart would start to blur the planet. However, the evidence for HR 8799 f is found by a deep targeted search in the HR 8799 system and recovery of the known HR 8799 planets.
HR 8799 is the first multi-planet system to be directly imaged.

style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| Sirius Bb
(α CMa Bb,
WD 0642-166 b)

(uncomfirmed)

| data-sort-value="1.1" |Unknown

| style="text-align:center;" |←

| data-sort-value="1.5" |1.5,{{Cite web|url=https://exoplanet.eu/catalog/sirius_bb--10752/|title=Planet Sirius Bb|first=Pierre-Yves|last=Martin|date=October 27, 2024|website=exoplanet.eu}} {{nowrap|0.8 – 2.4}}{{Cite journal|title=An Imaging Search for Post-main-sequence Planets of Sirius B|first1=Miles|last1=Lucas|first2=Michael|last2=Bottom |first3=Garreth|last3=Ruane|first4=Sam|last4=Ragland|journal=The Astronomical Journal |date=2022|volume=163 |issue=2 |page=81 |doi=10.3847/1538-3881/ac4032 |doi-access=free |arxiv=2112.05234|bibcode=2022AJ....163...81L }}

| In 1986, the Sirius stellar system emitted a higher than expected level of infrared radiation, as measured by the IRAS space-based observatory. This might be an indication of dust in the system, which is considered somewhat unusual for a binary star. The Chandra X-ray Observatory image shows Sirius B outshining Sirius A as an X-ray source, indicating that Sirius B may have its own exoplanet(s).

style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| WD 2226-210 c
(Gliese 9785 c)
(uncomfirmed)

| data-sort-value="1.1" |Unknown

| style="text-align:center;" |←

| data-sort-value="1" |1{{cite journal|arxiv=2412.07863 |last1=Estrada-Dorado |first1=S. |last2=Guerrero |first2=M. A. |last3=Toalá |first3=J. A. |last4=Maldonado |first4=R. F. |last5=Lora |first5=V. |last6=Vasquez-Torres |first6=D. A. |last7=Chu |first7=Y. -H. |title=Accretion onto WD 2226$-$210, the central star of the Helix Nebula |journal=Monthly Notices of the Royal Astronomical Society |date=2024 |volume=536 |issue=3 |page=2477 |doi=10.1093/mnras/stae2733 |doi-access=free |bibcode=2025MNRAS.536.2477E }}

| Located in the center of Helix Nebula.

bgcolor="#FFF8DC"

| style="border:4px ridge blue; background:#000000; text-align:center;"|112px

| Eta Telescopii b
(η Tel b,
HD 181296 b)

(uncomfirmed)

| data-sort-value="1.1" |Unknown

| style="text-align:center;" |{{asterisk}}

| data-sort-value="0.7" |0.7 – 30{{Cite journal |last1=Chai |first1=Yiwei |last2=Chen |first2=Christine H. |last3=Worthen |first3=Kadin |last4=Li |first4=Alexis |last5=Sefilian |first5=Antranik A. |last6=Balmer |first6=William |last7=Hines |first7=Dean C. |last8=Law |first8=David R. |last9=Sargent |first9=B. A. |last10=Wyatt |first10=Mark |last11=Lu |first11=Cicero X. |last12=Perrin |first12=Marshall D. |last13=Rebollido |first13=Isabel |last14=Rickman |first14=Emily |last15=Sloan |first15=G. C. |date=November 2024 |title=A JWST MIRI MRS View of the η Tel Debris Disk and Its Brown Dwarf Companion |journal=The Astrophysical Journal |language=en |volume=976 |issue=2 |pages=167 |doi=10.3847/1538-4357/ad74f4 |doi-access=free |arxiv=2408.11692 |bibcode=2024ApJ...976..167C |issn=0004-637X}}

| Observations with the MIRI spectometer aboard the James Webb Space Telescope (JWST) show that the disk of Eta Telescopii A is axisymmetrical and possibly misaligned with the companion Eta Telescopii B. This suggests that, in the simplest scenario, there is an additional planet that has not been detected. Further modelling of the disk's parameters is needed to reduce uncertainites and determine if it is really misaligned.

bgcolor="#FFE8DC"

| style="border:4px ridge blue; background:#000053; text-align:center;"|112px

| Jupiter-mass Binary Objects
(JuMBOs)
(unconfirmed and/or disputed)

| data-sort-value="1.01" |Unknown

| style="text-align:center;" |{{dagger}}

| data-sort-value="0.7" |0.7 − 13{{Cite arXiv |last1=Pearson |first1=Samuel G. |last2=McCaughrean |first2=Mark J. |date=2 Oct 2023 |title=Jupiter Mass Binary Objects in the Trapezium Cluster |class=astro-ph.EP |eprint=2310.01231 }}

| Total of 42 JuMBO systems among 540 free-floating Jupiter-mass objects of which contains 40 binary systems and 2 triplet systems, discovered in Orion Cluster as of 2025. Their wide separations also differ markedly from typical brown dwarf binaries, which have much closer separations around 4 astronomical units.{{cite journal |last1=Diamond |first1=Jessica L. |last2=Parker |first2=Richard J. |title=Formation of Jupiter-mass Binary Objects through Photoerosion of Fragmenting Cores |journal=The Astrophysical Journal |date=November 2024 |volume=975 |issue=2 |pages=204 |doi=10.3847/1538-4357/ad8644 |doi-access=free |arxiv=2410.09159 |bibcode=2024ApJ...975..204D |language=en |issn=0004-637X}} These JuBO binary pairs have separations ranging from 28 to 384 astronomical units.
Current formation theories suggest JuMBOs may form when radiation from massive stars erodes fragmenting pre-stellar cores through a process called photoerosion. In this scenario, Lyman continuum radiation from massive stars drives an ionization shock front into a prestellar core that was already beginning to fragment into a binary system. This process simultaneously compresses the inner layers while evaporating the outer layers, resulting in a very low-mass binary system. The process appears most effective within HII regions created by massive stars, though many observed JuMBOs lie outside these regions in the Orion Nebula Cluster. This distribution suggests the objects may have migrated from their formation sites through dynamical interactions over time.
Another study argued that JuMBOs formed in situ, like stars. The JuMBOs most likely form directly alongside stars in the cluster, rather than through ejection from planetary systems or capture events. The other proposed mechanisms - ejection of planet pairs from stars, ejection of planet-moon systems, or capture of free-floating planets - failed to produce enough binaries or required unrealistic initial conditions.{{Cite journal | last1=Portegies Zwart| first1=Simon|last2=Hochart|first2=Erwan|date=2024-07-02|title=The origin and evolution of wide Jupiter mass binary objects in young stellar clusters| journal=SciPost|volume=3|issue=1|pages=19 |doi=10.21468/SciPostAstro.3.1.001| doi-access=free| arxiv=2312.04645| bibcode=2024ScPA....3....1P}}
The most successful model shows that JuMBOs form best about 0.2 million years after the stars, when the cluster environment has partially stabilized. This timing allows enough JuMBOs to survive to match the observed 8% binary fraction. The model also correctly predicts the observed orbital separations of 25-380 astronomical units and mass distributions. The lack of JuMBOs in older star clusters like Upper Scorpius is explained by their gradual destruction through gravitational interactions over time, with simulations predicting that only about 2% of the original pairs survive after 10 million years.
An astronomer found that most JuMBOs did not appear in his sample of substellar objects as the color was consistent with reddened background sources or low signal-to-noise sources with only JuMBO 29 being a good candidate for a binary planetary-mass system.

== Notes ==

{{notelist}}

Chronological list of largest exoplanets

These exoplanets were the largest at the time of their discovery.

Present day: {{TODAY}}

class="wikitable" style="margin:0px 15px 0px 0px"

|+Key (Classification)

bgcolor="#FAECC8" width="40px" style="text-align:center;" |{{asterisk}}

! Identified to be a probable/confirmed brown dwarf (≳ 13 {{Jupiter mass}}) or a star (≳ 78.5 {{Jupiter mass}})

bgcolor="#FFF8DC" width="40px" style="text-align:center;" | ⇗

!Assumed largest exoplanet, but later identified to be probable/confirmed brown dwarf (≳ 13 {{Jupiter mass}}) or a star (≳ 78.5 {{Jupiter mass}})

bgcolor="#FFE8DC" width="40px" style="text-align:center;" | ↓

!Assumed largest exoplanet, but later identified to be smaller in radius than originally determined

bgcolor="#ACE1AF" width="40px" style="text-align:center;" | ↑

!Not assumed largest exoplanet, but later identified to be larger in radius than originally determined

bgcolor="#CEF2E0" width="40px" style="text-align:center;" |{{dagger}}

! Candidate for largest exoplanet (currently or in time span)

bgcolor="#CFF7C1" width="40px" style="text-align:center;"|?

! Status uncertain (inconsistency in age or mass of planetary system) while being candidate for largest exoplanet

bgcolor="#CEE0F2" width="40px" style="text-align:center;" | →

! Assumed largest exoplanet, while unconfirmed, later retracted and/or confirmed

style="text-align:center;" | ←

! Largest exoplanet (≲ 13 {{Jupiter mass}}) at the time

bgcolor="#e6e6e6" width="40px" style="text-align:center;" | –

! Largest confirmed exoplanet (in radius and mass), while discovered candidates might be larger

bgcolor="pink" width="40px" style="text-align:center;" |{{number sign}}

! Non-exoplanets reported for reference

class="wikitable"

|+Key (Illustration)

style="border:4px ridge red;" |

! Artist's impression

colspan="2"|
style="border:4px ridge orange;"|

! Artist's impression size comparison

colspan="2"|
style="border:4px ridge blue;" |

! Direct Imaging telescopic observation

colspan="2"|
style="border:4px ridge purple;" |

! Transiting telescopic observation

colspan="2"|
style="border:4px ridge indigo;"|

! Rendered image

colspan="2"|
style="border:4px ridge pink;" |

! Graphic chart

colspan="2"|
style="border:4px ridge magenta;" |

! Discovery/Confirmation observatory

colspan="2"|
style="border:4px ridge cyan;" |

! Constellation star chart

{{sticky header}}

class="wikitable sortable sticky-header"
data-sort-type=number| Years largest discovered

! class="unsortable"| Illustration

! Name
(Alternates)

! data-sort-type=number| Radius at that time
({{Jupiter radius|link=y}})

! class="unsortable"| Key

! data-sort-type="number" | Mass
({{Jupiter mass|link=y}})

! class="unsortable" | Notes

style="background:#e6e6e6"

| data-sort-value="2025" |2025{{snd}}present

| style="border:4px ridge purple; background:white;" |112x112px

| HAT-P-67 Ab

| data-sort-value="2.140" | 2.140 ± 0.025

| style="text-align:center;" | –

| data-sort-value="0.418" |0.418 ± 0.012

| A very puffy Hot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius.

style="background:#FAECC8"

| data-sort-value="2025" |(2025 – present)

| style="border:4px ridge red; background: #000000; text-align:center;" |112px

| AB Aurigae b
(AB Aur b,
HD 31293 b)

| data-sort-value="2.75001" |< 2.75{{efn|1=This radius estimate might have been affected by the planet's circumplanetary disk, as the spectrum not necessarily corresponds to a planet photosphere.}}

| style="text-align:center;" |{{asterisk}}

| data-sort-value="20.0001" |20

| The commonly favored model for gas giant planet formation – core accretion – has significant difficulty forming massive gas giant planets at AB Aur b's very large distance from its AB Aur. Instead, AB Aur b may be forming by disk (gravitational) instability, where as a massive disk around a star cools, gravity causes the disk to rapidly break up into one or more planet-mass fragments.{{cite web | title=Hubble Finds a Planet Forming in an Unconventional Way | website=HubbleSite.org | date=April 4, 2022 | url=http://hubblesite.org/contents/news-releases/2022/news-2022-016 | access-date=April 10, 2022}} A more recent study revised the apparent magnitude, making AB Aur b more likely to be brown dwarf.

style="background:#CEF2E0"

| data-sort-value="2024", rowspan="4" |(2024{{snd}}present)

| style="border:4px ridge magenta; background:#000000;" rowspan="4" |112x112px

| rowspan="4" |XO-6b

| data-sort-value="2.171" |2.17 ± 0.20

| rowspan="4" style="text-align:center;" | {{dagger}}

| data-sort-value="4.472", rowspan="4" |4.47 ± 0.12

| rowspan="4" | A very puffy Hot Jupiter. R_p/R_* is consistent, but R_* is either given as about {{val|1.93|ul=Solar radius}} or about {{val|1.42|ul=Solar radius}} in newer references.{{Cite journal |last1=Gaia Collaboration |last2=Vallenari |first2=A. |last3=Brown |first3=A. G. A. |last4=Prusti |first4=T. |last5=de Bruijne |first5=J. H. J. |last6=Arenou |first6=F. |last7=Babusiaux |first7=C. |last8=Biermann |first8=M. |last9=Creevey |first9=O. L. |last10=Ducourant |first10=C. |last11=Evans |first11=D. W. |last12=Eyer |first12=L. |last13=Guerra |first13=R. |last14=Hutton |first14=A. |last15=Jordi |first15=C. |date=June 2023 |title=Gaia Data Release 3: Summary of the content and survey properties |url=https://www.aanda.org/10.1051/0004-6361/202243940 |journal=Astronomy & Astrophysics |volume=674 |pages=A1 |arxiv=2208.00211 |bibcode=2023A&A...674A...1G |doi=10.1051/0004-6361/202243940 |issn=0004-6361}} Large size needs confirmation due to size discrepancy.

style="background:#CEF2E0"

| 1.517 ± 0.176{{Cite journal |last1=Gaia Collaboration |last2=Creevey |first2=O. L. |last3=Sarro |first3=L. M. |last4=Lobel |first4=A. |last5=Pancino |first5=E. |last6=Andrae |first6=R. |last7=Smart |first7=R. L. |last8=Clementini |first8=G. |last9=Heiter |first9=U. |last10=Korn |first10=A. J. |last11=Fouesneau |first11=M. |last12=Frémat |first12=Y. |last13=De Angeli |first13=F. |last14=Vallenari |first14=A. |last15=Harrison |first15=D. L. |date=June 2023 |title=Gaia Data Release 3: A golden sample of astrophysical parameters |url=https://www.aanda.org/10.1051/0004-6361/202243800 |journal=Astronomy & Astrophysics |volume=674 |pages=A39 |arxiv=2206.05870 |bibcode=2023A&A...674A..39G |doi=10.1051/0004-6361/202243800 |issn=0004-6361}}

style="background:#CEF2E0"

| 2.08 ± 0.18{{Cite journal |last1=Albrecht |first1=Simon H. |last2=Dawson |first2=Rebekah I. |last3=Winn |first3=Joshua N. |date=2022-08-01 |title=Stellar Obliquities in Exoplanetary Systems |url=https://iopscience.iop.org/article/10.1088/1538-3873/ac6c09 |journal=Publications of the Astronomical Society of the Pacific |volume=134 |issue=1038 |pages=082001 |arxiv=2203.05460 |bibcode=2022PASP..134h2001A |doi=10.1088/1538-3873/ac6c09 |issn=0004-6280}}

style="background:#CEF2E0"

|1.57{{Cite journal |last1=Cacciapuoti |first1=Luca |last2=Kostov |first2=Veselin B |last3=Kuchner |first3=Marc |last4=Quintana |first4=Elisa V |last5=Colón |first5=Knicole D |last6=Brande |first6=Jonathan |last7=Mullally |first7=Susan E |last8=Chance |first8=Quadry |last9=Christiansen |first9=Jessie L |last10=Ahlers |first10=John P |last11=DiFraia |first11=Marco Z |last12=DurantiniLuca |first12=Hugo A |last13=Ienco |first13=Riccardo M |last14=Gallo |first14=Francesco |last15=deLima |first15=Lucas T |date=2022-04-21 |title=The TESS Triple-9 Catalog: 999 uniformly vetted exoplanet candidates |url=https://academic.oup.com/mnras/article/513/1/102/6548905 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=513 |issue=1 |pages=102–116 |arxiv=2203.15826 |bibcode=2022MNRAS.513..102C |doi=10.1093/mnras/stac652 |issn=0035-8711 |doi-access=free}}

style="background:#FAECC8"

| data-sort-value="2024"|(2024{{snd}}present)

|style="border:4px ridge blue; background:#000000; text-align:center;" |112px

| GQ Lupi b
(GQ Lup Ab,
GQ Lup B)

| data-sort-value="3.70" |3.70

| style="text-align:center;" | *

| data-sort-value="20.001" |20 ± 10

| First confirmed exoplanet candidate to be directly imaged. It is believed to be several times more massive than Jupiter. Because the theoretical models which are used to predict planetary masses for objects in young star systems like GQ Lupi b are still tentative, the mass cannot be precisely specified, giving the masses of 1 – 39 {{Jupiter mass|link=y}}.

style="background:#e6e6e6"

| data-sort-value="2024", rowspan="2" |2024{{snd}}2025

| style="border:4px ridge magenta; background:black;" rowspan="2" |112x112px

| rowspan="2" |HAT-P-67 Ab

| 2.038 {{±|0.067|0.068}}

| rowspan="2" style="text-align:center;" | –

| data-sort-value="0.34", rowspan="2" |0.418 ± 0.012

| rowspan="2" | A very puffy Hot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius.

style="background:#e6e6e6"

| 2.165 {{±|0.024|0.022}}{{efn|name=HatP67|Calculated using Rp/R multiplied by R. The value is later multiplied by (142984 km ÷ 1391400 km) to convert from {{solar radius|link=y}} to {{jupiter radius|link=y}}.}}

style="background:#FFF8DC"

| data-sort-value="2022" |(2022 – 2025)

| style="border:4px ridge blue; background: white; text-align:center;" |112x112px

| AB Aurigae b
(AB Aur b,
HD 31293 b)

| data-sort-value="2.75" |2.75

| style="text-align:center;" | ⇗

| data-sort-value="20" |9, < 130,
{{nowrap|10 – 12}} {{nowrap|(1 Myr)}}
20 {{nowrap|(~ 4 Myr)}}

| The commonly favored model for gas giant planet formation – core accretion – has significant difficulty forming massive gas giant planets at AB Aur b's very large distance from its AB Aur. Instead, AB Aur b may be forming by disk (gravitational) instability,{{Cite journal |title=Giant Planet Formation by Gravitational Instability |last1=Boss |first1=Alan |journal=Science |language=en |volume=276 |issue=5320 |pages=1836–1839 |date= June 1997 |bibcode=1997Sci...276.1836B |doi=10.1126/science.276.5320.1836}} where as a massive disk around a star cools, gravity causes the disk to rapidly break up into one or more planet-mass fragments.

style="background:#CEF2E0"

| data-sort-value="2021" rowspan="3"|(2020 – present)

| style="border:4px ridge blue; background:#000000;" rowspan="3" |112x112px

| rowspan="3" |PDS 70b

| 2.7

| rowspan="3" style="text-align:center;" | {{dagger}}

| rowspan="3" |3.2 {{±|3.3|1.6}}, 7.9 {{±|4.9|4.7}},
< 10 (2 σ),
≲ 15 (total)

| rowspan="3" |Has been later measured to have a radius of only {{Jupiter radius|1.96}}, and then {{jupiter radius|2.7}} in 2022. Large size needs confirmation due to this discrepancy.

style="background:#CEF2E0"

| 1.96

style="background:#CEF2E0"

| 2.09 {{±|0.23|0.31}}{{snd}}2.72 {{±|0.15|0.17}}{{Cite journal |last1=Wang 王劲 |first1=Jason J. 飞 |last2=Ginzburg |first2=Sivan |last3=Ren 任 |first3=Bin 彬 |last4=Wallack |first4=Nicole |last5=Gao |first5=Peter |last6=Mawet |first6=Dimitri |last7=Bond |first7=Charlotte Z. |last8=Cetre |first8=Sylvain |last9=Wizinowich |first9=Peter |last10=De Rosa |first10=Robert J. |last11=Ruane |first11=Garreth |last12=Liu |first12=Michael C. |last13=Absil |first13=Olivier |last14=Alvarez |first14=Carlos |last15=Baranec |first15=Christoph |date=2020-06-01 |title=Keck/NIRC2 L'-band Imaging of Jovian-mass Accreting Protoplanets around PDS 70 |journal=The Astronomical Journal |volume=159 |issue=6 |pages=263 |arxiv=2004.09597 |bibcode=2020AJ....159..263W |doi=10.3847/1538-3881/ab8aef |doi-access=free |issn=0004-6256}}

style="background:#CFF7C1"

| data-sort-value="2020" |(2020{{snd}}present)

| style="border:4px ridge blue; background:#000000;" |112x112px

| SR 12 c
(SR 12 (AB) c,
SR 12 C)

| data-sort-value="2.38" |2.38 {{±|0.27|0.32}}

| style="text-align:center;" |?

| 13 ± 2

| The planet is at the very edge of the deuterium burning limit. Mass being below it needs confirmation. Other sources of masses includes 14 {{±|7|8}} {{Jupiter mass|link=y}}, 12{{snd}}15 {{Jupiter mass|link=y}}.

style="background:#FAECC8"

| data-sort-value="2019" rowspan="3"|(2019{{snd}}present)

| style="border:4px ridge magenta; background:white;" rowspan="3" |112x112px

| rowspan="3" |HD 114762 Ab
("Latham's Planet")

| data-sort-value="1.05" rowspan="3"|Unknown

| style="text-align:center;" rowspan="3" | *

| data-sort-value="306.93" |306.93
({{Solar mass|0.293|link=y}})

| rowspan="3" |It was thought to be the first discovered exoplanet until 2019, when it was confirmed to be a low-mass star with the mass of 107 {{±|20|27}} {{val|ul=Jupiter mass}} (and later reviewed up to 147.0 {{±|39.3|42.0}} {{Jupiter mass}} in 2020 and 306.93 {{Jupiter mass}} ({{Solar mass|0.293|link=y}}) in 2022).

style="background:#FAECC8"

| data-sort-value="147" |147.0 {{±|39.3|42.0}}{{efn|convert to: {{#expr: (0.293 / 306.93) * 147 round 3}}0 {{±|{{#expr: (0.293 / 306.93) * 39.3 round 3}}|{{#expr: (0.293 / 306.93) * 42 round 3}}0}} {{Solar mass|link=y}} }}

style="background:#FAECC8"

| data-sort-value="107" |107 {{±|20|27}}{{efn|coverts to: {{#expr: (0.293 / 306.93) * 107 round 3}} {{±|{{#expr: (0.293 / 306.93) * 20 round 3}}|{{#expr: (0.293 / 306.93) * 27 round 3}}}} {{Solar mass|link=y}} }}

style="background:#CEF2E0"

| data-sort-value="2019" |(2019{{snd}}present)

| style="border:4px ridge red; background:#000000; text-align:center;" |112px

| Kepler-13 Ab

| data-sort-value="1.91" |1.91 ± 0.25{{snd}}2.57 ± 0.26

| style="text-align:center;" |{{dagger}}

| data-sort-value="9.28" |9.28(16)

| Discovered by Kepler in first four months of Kepler data. A more recent analysis argues that a third-light correction factor of 1.818 is needed, to correct for the light blending of Kepler-13 B, resulting in higher radii results.

style="background:#FFE8DC"

| data-sort-value="2018" rowspan="2" |(2018{{snd}}2024)

| style="border:4px ridge red; background:black;" rowspan="2" |112px

| rowspan="2" |WASP-76b

| data-sort-value="1.842" | 1.842{{±|0.024}}

| style="text-align:center;" rowspan="2" | ↓

| data-sort-value="0.92" rowspan="2" |0.921{{±|0.032}}

| rowspan="2" |A very puffy Hot Jupiter.

style="background:#FFE8DC"

| data-sort-value="2.083" |2.083 {{±|0.083|0.063}}

style="background:#e6e6e6"

| data-sort-value="2017" |2017{{snd}}2024

| style="border:4px ridge purple; background:white;" |112x112px

| HAT-P-67 Ab

| data-sort-value="2.085"| 2.085 {{±|0.096|0.071}}{{Cite journal |last1=Zhou |first1=G. |last2=Bakos |first2=G. á. |last3=Hartman |first3=J. D. |last4=Latham |first4=D. W. |last5=Torres |first5=G. |last6=Bhatti |first6=W. |last7=Penev |first7=K. |last8=Buchhave |first8=L. |last9=Kovács |first9=G. |last10=Bieryla |first10=A. |last11=Quinn |first11=S. |last12=Isaacson |first12=H. |last13=Fulton |first13=B. J. |last14=Falco |first14=E. |last15=Csubry |first15=Z. |date=2017-05-01 |title=HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography ∗ |journal=The Astronomical Journal |volume=153 |issue=5 |pages=211 |arxiv=1702.00106 |bibcode=2017AJ....153..211Z |doi=10.3847/1538-3881/aa674a |doi-access=free |issn=0004-6256}}

| style="text-align:center;" | –

| data-sort-value="0.34" |0.34 {{±|0.25|0.19}}

| A very puffy Hot Jupiter. At discovery the largest known planet with an accurately and precisely measured radius.

style="background:#FFE8DC"

| data-sort-value="2017" rowspan="2" |(2017 – 2017)

| style="border:4px ridge orange; background:#000000;" rowspan="2" |112x112px

| rowspan="2" |XO-6b

| 1.550 ± 0.194

| style="text-align:center;" rowspan="2" | ↓

| rowspan="2" |4.47 ± 0.12

| rowspan="2" |A very puffy Hot Jupiter.

style="background:#FFE8DC"

| 2.07 ± 0.22

style="background:#CEE0F2"

| data-sort-value="2015"|(2015{{snd}}2017)

| style="border:4px ridge red; background:#000000;" |112px

| Dimidium
(51 Peg b)

| data-sort-value="1.9"|1.9 ± 0.3

| style="text-align:center;" | →

| data-sort-value"0.4605"|0.46 {{±|0.06|0.01}}

| First convincing exoplanet discovered orbiting a main-sequence star. A prototype hot Jupiter. In 2015, a study allegedly detected visible light spectrum from Dimidium using the High Accuracy Radial Velocity Planet Searcher (HARPS) instrument. This suggested a high albedo for the planet, hence a large radius up to 1.9 ± 0.3 {{Jupiter radius|link=y}}, which could suggest 51 Pegasi b would be an inflated hot Jupiter. However, recent studies found no evidence of reflected light, ruling out the previous radii and albedo estimates from previous studies with Dimidium being likely a low-albedo planet with a radius around {{val|1.2|0.1|ul=Jupiter radius}}.{{Cite journal |last1=Scandariato |first1=G. |last2=Borsa |first2=F. |last3=Sicilia |first3=D. |last4=Malavolta |first4=L. |last5=Biazzo |first5=K. |last6=Bonomo |first6=A. S. |last7=Bruno |first7=G. |last8=Claudi |first8=R. |last9=Covino |first9=E. |last10=Marcantonio |first10=P. Di |last11=Esposito |first11=M. |last12=Frustagli |first12=G. |last13=Lanza |first13=A. F. |last14=Maldonado |first14=J. |last15=Maggio |first15=A. |date=2021-02-01 |title=The GAPS Programme at TNG - XXIX. No detection of reflected light from 51 Peg b using optical high-resolution spectroscopy |url=https://www.aanda.org/articles/aa/full_html/2021/02/aa39271-20/aa39271-20.html |journal=Astronomy & Astrophysics |language=en |volume=646 |pages=A159 |doi=10.1051/0004-6361/202039271 |issn=0004-6361|arxiv=2012.10435 |bibcode=2021A&A...646A.159S }}

style="background:#CEF2E0"

| data-sort-value="2015" |(2015{{snd}}2017)

| style="border:4px ridge red; background:#000000; text-align:center;" |112px

| Saffar
(υ Andromedae Ab)

| data-sort-value="1.8" |~1.8

| style="text-align:center;" |{{dagger}}

| data-sort-value="1.70" |1.70 {{±|0.33|0.24}}

| New reference finds ~1.8 {{Jupiter radius|link=y}} more likely, but the original{{Cite journal |last1=Crossfield |first1=Ian J. M. |last2=Hansen |first2=Brad M. S. |last3=Harrington |first3=Joseph |last4=Cho |first4=James Y.-K. |last5=Deming |first5=Drake |last6=Menou |first6=Kristen |last7=Seager |first7=Sara |date=2010-11-10 |title=A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b |url=https://iopscience.iop.org/article/10.1088/0004-637X/723/2/1436 |journal=The Astrophysical Journal |volume=723 |issue=2 |pages=1436–1446 |arxiv=1008.0393 |bibcode=2010ApJ...723.1436C |doi=10.1088/0004-637X/723/2/1436 |issn=0004-637X}} ~1.36 {{Jupiter radius|link=y}} are also given. Large size needs confirmation.

style="background:#CEF2E0"

| data-sort-value="2014" rowspan="2"|(2014{{snd}}present)

| style="border:4px ridge blue; background:#000000;" rowspan="2" |112x112px

| rowspan="2" | ROXs 42B b

| 2.10 ± 0.35

| rowspan="2" style="text-align:center;" | {{dagger}}

| rowspan="2" | 9 {{±|6|3}}; 10 ± 4

| rowspan="2" | Large size needs confirmation. Other estimates include 1.9 – 2.4 {{Jupiter radius|link=y}}, 1.3{{Snd}}4.7 {{Jupiter radius}}. Other recent sources of masses include 3.2 – 27 {{Jupiter mass|link=y}}, 13 ± 5 {{Jupiter mass|link=y}}.

style="background:#CEF2E0"

| data-sort-value="2.43" |2.43 ± 0.18 – 2.55 ± 0.2

style="background:#FFE8DC"

| data-sort-value="2012" rowspan="2" |(2012{{snd}}2018)

| style="border:4px ridge cyan; background:white;" rowspan="2" |112px

| rowspan="2" |Pollera
(WASP-79b)

| data-sort-value="1.704" | 1.704 {{±|0.195|0.180}}

| style="text-align:center;" rowspan="2" | ↓

| data-sort-value="0.850" rowspan="2" |0.850 {{±|0.180|0.180}}

| rowspan="2" |This planet is orbiting the host star at nearly-polar orbit with respect to star's equatorial plane, inclination being equal to −95.2{{±|0.9|1.0}}°.

style="background:#FFE8DC"

| data-sort-value="1.70" | 1.70 ± 0.11 – 2.09 ± 0.14

style="background:#CEF2E0"

| rowspan="4" data-sort-value="2012" |(2012{{snd}}2017)

| rowspan="4" style="border:4px ridge magenta; background:#000000; text-align:center" |112px

| rowspan="4" | WASP-78b

| 1.59 ± 0.10{{Cite journal |last1=Bonomo |first1=A. S. |last2=Desidera |first2=S. |last3=Benatti |first3=S. |last4=Borsa |first4=F. |last5=Crespi |first5=S. |last6=Damasso |first6=M. |last7=Lanza |first7=A. F. |last8=Sozzetti |first8=A. |last9=Lodato |first9=G. |last10=Marzari |first10=F. |last11=Boccato |first11=C. |last12=Claudi |first12=R. U. |last13=Cosentino |first13=R. |last14=Covino |first14=E. |last15=Gratton |first15=R. |date=June 2017 |title=The GAPS Programme with HARPS-N at TNG: XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets⋆ |url=http://www.aanda.org/10.1051/0004-6361/201629882 |journal=Astronomy & Astrophysics |volume=602 |pages=A107 |arxiv=1704.00373 |bibcode=2017A&A...602A.107B |doi=10.1051/0004-6361/201629882 |issn=0004-6361}}

| rowspan="4" style="text-align:center;" | {{dagger}}

| rowspan="4" | 0.89 ± 0.08

| rowspan="4" |Large size needs confirmation due to size discrepancy.

style="background:#CEF2E0"

| data-sort-value="1.93" |1.93 ± 0.45

style="background:#CEF2E0"

| data-sort-value="2.06" |2.06 ± 0.10{{Cite journal |last1=Brown |first1=D. J. A. |last2=Triaud |first2=A. H. M. J. |last3=Doyle |first3=A. P. |last4=Gillon |first4=M. |last5=Lendl |first5=M. |last6=Anderson |first6=D. R. |last7=Collier Cameron |first7=A. |last8=Hébrard |first8=G. |last9=Hellier |first9=C. |last10=Lovis |first10=C. |last11=Maxted |first11=P. F. L. |last12=Pepe |first12=F. |last13=Pollacco |first13=D. |last14=Queloz |first14=D. |last15=Smalley |first15=B. |date=2017-01-01 |title=Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=464 |issue=1 |pages=810–839 |arxiv=1610.00600 |bibcode=2017MNRAS.464..810B |doi=10.1093/mnras/stw2316 |doi-access=free |issn=0035-8711}}

style="background:#CEF2E0"

| data-sort-value="1.70" |1.70 ± 0.04

style="background:#CEF2E0"

| rowspan="2" data-sort-value="2014" |(2011{{snd}}2017)

| rowspan="2" style="border:4px ridge red; background:#000000;" |112x112px

| rowspan="2" | HAT-P-32b
(HAT-P-32 Ab)

| 1.822 {{±|0.350|0.236}}

| rowspan="2" style="text-align:center;" | {{dagger}}

| rowspan="2" | 0.941 ± 0.166,
0.860 ± 0.164

| rowspan="2" |The radius is dependent on whether the orbit is circular or eccentric. Later shown to be most likely close to the lower end of the originally possible radius range.

style="background:#CEF2E0"

| data-sort-value="1.789" |1.789 ± 0.025 – 2.04 ± 0.10

style="background:#ACE1AF"

| rowspan="2" data-sort-value="2007" |2011{{snd}}2017

| rowspan="2" style="border:4px ridge magenta; background:#000000;" |112px

| rowspan="2" | HAT-P-33b

| data-sort-value="1.484" | 1.85 ± 0.49

| rowspan="2" style="text-align:center;" | ↑

| rowspan="2" data-sort-value="0.86" |0.72 {{±|0.13|0.12}}

| rowspan="2" | Later proven to be most likely the largest at the time. The radius is dependent on whether the orbit is circular or eccentric.

style="background:#ACE1AF"

| data-sort-value="1.686" | 1.686 ± 0.045 – 1.827 ± 0.290

style="background:#e6e6e6"

| data-sort-value="2010" |2010{{snd}}2011

| style="border:4px ridge red; background:#000000; text-align:center;" | 112x112px

| Ditsö̀
(WASP-17b)

| 1.74 {{±|0.26|0.23}}

| style="text-align:center;" | –

| 0.512 ± 0.037

| First planet discovered to have a retrograde orbit and first to have quartz (crystalline silica, SiO2) in the clouds of an exoplanet. Puffiest and possibly largest exoplanet at the time of discovery. {{nowrap|Extremely low density of 0.08 g/cm3.}}

style="background:#FAECC8"

| data-sort-value="2008" rowspan="4"|(2008{{snd}}present)

|style="border:4px ridge blue; background:#000000; text-align:center;" rowspan="4"|112x112px

| rowspan="4" | CT Chamaeleontis b
(CT Cha b)

| data-sort-value="2.4"| ~2.4{{Cite journal |last1=Wu |first1=Ya-Lin |last2=Close |first2=Laird M. |last3=Males |first3=Jared R. |last4=Barman |first4=Travis S. |last5=Morzinski |first5=Katie M. |last6=Follette |first6=Katherine B. |last7=Bailey |first7=Vanessa |last8=Rodigas |first8=Timothy J. |last9=Hinz |first9=Philip |last10=Puglisi |first10=Alfio |last11=Xompero |first11=Marco |last12=Briguglio |first12=Runa |date=2015-02-23 |title=New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion Ct Chamaeleontis B with the Magellan Ao System |url=https://iopscience.iop.org/article/10.1088/0004-637X/801/1/4 |journal=The Astrophysical Journal |volume=801 |issue=1 |pages=4 |arxiv=1501.01396 |bibcode=2015ApJ...801....4W |doi=10.1088/0004-637X/801/1/4 |issn=1538-4357}}

| rowspan="4" style="text-align:center;" | *

| rowspan="4" data-sort-value="17"|17 ± 6

| rowspan="4" | Possibly the largest planet.

style="background:#FAECC8"

| data-sort-value="2.6"| 2.6 {{±|1.2|0.2}}

style="background:#FAECC8"

| data-sort-value="3.3"| 3.3 – 5.4{{Cite journal |last1=Patience |first1=J. |last2=King |first2=R. R. |last3=De Rosa |first3=R. J. |last4=Vigan |first4=A. |last5=Witte |first5=S. |last6=Rice |first6=E. |last7=Helling |first7=Ch. |last8=Hauschildt |first8=P. |date=April 2012 |title=Spectroscopy across the brown dwarf/planetary mass boundary: I. Near-infrared JHK spectra⋆⋆⋆ |url=http://www.aanda.org/10.1051/0004-6361/201118058 |journal=Astronomy & Astrophysics |volume=540 |pages=A85 |arxiv=1201.3921 |bibcode=2012A&A...540A..85P |doi=10.1051/0004-6361/201118058 |issn=0004-6361}}

style="background:#FAECC8"

| data-sort-value="2.2"| 2.20 {{±|0.81|0.60}}

style="background:#e6e6e6"

| data-sort-value="2007" |2007{{snd}}2010

| style="border:4px ridge indigo; background:#000000;" |112x112px

| TrES-4
(GSC 02620-00648 Ab)

| 1.674 ± 0.094{{Cite journal |last1=Mandushev |first1=Georgi |last2=O'Donovan |first2=Francis T. |last3=Charbonneau |first3=David |last4=Torres |first4=Guillermo |last5=Latham |first5=David W. |last6=Bakos |first6=Gáspár Á. |last7=Dunham |first7=Edward W. |last8=Sozzetti |first8=Alessandro |last9=Fernández |first9=José M. |last10=Esquerdo |first10=Gilbert A. |last11=Everett |first11=Mark E. |last12=Brown |first12=Timothy M. |last13=Rabus |first13=Markus |last14=Belmonte |first14=Juan A. |last15=Hillenbrand |first15=Lynne A. |date=2007-10-01 |title=TrES-4: A Transiting Hot Jupiter of Very Low Density |url=https://iopscience.iop.org/article/10.1086/522115 |journal=The Astrophysical Journal |language=en |volume=667 |issue=2 |pages=L195–L198 |arxiv=0708.0834 |bibcode=2007ApJ...667L.195M |doi=10.1086/522115 |issn=0004-637X}}

| style="text-align:center;" | –

| data-sort-value="0.78"|0.78 ± 0.19

| Largest confirmed exoplanet ever found and least dense planet of 0.17 g/cm3, about that of balsa wood, less than Saturn's 0.7 g/cm3, at the time of discovery.

style="background:#ACE1AF"

| data-sort-value="2007" rowspan="2" |2007{{snd}}2007

| style="border:4px ridge blue; background:#000000;" rowspan="2" |112px

| rowspan="2" | WASP-1 Ab

| data-sort-value="1.484"| 1.484 {{±|0.059|0.091}}{{Cite journal |last=Southworth |first=John |date=2010-11-01 |title=Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models: Studies of transiting extrasolar planets - III |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=408 |issue=3 |pages=1689–1713 |arxiv=1006.4443 |bibcode=2010MNRAS.408.1689S |doi=10.1111/j.1365-2966.2010.17231.x|doi-access=free }}

| rowspan="2" style="text-align:center;" | ↑

| data-sort-value="0.86" rowspan="2" |0.860 ± 0.072

| rowspan="2" | Later proven to be the largest at the time.

style="background:#ACE1AF"

| data-sort-value="1.33"| ≥1.33{{Cite journal |last1=Cameron |first1=A. C. |last2=Bouchy |first2=F. |last3=Hebrard |first3=G. |last4=Maxted |first4=P. |last5=Pollacco |first5=D. |last6=Pont |first6=F. |last7=Skillen |first7=I. |last8=Smalley |first8=B. |last9=Street |first9=R. A. |last10=West |first10=R. G. |last11=Wilson |first11=D. M. |last12=Aigrain |first12=S. |last13=Christian |first13=D. J. |last14=Clarkson |first14=W. I. |last15=Enoch |first15=B. |date=2007-03-01 |title=WASP-1b and WASP-2b: two new transiting exoplanets detected with SuperWASP and SOPHIE |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=375 |issue=3 |pages=951–957 |arxiv=astro-ph/0609688 |bibcode=2007MNRAS.375..951C |doi=10.1111/j.1365-2966.2006.11350.x |doi-access=free |issn=0035-8711}}

style="background:#e6e6e6"

| data-sort-value="2007" rowspan="2" |2007{{snd}}2007

| style="border:4px ridge red; background:#000000;" rowspan="2" |112x112px

| rowspan="2" | HAT-P-1b
(ADS 16402 Bb)

| data-sort-value="1.319"| 1.319 ± 0.019{{Cite journal |last1=Nikolov |first1=N. |last2=Sing |first2=D. K. |last3=Pont |first3=F. |last4=Burrows |first4=A. S. |last5=Fortney |first5=J. J. |last6=Ballester |first6=G. E. |last7=Evans |first7=T. M. |last8=Huitson |first8=C. M. |last9=Wakeford |first9=H. R. |last10=Wilson |first10=P. A. |last11=Aigrain |first11=S. |last12=Deming |first12=D. |last13=Gibson |first13=N. P. |last14=Henry |first14=G. W. |last15=Knutson |first15=H. |date=2014-01-01 |title=Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b |url=http://academic.oup.com/mnras/article/437/1/46/992656/Hubble-Space-Telescope-hot-Jupiter-transmission |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=437 |issue=1 |pages=46–66 |arxiv=1310.0083 |bibcode=2014MNRAS.437...46N |doi=10.1093/mnras/stt1859 |doi-access=free |issn=0035-8711}}

| rowspan="2" style="text-align:center;" | –

| data-sort-value="0.529" rowspan="2" |0.529 ± 0.020{{Cite journal |last1=Turner |first1=Jake D. |last2=Pearson |first2=Kyle A. |last3=Biddle |first3=Lauren I. |last4=Smart |first4=Brianna M. |last5=Zellem |first5=Robert T. |last6=Teske |first6=Johanna K. |last7=Hardegree-Ullman |first7=Kevin K. |last8=Griffith |first8=Caitlin C. |last9=Leiter |first9=Robin M. |last10=Cates |first10=Ian T. |last11=Nieberding |first11=Megan N. |last12=Smith |first12=Carter-Thaxton W. |last13=Thompson |first13=Robert M. |last14=Hofmann |first14=Ryan |last15=Berube |first15=Michael P. |date=2016-06-11 |title=Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=459 |issue=1 |pages=789–819 |arxiv=1603.02587 |bibcode=2016MNRAS.459..789T |doi=10.1093/mnras/stw574 |doi-access=free |issn=0035-8711}}

| rowspan="2" | The planet appears to be at least as large in radius, and smaller in mean density, than any previously known planet.

style="background:#e6e6e6"

| data-sort-value="1.36"| ~1.36{{Cite journal |last1=Bakos |first1=G. A. |last2=Noyes |first2=R. W. |last3=Kovacs |first3=G. |last4=Latham |first4=D. W. |last5=Sasselov |first5=D. D. |last6=Torres |first6=G. |last7=Fischer |first7=D. A. |last8=Stefanik |first8=R. P. |last9=Sato |first9=B. |last10=Johnson |first10=J. A. |last11=Pal |first11=A. |last12=Marcy |first12=G. W. |last13=Butler |first13=R. P. |last14=Esquerdo |first14=G. A. |last15=Stanek |first15=K. Z. |date=2007-02-10 |title=HAT-P-1b: A Large-Radius, Low-Density Exoplanet Transiting One Member of a Stellar Binary |url=https://iopscience.iop.org/article/10.1086/509874 |journal=The Astrophysical Journal |language=en |volume=656 |issue=1 |pages=552–559 |arxiv=astro-ph/0609369 |bibcode=2007ApJ...656..552B |doi=10.1086/509874 |issn=0004-637X}}

style="background:#FAECC8"

| rowspan="2" data-sort-value="2007"|(2007{{snd}}2024)

|style="border:4px ridge blue; background:#000000; text-align:center;" rowspan="2"|112px

| rowspan="2" | GQ Lupi b
(GQ Lup Ab,
GQ Lup B)

| data-sort-value="3.0"|3.0 ± 0.5

| style="text-align:center;" rowspan="2" | *

| data-sort-value="20"|~ 20 (1 – 39)

| rowspan="2" | First confirmed exoplanet candidate to be directly imaged.

style="background:#FAECC8"

| data-sort-value="3.50"|3.50 {{±|1.50|1.03}}

| data-sort-value="25"|~ 25 (4 – 155)

style="background:#CEF2E0"

| rowspan="2" data-sort-value="2006.5" |(2006{{snd}}present)

| style="border:4px ridge blue; background:#000000;" rowspan="2" |112x112px

| rowspan="2" | DH Tauri b
(DH Tau b)

|2.7 ± 0.8

| style="text-align:center;" rowspan="2" | {{dagger}}

| data-sort-value="11.5"; rowspan="2" | 11.5 {{±|10.5|3.1}}

| rowspan="2" | Mass being below the deuterium burning limit needs confirmation. Temperature originally given as 2700 – 2800 K. Other sources give the radii: 2.49 {{Jupiter radius|link=y}},{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}} 2.68 {{Jupiter radius|link=y}}, and 2.6 ± 0.6 {{Jupiter radius|link=y}} and masses: 11 ± 3 {{Jupiter mass|link=y}}, 14.2 {{±|2.4|3.5}} {{Jupiter mass|link=y}}, 17 ± 6 {{Jupiter mass|link=y}} and 12 ± 4 {{Jupiter mass|link=y}}

style="background:#CEF2E0"

| data-sort-value="1.75" |1.75{{efn|name=L/Teff|Based on the estimated temperature and luminosity via the Stefan-Boltzmann law.}}

style="background:#e6e6e6"

| data-sort-value="2006"|2006{{snd}}2007

| style="border:4px ridge red; background:black; text-align:center; margin:0 0 12px 0; "|112x112px

| HD 209458 b
("Osiris")

| data-sort-value="1.275"|1.27 ± 0.02{{Cite journal |last1=Charbonneau |first1=David |last2=Brown |first2=Timothy M. |last3=Latham |first3=David W. |last4=Mayor |first4=Michel |date=2000-01-20 |title=Detection of Planetary Transits Across a Sun-like Star |url=https://iopscience.iop.org/article/10.1086/312457 |journal=The Astrophysical Journal |volume=529 |issue=1 |pages=L45–L48 |arxiv=astro-ph/9911436 |bibcode=2000ApJ...529L..45C |doi=10.1086/312457|pmid=10615033}}

| style="text-align:center;" | –

| data-sort-value="0.6825" |0.682 {{±|0.014|0.015}}

| First known transiting exoplanet, first precisely measured planet available, first to have its orbital speed measured, determining its mass directly, one of first two exoplanets (other being HD 189733 Ab) to be observed spectroscopically and first to have an atmosphere, containing evaporating hydrogen, and first to have contained oxygen and carbon. First extrasolar gas giant to have its superstorm measured. Nicknamed "Osiris".

style="background:#FFF8DC"

| data-sort-value="2005"|(2005{{snd}}2007)

|style="border:4px ridge blue; background:#000000; text-align:center;"|112x112px

| GQ Lupi b
(GQ Lup B)

| data-sort-value="2"|~ 2{{Cite journal |last1=Neuhäuser |first1=R. |last2=Guenther |first2=E. W. |last3=Wuchterl |first3=G. |last4=Mugrauer |first4=M. |last5=Bedalov |first5=A. |last6=Hauschildt |first6=P. H. |date=May 2005 |title=Evidence for a co-moving sub-stellar companion of GQ Lup |url=http://www.aanda.org/10.1051/0004-6361:200500104 |journal=Astronomy & Astrophysics |volume=435 |issue=1 |pages=L13–L16 |arxiv=astro-ph/0503691 |bibcode=2005A&A...435L..13N |doi=10.1051/0004-6361:200500104 |issn=0004-6361}}{{cite web |date=7 April 2005 |title=Is this a Brown Dwarf or an Exoplanet?
New Young Sub-stellar Companion Imaged with the VLT |url=https://www.eso.org/public/news/eso0511/ |access-date=7 May 2025 |website=European Southern Observatory}}

| style="text-align:center;" | ⇗

| data-sort-value="2"|~ 2

| First confirmed exoplanet candidate to be directly imaged.

data-sort-value="1999"|1999{{snd}}2006

| style="border:4px ridge purple; background:white; text-align:center;"|112x112px

| HD 209458 b
("Osiris")

| 1.27 ± 0.02

| style="text-align:center;" | ←

| data-sort-value="0.682" |0.682 {{±|0.014|0.015}}

| First known transiting exoplanet, first precisely measured radius available, first to have its orbital speed measured, determining its mass directly, and first to have an atmosphere, containing evaporating hydrogen, and first to have contained oxygen and carbon. First extrasolar gas giant to have its superstorm measured. Nicknamed "Osiris".

style="background:#CEF2E0"

| data-sort-value="1996" rowspan="2" |(1996{{snd}}1999)

| style="border:4px ridge red; background:#000000; text-align:center;" |112px

| Saffar
(υ Andromedae Ab)

| data-sort-value="1.8" |Unknown

| style="text-align:center;" |{{dagger}}

| data-sort-value="0.74" |0.74 ± 0.07{{cite arXiv |eprint=1109.3116 |title=Upsilon Andromedae b in polarized light: New constraints on the planet size, density and albedo |author1=S.V. Berdyugina |author2=A.V. Berdyugin |author3=V. Piirola |date=14 September 2011 |class=astro-ph.EP}}

| rowspan="2" |About 20{{snd}}25 planets including Saffar were found within this time span via the radial velocity method, none of them had radius measurements shortly after their discoveries. As expected, Dimidium is larger than Poltergeist, whether one of the additional planets found till 1999 is larger than Dimidium is not clear to this day. Saffar has a phase curve measurement (see 2015), but confirmation of being larger than Dimidium is still needed.

style="background:#CEF2E0"

| style="border:4px ridge pink; background:#000000;" |112x112px

| various

| data-sort-value="1.21"|Unknown

| style="text-align:center;" | {{dagger}}

| data-sort-value="0.49"|0.49{{snd}}8.35

style="background:#e6e6e6"

| data-sort-value="1995"|1996{{snd}}1999

| style="border:4px ridge red; background:#000000;" rowspan=2 |112x112px

| Dimidium
(51 Peg b)

| data-sort-value="1.03"|Unknown

| style="text-align:center;" | –

| data-sort-value"0.4605"|0.46 {{±|0.06|0.01}}

| First convincing exoplanet discovered orbiting a main-sequence star. A prototype hot Jupiter.

data-sort-value="1994"|1995{{snd}}1996

| Dimidium
(51 Peg b)

| data-sort-value="1.02"|Unknown

| style="text-align:center;" | ←

| 0.46 {{±|0.06|0.01}}

| First convincing exoplanet discovered orbiting a main-sequence star. A prototype hot Jupiter.

style="background:#CEE0F2"

| data-sort-value="1993"|(1993{{snd}}1995)

| style="border:4px ridge red; background:#000000;" |112x112px

| PSR B1620−26 b
("Methuselah")

| data-sort-value="1.18"|Unknown

| style="text-align:center;" | →

| 2.5 ± 1

| Likely larger than Poltergeist, but not confirmed as planet until 2003. First circumbinary planet, first planet to be found in a globular cluster and the oldest planet to be discovered (until 2020) at the age of 11.2–12.7 billion years old,{{cite web |author=Britt, Robert Roy |date=2003 |title=Primeval Planet: Oldest Known World Conjures Prospect of Ancient Life |url=http://thebookofbeginnings.com/sources/10/PrimevalPlanet.pdf |url-status=dead |archive-url=https://web.archive.org/web/20131219075138/http://thebookofbeginnings.com/sources/10/PrimevalPlanet.pdf |archive-date=2013-12-19 |access-date=2013-12-19 |work=Space.com}} hence the nickname, "Methuselah".{{cite web |title=Oldest Known Planet Identified |url=http://hubblesite.org/newscenter/newsdesk/archive/releases/2003/19/ |url-status=live |archive-url=https://web.archive.org/web/20080517012902/http://hubblesite.org/newscenter/newsdesk/archive/releases/2003/19/ |archive-date=2008-05-17 |access-date=2006-05-07 |work=HubbleSite}}

data-sort-value="1992"|1992{{snd}}1995

| style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| Poltergeist
({{nowrap|PSR B1257+12 c}})

| data-sort-value="0.089"|Unknown

| style="text-align:center;" | ←

| data-sort-value="0.0135"|0.013 53 ± 0.000 63
(4.3 ± 0.2 {{val|ul=Earth mass}})

| First confirmed planet ever discovered outside the Solar System together with the less massive Phobetor (PSR B1257+12 d), one of three pulsar planets known to be orbiting the pulsar Lich (PSR B1257+12). Lich planets are likely to form in a second round of planet formation as a result of merger of two white dwarfs into a pulsar star and a resulting disk of material in orbit around the star.{{cite book |author=Podsiadlowski |first=P. |title=Planets Around Pulsars; Proceedings of the Conference |date=1993 |publisher=California Institute of Technology |volume=36 |pages=149–165 |chapter=Planet Formation Scenarios |bibcode=1993ASPC...36..149P}}

style="background:#CEE0F2"

| data-sort-value="1991"|(1991{{snd}}1992)

| style="border:4px ridge magenta; background:white;" |112x112px

| PSR 1829−10 b
(PSR B1829−10 b)

| data-sort-value="0.088"|Unknown

| style="text-align:center;" | →

| data-sort-value="0.03146"|0.031 46
(10 {{val|ul=Earth mass}})

| First found "orbiting the neutron star PSR 1829-10"{{Cite journal |last1=Bailes |first1=M. |last2=Lyne |first2=A. G. |last3=Shemar |first3=S. L. |date=July 1991 |title=A planet orbiting the neutron star PSR1829–10 |url=https://www.nature.com/articles/352311a0 |journal=Nature |language=en |volume=352 |issue=6333 |pages=311–313 |bibcode=1991Natur.352..311B |doi=10.1038/352311a0 |issn=0028-0836}} but in 1992 retracted before the discovery of Lich planets due to errors in calculations.{{Cite journal |last1=Lyne |first1=A. G. |last2=Bailes |first2=M |date=1992-01-16 |title=No planet orbiting PS R1829–10 |url=https://www.nature.com/articles/355213b0 |journal=Nature |language=en |volume=355 |issue=6357 |pages=213 |bibcode=1992Natur.355..213L |doi=10.1038/355213b0 |issn=0028-0836}}

style="background:#FFF8DC"

| data-sort-value="1989"|(1989{{snd}}1995)

| style="border:4px ridge magenta; background:white;" |112x112px

| HD 114762 Ab
("Latham's Planet")

| data-sort-value="1.05"|Unknown

| style="text-align:center;" | ⇗

| data-sort-value="11.069"|{{nowrap|11.069 ± 0.063,}}
~63.2

| Discovered in 1989 by Latham to have a minimum mass of 11.069 ± 0.063 {{val|ul=Jupiter mass}} (at 90°) and a probable mass of approximately {{val|63.2|ul=Jupiter mass}} (at 10°), making the former planet the first to be spotted,{{cite web |url=https://www.discovermagazine.com/the-sciences/the-fight-over-who-really-found-the-first-exoplanet |title=The fight over who really found the first exoplanet |website=Discover Magazine |date=April 22, 2019 |access-date=December 14, 2019}} and confirmed in 1991, it was thought to be the first discovered exoplanet (or second if it included Tadmor during its evidence) until 2019 when it was confirmed to be a low-mass star with the mass of 107 {{±|20|27}} {{val|ul=Jupiter mass}}{{cite journal |title=Determining the mass of the planetary candidate HD 114762 b using Gaia |arxiv=1910.07835 |last1=Kiefer |first1=Flavien |journal=Astronomy & Astrophysics |date=17 October 2019|volume=632 |pages=L9 |doi=10.1051/0004-6361/201936942 |bibcode=2019A&A...632L...9K |s2cid=204743831 }} (and later reviewed up to 147.0 {{±|39.3|42.0}} {{Jupiter mass}} in 2020 and 306.93 {{Jupiter mass}} ({{Solar mass|0.293|link=y}}) in 2022),{{cite journal |last=Winn |first=Joshua N. |arxiv=2209.05516 |title=Joint Constraints on Exoplanetary Orbits from Gaia DR3 and Doppler Data |journal=The Astronomical Journal |date=September 2022|volume=164 |issue=5 |page=196 |doi=10.3847/1538-3881/ac9126 |bibcode=2022AJ....164..196W |s2cid=252211643 |doi-access=free }} making one of the Lich planets the first exoplanet confirmed ever, or Dimidium, if the planet should have secured been formed in a first round of planet formation with the star.

style="background:#CEE0F2"

| data-sort-value="1988"|(1988{{snd}}1992)

|style="border:4px ridge red; background:#000000; text-align:center;"|112x112px

| Tadmor
(Gamma Cephei Ab,
γ Cep Ab)

| data-sort-value="0.89"|Unknown

| style="text-align:center;" | →

| 6.6 {{±|2.3|2.8}}

|First evidence for exoplanet to receive later confirmation. First reported in 1988, making it arguably the first true exoplanet discovered, and independently in 1989, however, retracted in 1992 due to the possibility that the stellar activity of the star mimics a planet not allowing a solid discovery claim and then finally confirmed in 2003.

style="background:pink;"

| data-sort-value="-600"|(Antiquity{{snd}}1992, 1988 or 1995)

|style="border:4px ridge blue; background:#000000;"|112px

| Jupiter

| 1
({{val|11.209|ul=Earth radius}}){{efn|name="pressure"|Refers to the level of 1 bar atmospheric pressure}}
(71 492 km)

| style="text-align:center;" |{{number sign}}

| 1
({{val|317.827|ul=Earth mass}})
(1.898 125 × 1027 kg)

| Oldest, largest and most massive planet in the Solar System Observations date back to 7th or 8th century BC. Using an early telescope the Galilean moons were discovered in 1610, the planet hosts 95 known moons. Photograph took in 1879, making Jupiter the first planet to have recognisable photo of a planet.
Reported for reference.

class="sortbottom"

| colspan="7" | For earlier entries, see early speculations and discredited claims.

= Notes =

{{notelist}}

See also

References

{{reflist|refs=

{{cite web |title=Planetary Systems Composite Data |url=https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PSCompPars |website=NASA Exoplanet Archive |access-date=12 December 2021}}

{{Cite web |title=Exoplanet Criteria for Inclusion in the Exoplanet Archive |url=https://exoplanetarchive.ipac.caltech.edu/docs/exoplanet_criteria.html |website=exoplanetarchive.ipac.caltech.edu |access-date=2022-08-10}}

{{Cite web |title=International Astronomical Union {{!}} IAU |url=https://www.iau.org/science/scientific_bodies/commissions/F2/info/documents/ |access-date=2022-08-10 |website=www.iau.org}}

{{Cite journal |last=Saha |first=Suman |title=Precise Transit Photometry Using TESS II: Revisiting 28 Additional Transiting Systems With Updated Physical Properties |journal=The Astrophysical Journal Supplement Series |arxiv=2407.20846v1 |date=September 3, 2024 |volume=274 |issue=1 |page=13 |doi=10.3847/1538-4365/ad6a60|doi-access=free |bibcode=2024ApJS..274...13S}}

{{Cite journal |last=Saha |first=Suman |date=August 2023 |title=Precise Transit Photometry Using TESS: Updated Physical Properties for 28 Exoplanets around Bright Stars |journal=The Astrophysical Journal Supplement Series |language=en |volume=268 |issue=1 |pages=2 |doi=10.3847/1538-4365/acdb6b |doi-access=free |issn=0067-0049|arxiv=2306.02951 |bibcode=2023ApJS..268....2S}}

{{Cite journal |last1=Fang |first1=Min |last2=Kim |first2=Jinyoung Serena |last3=Pascucci |first3=Ilaria |last4=Apai |first4=Dániel |last5=Manara |first5=Carlo Felice |date=2016-12-12 |title=A candidate planetary-mass object with a photoevaporating disk in Orion |journal=The Astrophysical Journal |volume=833 |issue=2 |pages=L16 |doi=10.3847/2041-8213/833/2/L16 |arxiv=1611.09761 |bibcode=2016ApJ...833L..16F |issn=2041-8213|doi-access=free}}

{{Cite journal |last1=Currie |first1=Thayne |last2=Lawson |first2=Kellen |last3=Schneider |first3=Glenn |last4=Lyra |first4=Wladimir |last5=Wisniewski |first5=John |last6=Grady |first6=Carol |last7=Guyon |first7=Olivier |last8=Tamura |first8=Motohide |last9=Kotani |first9=Takayuki |last10=Kawahara |first10=Hajime |last11=Brandt |first11=Timothy |last12=Uyama |first12=Taichi |last13=Muto |first13=Takayuki |last14=Dong |first14=Ruobing |last15=Kudo |first15=Tomoyuki |date=2022-04-04 |title=Images of embedded Jovian planet formation at a wide separation around AB Aurigae |url=https://www.nature.com/articles/s41550-022-01634-x |journal=Nature Astronomy |language=en |volume=6 |issue=6 |pages=751–759 |arxiv=2204.00633 |bibcode=2022NatAs...6..751C |doi=10.1038/s41550-022-01634-x |hdl=1887/3561800 |issn=2397-3366}}

{{cite journal |last1=Bourrier |first1=V. |last2=Ehrenreich |first2=D. |display-authors=etal |date=March 2020 |title=Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). III. Atmospheric structure of the misaligned ultra-hot Jupiter WASP-121b |journal=Astronomy & Astrophysics |volume=635 |issue= |pages=A205 |doi=10.1051/0004-6361/201936640 |arxiv=2001.06836 |bibcode=2020A&A...635A.205B}}

{{Cite journal|doi=10.1038/nature22392|title=A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host|journal=Nature|volume=546|issue=7659|pages=514–518|date=5 June 2017|author1-link=B. Scott Gaudi|last1=Gaudi|first1=B. Scott|last2=Stassun|first2=Keivan G.|last3=Collins|first3=Karen A.|last4=Beatty|first4=Thomas G.|last5=Zhou|first5=George|last6=Latham|first6=David W.|last7=Bieryla|first7=Allyson|last8=Eastman|first8=Jason D.|last9=Siverd|first9=Robert J.|last10=Crepp|first10=Justin R.|last11=Gonzales|first11=Erica J.|last12=Stevens|first12=Daniel J.|last13=Buchhave|first13=Lars A.|last14=Pepper|first14=Joshua|last15=Johnson|first15=Marshall C.|last16=Colon|first16=Knicole D.|last17=Jensen|first17=Eric L. N.|last18=Rodriguez|first18=Joseph E.|last19=Bozza|first19=Valerio|last20=Novati|first20=Sebastiano Calchi|last21=d'Ago|first21=Giuseppe|last22=Dumont|first22=Mary T.|last23=Ellis|first23=Tyler|last24=Gaillard|first24=Clement|last25=Jang-Condell|first25=Hannah|last26=Kasper|first26=David H.|last27=Fukui|first27=Akihiko|last28=Gregorio|first28=Joao|last29=Ito|first29=Ayaka|last30=Kielkopf|first30=John F.|display-authors=1|arxiv = 1706.06723 |bibcode = 2017Natur.546..514G|url=http://works.swarthmore.edu/cgi/viewcontent.cgi?article=1317&context=fac-physics|format=pdf|access-date=2017-06-06|issn=1476-4687|pmid=28582774|s2cid=205256410}}

{{cite journal|author=Quanz, Sasch P.|display-authors=4|author2=Amara, Adam|author3=Meyer, Michael P.|author4=Kenworthy, Matthew P.|author5=Kasper, Markus|author6=Girard, Julien H.|date=2014|title=Confirmation and characterization of the protoplanet HD100546 b - Direct evidence for gas giant planet formation at 50 au|journal= Astrophysical Journal|volume=807|issue=1|at=64|arxiv = 1412.5173 |bibcode = 2015ApJ...807...64Q |doi = 10.1088/0004-637X/807/1/64 |s2cid=119119314}}

{{cite journal|bibcode=2017PhDT.......406S |date=2017 |title=Observation of extrasolar planets at various ages |last1=Sissa |first1=Elena |journal=PhD Thesis, University of Padua, 2017}}

{{Cite journal|last1=Xuan|first1=Jerry W.|last2=Bryan|first2=Marta L.|last3=Knutson|first3=Heather A.|last4=Bowler|first4=Brendan P.|last5=Morley|first5=Caroline V.|last6=Benneke|first6=Björn|date=2020-02-10|title=A Rotation Rate for the Planetary-Mass Companion DH Tau b|journal=The Astronomical Journal|volume=159|issue=3|page=97|doi=10.3847/1538-3881/ab67c4|arxiv=2001.01759|bibcode=2020AJ....159...97X|s2cid=210023665|issn=1538-3881 |doi-access=free}}

{{citation | display-authors=1 | last1=Luhman | first1=K. L. | last2=D'Alessio | first2=Paola | last3=Calvet | first3=Nuria|author3-link=Nuria Calvet | last4=Allen | first4=Lori E. | last5=Hartmann | first5=Lee | last6=Megeath | first6=S. T. | last7=Myers | first7=P. C. | last8=Fazio | first8=G. G. | title=Spitzer Identification of the Least Massive Known Brown Dwarf with a Circumstellar Disk | journal=The Astrophysical Journal | volume=620 | issue=1 | pages=L51–L54 |date=February 2005 | doi=10.1086/428613 | bibcode=2005ApJ...620L..51L |arxiv = astro-ph/0502100 | s2cid=15340083}}

{{cite journal |last1=Joergens|first1=V.|last2=Bonnefoy|first2=M.|last3=Liu|first3=Y.|last4=Bayo |first4=A.|last5=Wolf|first5=S.|last6=Chauvin|first6=G.|last7=Rojo|first7=P.|title=OTS 44: Disk and accretion at the planetary border|journal=Astronomy & Astrophysics|volume=558|pages=L7|number=7|date=2013|doi=10.1051/0004-6361/201322432|arxiv = 1310.1936 |bibcode = 2013A&A...558L...7J |s2cid=118456052}}

{{cite journal|last1=Hou|first1=Qiang|last2=Wei|first2=Xing|title=Why hot Jupiters can be large but not too large|date=2022|journal=Monthly Notices of the Royal Astronomical Society|volume=511|issue=3|pages=3133–3137 |arxiv=2201.07008 |doi=10.1093/mnras/stac169|doi-access=free}}

{{cite journal|bibcode=2017AJ....153...94C|title=Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit|journal=The Astronomical Journal|volume=153|issue=3|page=94|last1=Crouzet|first1=N|last2=McCullough|first2=P. R|last3=Long|first3=D|last4=Montanes Rodriguez|first4=P|last5=Lecavelier Des Etangs|first5=A|last6=Ribas|first6=I|last7=Bourrier |first7=V|last8=Hébrard|first8=G|last9=Vilardell|first9=F|last10=Deleuil|first10=M|last11=Herrero|first11=E|last12=Garcia-Melendo |first12=E|last13=Akhenak|first13=L|last14=Foote|first14=J|last15=Gary|first15=B|last16=Benni|first16=P|last17=Guillot|first17=T|last18=Conjat|first18=M|last19=Mékarnia|first19=D|last20=Garlitz|first20=J|last21=Burke|first21=C. J|last22=Courcol|first22=B |last23=Demangeon|first23=O|date=2017-02-03|doi=10.3847/1538-3881/153/3/94|arxiv=1612.02776|s2cid=119082666 |doi-access=free}}

{{cite encyclopedia |url=https://exoplanet.eu/catalog/ |encyclopedia=Extrasolar Planets Encyclopaedia |title=The Extrasolar Planet Encyclopaedia - Catalog Listing|date=1995}}

{{cite journal|bibcode=2012A&A...547A..61S|title=WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus|journal=Astronomy & Astrophysics|volume=547|pages=A61|last1=Smalley|first1=B|last2=Anderson |first2=D. R|last3=Collier-Cameron|first3=A|last4=Doyle|first4=A. P|last5=Fumel|first5=A|last6=Gillon|first6=M|last7=Hellier|first7=C |last8=Jehin|first8=E|last9=Lendl|first9=M|last10=Maxted|first10=P. F. L|last11=Pepe|first11=F|last12=Pollacco|first12=D|last13=Queloz |first13=D|last14=Ségransan|first14=D|last15=Smith|first15=A. M. S|last16=Southworth|first16=J|last17=Triaud|first17=A. H. M. J |last18=Udry|first18=S|last19=West|first19=R. G|date=November 2012|doi=10.1051/0004-6361/201219731|arxiv=1206.1177|s2cid=119233646}}

{{citation|arxiv=2211.01474|year=2023|title=Peering into the young planetary system AB Pic|doi=10.1051/0004-6361/202244294 | display-authors=1 |last1=Palma-Bifani |first1=P. |last2=Chauvin |first2=G. |last3=Bonnefoy |first3=M. |last4=Rojo |first4=P. M. |last5=Petrus |first5=S. |last6=Rodet |first6=L. |last7=Langlois |first7=M. |last8=Allard |first8=F. |last9=Charnay |first9=B. |last10=Desgrange |first10=C. |last11=Homeier |first11=D. |last12=Lagrange |first12=A.-M. |last13=Beuzit |first13=J.-L. |last14=Baudoz |first14=P. |last15=Boccaletti |first15=A. |last16=Chomez |first16=A. |last17=Delorme |first17=P. |last18=Desidera |first18=S. |last19=Feldt |first19=M. |last20=Ginski |first20=C. |last21=Gratton |first21=R. |last22=Maire |first22=A.-L. |last23=Meyer |first23=M. |last24=Samland |first24=M. |last25=Snellen |first25=I. |last26=Vigan |first26=A. |last27=Zhang |first27=Y. |journal=Astronomy & Astrophysics |volume=670 |pages=A90 |bibcode=2023A&A...670A..90P |s2cid=253265148}}

{{Cite journal | title=Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert | url=https://www.aanda.org/articles/aa/full/2008/45/aa10625-08/aa10625-08.html | last1=Deleuil | first1=M. | last2=Deeg | first2=H. J. | last3=Alonso | first3=R. | last4=Bouchy | first4=F. | last5=Rouan | first5=D. | last6=Auvergne | first6=M. | last7=Baglin | first7=A. | last8=Aigrain | first8=S. | last9=Almenara | first9=J. M. | last10=Barbieri | first10=M. | last11=Barge | first11=P. | last12=Bruntt | first12=H. | last13=Bordé | first13=P. | last14=Collier Cameron | first14=A. | last15=Csizmadia | first15=S. | last16=De La Reza | first16=R. | last17=Dvorak | first17=R. | last18=Erikson | first18=A. | last19=Fridlund | first19=M. | last20=Gandolfi | first20=D. | last21=Gillon | first21=M. | last22=Guenther | first22=E. | last23=Guillot | first23=T. | last24=Hatzes | first24=A. | last25=Hébrard | first25=G. | last26=Jorda | first26=L. | last27=Lammer | first28=A. | first29=A. | last30=Loeillet | first30=B. | last28=Léger | last29=Llebaria | first27=H. | display-authors=1 | journal=Astronomy and Astrophysics | volume=491 | issue=3 | pages=889–897 | year=2008 | arxiv=0810.0919 | bibcode=2008A&A...491..889D | doi=10.1051/0004-6361:200810625 | s2cid=8944836}}

{{Cite journal |last1=Xuan |first1=Jerry W. |last2=Hsu |first2=Chih-Chun |last3=Finnerty |first3=Luke |last4=Wang |first4=Jason |last5=Ruffio |first5=Jean-Baptiste |last6=Zhang |first6=Yapeng |last7=Knutson |first7=Heather A. |last8=Mawet |first8=Dimitri |last9=Mamajek |first9=Eric E. |last10=Inglis |first10=Julie |last11=Wallack |first11=Nicole L. |last12=Bryan |first12=Marta L. |last13=Blake |first13=Geoffrey A. |last14=Mollière |first14=Paul |last15=Hejazi |first15=Neda |date=2024-07-01 |title=Are These Planets or Brown Dwarfs? Broadly Solar Compositions from High-resolution Atmospheric Retrievals of ∼10–30 M Jup Companions |journal=The Astrophysical Journal |volume=970 |issue=1 |page=71 |arxiv=2405.13128 |bibcode=2024ApJ...970...71X |doi=10.3847/1538-4357/ad4796 |doi-access=free |issn=0004-637X}}

{{Cite journal |last1=Seifahrt |first1=A. |last2=Neuhäuser |first2=R. |last3=Hauschildt |first3=P. H. |date=2007-02-01 |title=Near-infrared integral-field spectroscopy of the companion to GQ Lupi |url=http://www.aanda.org/10.1051/0004-6361:20066463 |journal=Astronomy & Astrophysics |volume=463 |issue=1 |pages=309–313 |arxiv=astro-ph/0612250 |doi=10.1051/0004-6361:20066463 |bibcode=2007A&A...463..309S |s2cid=119456238 |issn=0004-6361}}

{{cite journal|bibcode=2014ApJ...783L..17Z|title=Accretion onto Planetary Mass Companions of Low-mass Young Stars|journal=The Astrophysical Journal Letters|volume=783|issue=1|pages=L17|last1=Zhou|first1=Yifan|last2=Herczeg|first2=Gregory J|last3=Kraus|first3=Adam L|last4=Metchev|first4=Stanimir|last5=Cruz|first5=Kelle L|year=2014|doi=10.1088/2041-8205/783/1/L17|arxiv=1401.6545|s2cid=119255447}}

{{Cite journal |last1=Daemgen |first1=Sebastian |last2=Todorov |first2=Kamen |last3=Silva |first3=Jasmin |last4=Hand |first4=Derek |last5=Garcia |first5=Eugenio V. |last6=Currie |first6=Thayne |last7=Burrows |first7=Adam |last8=Stassun |first8=Keivan G. |last9=Ratzka |first9=Thorsten |last10=Debes |first10=John H. |last11=Lafreniere |first11=David |last12=Jayawardhana |first12=Ray |last13=Correia |first13=Serge |date=2017-05-01 |title=Mid-infrared characterization of the planetary-mass companion ROXs 42B b |url=http://www.aanda.org/10.1051/0004-6361/201629949 |journal=Astronomy & Astrophysics |volume=601 |pages=A65 |arxiv=1702.06549 |bibcode=2017A&A...601A..65D |doi=10.1051/0004-6361/201629949 |issn=0004-6361}}

{{cite journal |last1=Hoeijmakers |first1=H.J. |last2=Seidel |first2=J.V. |last3=Pino |first3=L. |last4=Kitzmann |first4=D. |last5=Sindel |first5=J.P. |last6=Ehrenreich |first6=D. |last7=Oza |first7=A.V. |last8=Bourrier |first8=V. |last9=Allart |first9=R. |last10=Gebek |first10=A. |last11=Lovis |first11=C. |last12=Yurchenko |first12=S.N. |last13=Astudillo-Defru |first13=N. |last14=Bayliss |first14=D. |last15=Cegla |first15=H. |last16=Lavie |first16=B. |last17=Lendl |first17=M. |last18=Melo |first18=C. |last19=Murgas |first19=F. |last20=Nascimbeni |first20=V. |last21=Pepe |first21=F. |last22=Segransan |first22=D. |last23=Udry |first23=S. |last24=Wyttenbach |first24=A. |last25=Heng |first25=K. |title=Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) - IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b |journal=Astronomy & Astrophysics |date=18 September 2020 |volume=641 |page=A123 |doi=10.1051/0004-6361/202038365|arxiv=2006.11308 |bibcode=2020A&A...641A.123H |s2cid=219966241}}

{{Cite journal|bibcode=2017AJ....153...78C|title=Transit Timing Variation Measurements of WASP-12b and Qatar-1b: No Evidence for Additional Planets|last1=Collins|first1=Karen A|last2=Kielkopf|first2=John F|last3=Stassun|first3=Keivan G|journal=The Astronomical Journal|year=2017|volume=153|issue=2|page=78|doi=10.3847/1538-3881/153/2/78|arxiv=1512.00464|s2cid=55191644 |doi-access=free}}

{{cite journal | title=Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b | last1=Wang | first1=Yong-Hao | last2=Wang | first2=Songhu | last3=Liu | first3=Hui-Gen | last4=Hinse | first4=Tobias C. | last5=Laughlin | first5=Gregory | last6=Wu | first6=Dong-Hong | last7=Zhang | first7=Xiaojia | last8=Zhou | first8=Xu | last9=Wu | first9=Zhenyu | last10=Zhou | first10=Ji-Lin | last11=Wittenmyer | first11=R. A. | last12=Eastman | first12=Jason | last13=Zhang | first13=Hui | last14=Hori | first14=Yasunori | last15=Narita | first15=Norio | last16=Chen | first16=Yuanyuan | last17=Ma | first17=Jun | last18=Peng | first18=Xiyan | last19=Zhang | first19=Tian-Meng | last20=Zou | first20=Hu | last21=Nie | first21=Jun-Dan | last22=Zhou | first22=Zhi-Min | display-authors=1 | journal=The Astronomical Journal | volume=154 | issue=2 | at=49 | year=2017 | arxiv=1705.08605 | bibcode=2017AJ....154...49W | doi=10.3847/1538-3881/aa7519 | s2cid=119245125 | doi-access=free}}

{{cite journal | title=Kepler-7b: A Transiting Planet with Unusually Low Density | last1=Latham | first1=David W. | last2=Borucki | first2=William J. | last3=Koch | first3=David G. | last4=Brown | first4=Timothy M. | last5=Buchhave | first5=Lars A. | last6=Basri | first6=Gibor | last7=Batalha | first7=Natalie M. | last8=Caldwell | first8=Douglas A. | last9=Cochran | first9=William D. | last10=Dunham | first10=Edward W. | last11=Fűrész | first11=Gabor | last12=Gautier | first12=Thomas N. | last13=Geary | first13=John C. | last14=Gilliland | first14=Ronald L. | last15=Howell | first15=Steve B. | last16=Jenkins | first16=Jon M. | last17=Lissauer | first17=Jack J. | last18=Marcy | first18=Geoffrey W. | last19=Monet | first19=David G. | last20=Rowe | first20=Jason F. | last21=Sasselov | first21=Dimitar D. | display-authors=1 | journal=The Astrophysical Journal Letters | volume=713 | issue=2 | pages=L140–L144 | year=2010 | arxiv=1001.0190 | bibcode=2010ApJ...713L.140L | bibcode-access=free | doi=10.1088/2041-8205/713/2/L140 | doi-access=free}}

{{cite web |last1=Clavin |first1=Whitney |last2=Johnson |first2=Michele |last3=Cole |first3=Steve |title=NASA Space Telescopes Find Patchy Clouds on Exotic World |url=http://www.nasa.gov/mission_pages/spitzer/news/spitzer20130930.html |date=30 September 2013 |work=NASA |access-date=30 September 2013 |archive-date=17 October 2013 |archive-url=https://web.archive.org/web/20131017155848/http://www.nasa.gov/mission_pages/spitzer/news/spitzer20130930.html}}

{{cite web |last=Chu |first=Jennifer |title=Scientists generate first map of clouds on an exoplanet |url=http://web.mit.edu/newsoffice/2013/scientists-generate-first-map-of-clouds-on-kepler-7b-1003.html |date=2 October 2013 |work=MIT |access-date=2 January 2014}}

{{cite journal |author=Demory, Brice-Olivier |display-authors=etal |title=Inference of Inhomogeneous Clouds in an Exoplanet Atmosphere |year=2013 |journal= The Astrophysical Journal Letters |arxiv=1309.7894 |bibcode = 2013ApJ...776L..25D |doi = 10.1088/2041-8205/776/2/L25 |volume=776 |issue=2 |pages=L25|s2cid=701011}}

{{cite book |last=Rebolo |first=Rafael |chapter=Teide 1 and the Discovery of Brown Dwarfs |pages=25–50 |editor-last=Joergens |editor-first=Viki |title=50 Years of Brown Dwarfs – From Prediction to Discovery to Forefront of Research |series=Astrophysics and Space Science Library |publisher=Springer |doi=10.1007/978-3-319-01162-2_4|date=2014 |volume=401 |isbn=978-3-319-01162-2 |bibcode=2014ASSL..401...25R}}

{{cite journal |last1=Lecavelier des Etangs |first1=A. |last2=Lissauer |first2=Jack J. |date=June 2022 |title=The IAU working definition of an exoplanet |journal=New Astronomy Reviews |volume=94 |issue= |page=101641 |doi=10.1016/j.newar.2022.101641 |arxiv=2203.09520 |bibcode=2022NewAR..9401641L}} [https://www.iau.org/science/scientific_bodies/commissions/F2/info/documents/ IAU website link]

{{Cite journal |last1=Galazutdinov |first1=G A |last2=Baluev |first2=R V |last3=Valyavin |first3=G |last4=Aitov |first4=V |last5=Gadelshin |first5=D |last6=Valeev |first6=A |last7=Sendzikas |first7=E |last8=Sokov |first8=E |last9=Mitiani |first9=G |last10=Burlakova |first10=T |last11=Yakunin |first11=I |last12=Antonyuk |first12=K A |last13=Vlasyuk |first13=V |last14=Romanyuk |first14=I |last15=Rzaev |first15=A |date=2023-11-21 |title=Doppler confirmation of TESS planet candidate TOI−1408.01: grazing transit and likely eccentric orbit |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=526 |issue=1 |pages=L111–L115 |doi=10.1093/mnrasl/slad127 |doi-access=free |arxiv=2309.03009 |issn=1745-3925}}

{{cite web|url=http://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=Kepler-90+h|title=Kepler-90 h|work=NASA Exoplanet Archive|access-date=15 July 2016}}

{{citation|arxiv=2011.08515|title=Kepler-90: Giant Transit-timing Variations Reveal a Super-puff|year=2021|doi=10.3847/1538-3881/abe6a7 |last1=Liang |first1=Yan |last2=Robnik |first2=Jakob |last3=Seljak |first3=Uroš |journal=The Astronomical Journal |volume=161 |issue=4 |page=202 |bibcode=2021AJ....161..202L |s2cid=226975548 |doi-access=free}}

{{cite journal |title=The Discovery of HD 37605c and a Dispositive Null Detection of Transits of HD 37605b |journal=The Astrophysical Journal |first1=Sharon Xuesong |last1=Wang |first2=Jason T. |last2=Wright |first3=William |last3=Cochran |first4=Stephen R. |last4=Kane |first5=Gregory W. |last5=Henry |first6=Matthew J. |last6=Payne |first7=Michael |last7=Endl |first8=Phillip J. |last8=MacQueen |first9=Jeff A. |last9=Valenti |first10=Victoria |last10=Antoci |first11=Diana |last11=Dragomir |first12=Jaymie M. |last12=Matthews |first13=Andrew W. |last13=Howard |first14=Geoffrey W. |last14=Marcy |first15=Howard |last15=Isaacson |first16=Eric B. |last16=Ford |first17=Suvrath |last17=Mahadevan |first18=Kaspar |last18=von Braun |display-authors=1 |volume=761 |issue=1 |pages=46–59 |date=2012 |doi=10.1088/0004-637X/761/1/46 |bibcode=2012ApJ...761...46W |arxiv=1210.6985|s2cid=118679173}}

{{cite journal |title=Distinguishing between stellar and planetary companions with phase monitoring |journal=Monthly Notices of the Royal Astronomical Society |first1=Stephen R. |last1=Kane |first2=Dawn M. |last2=Gelino |name-list-style=amp |volume=424 |issue=1 |pages=779–788 |year=2012 |arxiv=1205.5812 |bibcode=2012MNRAS.424..779K |doi=10.1111/j.1365-2966.2012.21265.x|doi-access=free |s2cid=15537565}}

{{cite journal |last1=Knutson |first1=Heather A. |last2=Charbonneau |first2=David |display-authors=etal |date=May 2007 |title=A map of the day-night contrast of the extrasolar planet HD 189733b |journal=Nature |volume=447 |issue=7141 |pages=183–186 |doi=10.1038/nature05782 |pmid=17495920 |arxiv=0705.0993 |bibcode=2007Natur.447..183K}}

{{cite journal | title=Polarized reflected light from the exoplanet HD189733b: First multicolor observations and confirmation of detection | last1=Berdyugina | first1=S.V. | last2=Berdyugin | first2=A.V. | last3=Fluri | first3=D.M. | last4=Piirola | first4=V. |journal=Astrophysical Journal Letters | volume=726 | issue=1 | pages=L6–L9 | date=2011 | arxiv=1101.0059 | bibcode=2011ApJ...728L...6B | doi=10.1088/2041-8205/728/1/L6 | s2cid=59160192}}

{{cite journal |last1=Evans |first1=Thomas M. |last2=Pont |first2=Frédéric |display-authors=etal |date=August 2013 |title=The Deep Blue Color of HD 189733b: Albedo Measurements with Hubble Space Telescope/Space Telescope Imaging Spectrograph at Visible Wavelengths |journal=The Astrophysical Journal Letters |volume=772 |issue=2 |pages=L16 |doi=10.1088/2041-8205/772/2/L16 |arxiv=1307.3239 |bibcode=2013ApJ...772L..16E|s2cid=38344760}}

{{Cite journal |last1=Johns |first1=Daniel |last2=Marti |first2=Connor |last3=Huff |first3=Madison |last4=McCann |first4=Jacob |last5=Wittenmyer |first5=Robert A. |last6=Horner |first6=Jonathan |last7=Wright |first7=Duncan J. |date=2018-11-01 |title=Revised Exoplanet Radii and Habitability Using Gaia Data Release 2 |bibcode=2018ApJS..239...14J |journal=The Astrophysical Journal Supplement Series |volume=239 |issue=1 |pages=14 |doi=10.3847/1538-4365/aae5fb |doi-access=free |arxiv=1808.04533 |issn=0067-0049}}

{{cite book |last1=Chabrier |first1=G. |last2=Johansen |first2=A. |last3=Janson |first3=M. |last4=Rafikov |first4=R. |arxiv=1401.7559 |doi=10.2458/azu_uapress_9780816531240-ch027 |chapter=Giant Planet and Brown Dwarf Formation |title=Protostars and Planets VI|date=2014 |isbn=978-0-8165-3124-0|s2cid=67776527}}

{{Cite journal |last1=Gómez Maqueo Chew |first1=Yilen |last2=Stassun |first2=Keivan G. |last3=Prša |first3=Andrej |last4=Mathieu |first4=Robert D. |date=2009-07-10 |title=Near-Infrared Light Curves of the Brown Dwarf Eclipsing Binary 2Mass J05352184-0546085: Can Spots Explain the Temperature Reversal? |url=https://iopscience.iop.org/article/10.1088/0004-637X/699/2/1196 |journal=The Astrophysical Journal |volume=699 |issue=2 |pages=1196–1208 |arxiv=0905.0491 |bibcode=2009ApJ...699.1196G |doi=10.1088/0004-637X/699/2/1196 |issn=0004-637X}}

{{Cite journal |last1=Kraus |first1=Adam L. |last2=White |first2=Russel J. |last3=Hillenbrand |first3=Lynne A. |date=2006-09-20 |title=Multiplicity and Optical Excess across the Substellar Boundary in Taurus |url=https://iopscience.iop.org/article/10.1086/503665 |journal=The Astrophysical Journal |language=en |volume=649 |issue=1 |pages=306–318 |arxiv=astro-ph/0602449 |bibcode=2006ApJ...649..306K |doi=10.1086/503665 |issn=0004-637X}}

{{Cite journal |last1=Sun |first1=Xilei |last2=Huang |first2=Pinghui |last3=Dong |first3=Ruobing |last4=Liu |first4=Shang-Fei |date=2024 |title=Observational characteristics of circum-planetary-mass-object disks in the era of James Webb Space Telescope |journal=Astrophysical Journal |volume=972 |issue=1 |page=25 |doi=10.3847/1538-4357/ad57c2 |doi-access=free |arxiv=2406.09501|bibcode=2024ApJ...972...25S}}

{{Cite journal |last1=Bonnefoy |first1=M. |last2=Chauvin |first2=G. |last3=Lagrange |first3=A.-M. |last4=Rojo |first4=P. |last5=Allard |first5=F. |last6=Pinte |first6=C. |last7=Dumas |first7=C. |last8=Homeier |first8=D. |date=February 2014 |title=A library of near-infrared integral field spectra of young M–L dwarfs |url=http://www.aanda.org/10.1051/0004-6361/201118270 |journal=Astronomy & Astrophysics |volume=562 |pages=A127 |arxiv=1306.3709 |bibcode=2014A&A...562A.127B |doi=10.1051/0004-6361/201118270 |issn=0004-6361}}

{{Cite journal |last1=Bowler |first1=Brendan P. |last2=Hillenbrand |first2=Lynne A. |date=2015-09-28 |title=Near-Infrared Spectroscopy of 2M0441+2301 AabBab: A Quadruple System Spanning the Stellar to Planetary Mass Regimes |url=https://iopscience.iop.org/article/10.1088/2041-8205/811/2/L30 |journal=The Astrophysical Journal |volume=811 |issue=2 |pages=L30 |arxiv=1509.01658 |bibcode=2015ApJ...811L..30B |doi=10.1088/2041-8205/811/2/L30 |issn=2041-8213}}

{{Cite journal |last1=Guinan |first1=Edward F. |last2=Engle |first2=Scott G. |last3=Durbin |first3=Allyn |date=2016-04-20 |title=LIVING WITH A RED DWARF: ROTATION AND X-RAY AND ULTRAVIOLET PROPERTIES OF THE HALO POPULATION KAPTEYN'S STAR* |journal=The Astrophysical Journal |volume=821 |issue=2 |page=81 |arxiv=1602.01912 |bibcode=2016ApJ...821...81G |doi=10.3847/0004-637X/821/2/81 |doi-access=free |issn=0004-637X}}

{{Cite journal |last1=Xuan |first1=Jerry W. |last2=Bryan |first2=Marta L. |last3=Knutson |first3=Heather A. |last4=Bowler |first4=Brendan P. |last5=Morley |first5=Caroline V. |last6=Benneke |first6=Björn |date=2020-03-01 |title=A Rotation Rate for the Planetary-mass Companion DH Tau b |journal=The Astronomical Journal |volume=159 |issue=3 |page=97 |arxiv=2001.01759 |bibcode=2020AJ....159...97X |doi=10.3847/1538-3881/ab67c4 |doi-access=free |issn=0004-6256}}

{{Cite journal |last1=Martinez |first1=Raquel A. |last2=Kraus |first2=Adam L. |date=2021-12-23 |title=A Mid-infrared Study of Directly Imaged Planetary-mass Companions Using Archival Spitzer/IRAC Images |journal=The Astronomical Journal |volume=163 |issue=1 |page=36 |arxiv=2111.03087 |bibcode=2022AJ....163...36M |doi=10.3847/1538-3881/ac3745 |doi-access=free |issn=0004-6256}}

{{Cite journal |last1=Lazzoni |first1=C. |last2=Zurlo |first2=A. |last3=Desidera |first3=S. |last4=Mesa |first4=D. |last5=Fontanive |first5=C. |last6=Bonavita |first6=M. |last7=Ertel |first7=S. |last8=Rice |first8=K. |last9=Vigan |first9=A. |last10=Boccaletti |first10=A. |last11=Bonnefoy |first11=M. |last12=Chauvin |first12=G. |last13=Delorme |first13=P. |last14=Gratton |first14=R. |last15=Houllé |first15=M. |date=September 2020 |title=The search for disks or planetary objects around directly imaged companions: a candidate around DH Tauri B |url=https://www.aanda.org/articles/aa/full_html/2020/09/aa37290-19/aa37290-19.html |journal=Astronomy & Astrophysics |volume=641 |pages=A131 |arxiv=2007.10097 |bibcode=2020A&A...641A.131L |doi=10.1051/0004-6361/201937290 |issn=0004-6361}}

{{Cite journal |last1=van Holstein |first1=R.G. |last2=Stolker |first2=T. |last3=Jensen-Clem |first3=R. |last4=Ginski |first4=C. |last5=Milli |first5=J. |last6=de Boer |first6=J. |last7=Girard |first7=J.H. |last8=Wahhaj |first8=Z. |last9=Bohn |first9=A.J. |last10=Millar-Blanchaer |first10=M.A. |last11=Benisty |first11=M. |last12=Bonnefoy |first12=M. |last13=Chauvin |first13=G. |last14=Dominik |first14=C. |last15=Hinkley |first15=S. |date=March 2021 |title=A survey of the linear polarization of directly imaged exoplanets and brown dwarf companions with SPHERE-IRDIS: First polarimetric detections revealing disks around DH Tau B and GSC 6214-210 B |url=https://www.aanda.org/10.1051/0004-6361/202039290 |journal=Astronomy & Astrophysics |volume=647 |pages=A21 |arxiv=2101.04033 |bibcode=2021A&A...647A..21V |doi=10.1051/0004-6361/202039290 |issn=0004-6361}}

{{Cite journal |last1=Bryan |first1=Marta L. |last2=Ginzburg |first2=Sivan |last3=Chiang |first3=Eugene |last4=Morley |first4=Caroline |last5=Bowler |first5=Brendan P. |last6=Xuan |first6=Jerry W. |last7=Knutson |first7=Heather A. |date=2020-12-01 |title=As the Worlds Turn: Constraining Spin Evolution in the Planetary-mass Regime |journal=The Astrophysical Journal |volume=905 |issue=1 |page=37 |arxiv=2010.07315 |bibcode=2020ApJ...905...37B |doi=10.3847/1538-4357/abc0ef |doi-access=free |issn=0004-637X}}

{{Cite journal |last1=Kuzuhara |first1=M. |last2=Tamura |first2=M. |last3=Ishii |first3=M. |last4=Kudo |first4=T. |last5=Nishiyama |first5=S. |last6=Kandori |first6=R. |date=2011-04-01 |title=The Widest-Separation Substellar Companion Candidate to a Binary T Tauri Star |url=https://iopscience.iop.org/article/10.1088/0004-6256/141/4/119 |journal=The Astronomical Journal |volume=141 |issue=4 |page=119 |bibcode=2011AJ....141..119K |doi=10.1088/0004-6256/141/4/119 |issn=0004-6256}}

{{Cite journal |last1=Bowler |first1=Brendan P. |last2=Liu |first2=Michael C. |last3=Kraus |first3=Adam L. |last4=Mann |first4=Andrew W. |date=2014-03-05 |title=Spectroscopic Confirmation of Young Planetary-Mass Companions on Wide Orbits |url=https://iopscience.iop.org/article/10.1088/0004-637X/784/1/65 |journal=The Astrophysical Journal |volume=784 |issue=1 |page=65 |arxiv=1401.7668 |bibcode=2014ApJ...784...65B |doi=10.1088/0004-637X/784/1/65 |hdl=2152/34644 |issn=0004-637X}}

{{Cite journal |last1=Wu |first1=Ya-Lin |last2=Bowler |first2=Brendan P. |last3=Sheehan |first3=Patrick D. |last4=Close |first4=Laird M. |last5=Eisner |first5=Joshua A. |last6=Best |first6=William M. J. |last7=Ward-Duong |first7=Kimberly |last8=Zhu |first8=Zhaohuan |last9=Kraus |first9=Adam L. |date=2022-05-01 |title=ALMA Discovery of a Disk around the Planetary-mass Companion SR 12 c |journal=The Astrophysical Journal Letters |volume=930 |issue=1 |pages=L3 |arxiv=2204.06013 |bibcode=2022ApJ...930L...3W |doi=10.3847/2041-8213/ac6420 |doi-access=free |issn=2041-8205}}

{{Cite journal |last1=Korth |first1=Judith |last2=Chaturvedi |first2=Priyanka |last3=Parviainen |first3=Hannu |last4=Carleo |first4=Ilaria |last5=Endl |first5=Michael |last6=Guenther |first6=Eike W. |last7=Nowak |first7=Grzegorz |last8=Persson |first8=Carina M. |last9=MacQueen |first9=Phillip J. |last10=Mustill |first10=Alexander J. |last11=Cabrera |first11=Juan |last12=Cochran |first12=William D. |last13=Lillo-Box |first13=Jorge |last14=Hobbs |first14=David |last15=Murgas |first15=Felipe |date=August 2024 |title=TOI-1408: Discovery and Photodynamical Modeling of a Small Inner Companion to a Hot Jupiter Revealed by Transit Timing Variations |journal=The Astrophysical Journal Letters |language=en |volume=971 |issue=2 |pages=L28 |arxiv=2407.17798 |bibcode=2024ApJ...971L..28K |doi=10.3847/2041-8213/ad65fd |issn=2041-8205 |doi-access=free}}

{{Cite journal |last1=Hurt |first1=Spencer A. |last2=Liu |first2=Michael C. |last3=Zhang |first3=Zhoujian |last4=Phillips |first4=Mark |last5=Allers |first5=Katelyn N. |last6=Deacon |first6=Niall R. |last7=Aller |first7=Kimberly M. |last8=Best |first8=William M. J. |date=2024-01-01 |title=Uniform Forward-modeling Analysis of Ultracool Dwarfs. III. Late-M and L Dwarfs in Young Moving Groups, the Pleiades, and the Hyades |journal=The Astrophysical Journal |volume=961 |issue=1 |page=121 |arxiv=2311.04268 |bibcode=2024ApJ...961..121H |doi=10.3847/1538-4357/ad0b12 |doi-access=free |issn=0004-637X}}

{{Cite journal|arxiv = 0809.2812|doi = 10.1051/0004-6361:20078840|title = Direct evidence of a sub-stellar companion around CT Chamaeleontis|year = 2008|last1 = Schmidt|first1 = T. O. B.|last2 = Neuhäuser|first2 = R.|last3 = Seifahrt|first3 = A.|last4 = Vogt|first4 = N.|last5 = Bedalov|first5 = A.|last6 = Helling|first6 = Ch.|last7 = Witte|first7 = S.|last8 = Hauschildt|first8 = P. H.|journal = Astronomy & Astrophysics|volume = 491|issue = 1|pages = 311–320|bibcode = 2008A&A...491..311S|s2cid = 17161561}}

{{Cite journal |last1=Quanz |first1=Sascha P. |last2=Goldman |first2=Bertrand |last3=Henning |first3=Thomas |last4=Brandner |first4=Wolfgang |last5=Burrows |first5=Adam |last6=Hofstetter |first6=Lorne W. |date=2010-01-01 |title=Search for Very Low-Mass Brown Dwarfs and Free-Floating Planetary-Mass Objects in Taurus |url=https://iopscience.iop.org/article/10.1088/0004-637X/708/1/770 |journal=The Astrophysical Journal |volume=708 |issue=1 |pages=770–784 |arxiv=0911.1925 |bibcode=2010ApJ...708..770Q |doi=10.1088/0004-637X/708/1/770 |issn=0004-637X}}

{{Cite journal |last1=Currie |first1=Thayne |last2=Daemgen |first2=Sebastian |last3=Debes |first3=John |last4=Lafreniere |first4=David |last5=Itoh |first5=Yoichi |last6=Jayawardhana |first6=Ray |last7=Ratzka |first7=Thorsten |last8=Correia |first8=Serge |date=2013-12-19 |title=Direct Imaging and Spectroscopy of a Candidate Companion Below/Near the Deuterium-Burning Limit in the Young Binary Star System, ROXs 42B |url=https://iopscience.iop.org/article/10.1088/2041-8205/780/2/L30 |journal=The Astrophysical Journal |volume=780 |issue=2 |pages=L30 |arxiv=1310.4825 |bibcode=2014ApJ...780L..30C |doi=10.1088/2041-8205/780/2/L30 |issn=2041-8205}}

{{Cite journal |last1=Kraus |first1=Adam L. |last2=Ireland |first2=Michael J. |last3=Cieza |first3=Lucas A. |last4=Hinkley |first4=Sasha |last5=Dupuy |first5=Trent J. |last6=Bowler |first6=Brendan P. |last7=Liu |first7=Michael C. |date=2013-12-31 |title=Three Wide Planetary-Mass Companions to FW Tau, ROXs 12, and ROXs 42B |url=https://iopscience.iop.org/article/10.1088/0004-637X/781/1/20 |journal=The Astrophysical Journal |volume=781 |issue=1 |page=20 |arxiv=1311.7664 |bibcode=2014ApJ...781...20K |doi=10.1088/0004-637X/781/1/20 |issn=0004-637X}}

{{Cite journal|display-authors=etal|date=15 April 2024|title=Atmospheric Retrievals of the Young Giant Planet ROXs 42B b from Low- and High-resolution Spectroscopy|journal=The Astronomical Journal|volume=167|issue=5|page=19|bibcode=2024AJ....167..218I|doi=10.3847/1538-3881/ad2771|doi-access=free |arxiv=2402.09533|s2cid=267681834|issn=1538-3881 |last1=Inglis |first1=Julie |last2=Wallack |first2=Nicole L. |last3=Xuan |first3=Jerry W. |last4=Knutson |first4=Heather A. |last5=Chachan |first5=Yayaati |last6=Bryan |first6=Marta L. |last7=Bowler |first7=Brendan P. |last8=Iyer |first8=Aishwarya |last9=Kataria |first9=Tiffany |last10=Benneke |first10=Björn}}

{{Cite journal |last1=Currie |first1=Thayne |last2=Burrows |first2=Adam |last3=Daemgen |first3=Sebastian |date=2014-05-08 |title=A FIRST-LOOK ATMOSPHERIC MODELING STUDY OF THE YOUNG DIRECTLY IMAGED PLANET-MASS COMPANION, ROXS 42Bb |url=https://iopscience.iop.org/article/10.1088/0004-637X/787/2/104 |journal=The Astrophysical Journal |volume=787 |issue=2 |page=104 |arxiv=1404.0131 |bibcode=2014ApJ...787..104C |doi=10.1088/0004-637X/787/2/104 |issn=0004-637X}}

{{Cite journal |last1=Yee |first1=Samuel W. |last2=Winn |first2=Joshua N. |last3=Hartman |first3=Joel D. |last4=Rodriguez |first4=Joseph E. |last5=Zhou |first5=George |last6=Quinn |first6=Samuel N. |last7=Latham |first7=David W. |last8=Bieryla |first8=Allyson |last9=Collins |first9=Karen A. |last10=Addison |first10=Brett C. |last11=Angelo |first11=Isabel |last12=Barkaoui |first12=Khalid |last13=Benni |first13=Paul |last14=Boyle |first14=Andrew W. |last15=Brahm |first15=Rafael |date=2022-08-01 |title=The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets |journal=The Astronomical Journal |volume=164 |issue=2 |page=70 |doi=10.3847/1538-3881/ac73ff |doi-access=free |arxiv=2205.09728 |bibcode=2022AJ....164...70Y |issn=0004-6256}}

{{Cite journal |last1=Wang 王 |first1=J. J. 劲飞 |last2=Vigan |first2=A. |last3=Lacour |first3=S. |last4=Nowak |first4=M. |last5=Stolker |first5=T. |last6=De Rosa |first6=R. J. |last7=Ginzburg |first7=S. |last8=Gao |first8=P. |last9=Abuter |first9=R. |last10=Amorim |first10=A. |last11=Asensio-Torres |first11=R. |last12=Bauböck |first12=M. |last13=Benisty |first13=M. |last14=Berger |first14=J. P. |last15=Beust |first15=H. |date=2021-03-01 |title=Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗ |journal=The Astronomical Journal |volume=161 |issue=3 |page=148 |arxiv=2101.04187 |bibcode=2021AJ....161..148W |doi=10.3847/1538-3881/abdb2d |doi-access=free |issn=0004-6256}}

{{cite journal|bibcode=2017AJ....153..211Z|title=HAT-P-67b: An Extremely Low Density Saturn Transiting an F-subgiant Confirmed via Doppler Tomography|journal=The Astronomical Journal|volume=153|issue=5|page=211|last1=Zhou|first1=G|last2=Bakos|first2=G. Á|last3=Hartman|first3=J. D|last4=Latham|first4=D. W|last5=Torres|first5=G|last6=Bhatti|first6=W|last7=Penev|first7=K|last8=Buchhave|first8=L|last9=Kovács|first9=G|last10=Bieryla|first10=A|last11=Quinn|first11=S|last12=Isaacson|first12=H|last13=Fulton|first13=B. J|last14=Falco|first14=E|last15=Csubry|first15=Z|last16=Everett|first16=M|last17=Szklenar|first17=T|last18=Esquerdo|first18=G|last19=Berlind|first19=P|last20=Calkins|first20=M. L|last21=Béky|first21=B|last22=Knox|first22=R. P|last23=Hinz|first23=P|last24=Horch|first24=E. P|last25=Hirsch|first25=L|last26=Howell|first26=S. B|last27=Noyes|first27=R. W|last28=Marcy|first28=G|last29=De Val-Borro|first29=M|last30=Lázár|first30=J|display-authors=29|year=2017|doi=10.3847/1538-3881/aa674a|arxiv=1702.00106|s2cid=119491990 |doi-access=free}}

{{Cite web |last=Manitowoc |first=Terrence Gollata |date=2018-11-27 |title=What's the diameter of the largest exoplanet found so far? |url=https://www.astronomy.com/science/whats-the-diameter-of-the-largest-exoplanet-found-so-far/ |access-date=2024-01-03 |website=Astronomy Magazine |language=en-US}}

{{Cite journal |last1=Rilinger |first1=Anneliese M. |last2=Espaillat |first2=Catherine C. |date=November 2021 |title=Disk Masses and Dust Evolution of Protoplanetary Disks around Brown Dwarfs |journal=The Astrophysical Journal |language=en |volume=921 |issue=2 |page=182 |doi=10.3847/1538-4357/ac09e5 |doi-access=free |arxiv=2106.05247 |bibcode=2021ApJ...921..182R |issn=0004-637X}}

{{Cite journal |last1=Yee |first1=Samuel W. |last2=Winn |first2=Joshua N. |last3=Hartman |first3=Joel D. |last4=Bouma |first4=Luke G. |last5=Zhou |first5=George |last6=Quinn |first6=Samuel N. |last7=Latham |first7=David W. |last8=Bieryla |first8=Allyson |last9=Rodriguez |first9=Joseph E. |last10=Collins |first10=Karen A. |last11=Alfaro |first11=Owen |last12=Barkaoui |first12=Khalid |last13=Beard |first13=Corey |last14=Belinski |first14=Alexander A. |last15=Benkhaldoun |first15=Zouhair |date=2023-03-01 |title=The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets* |journal=The Astrophysical Journal Supplement Series |volume=265 |issue=1 |page=1 |arxiv=2210.15473 |bibcode=2023ApJS..265....1Y |doi=10.3847/1538-4365/aca286 |doi-access=free |issn=0067-0049}}

{{Cite journal |last1=Bonomo |first1=A. S. |last2=Desidera |first2=S. |last3=Benatti |first3=S. |last4=Borsa |first4=F. |last5=Crespi |first5=S. |last6=Damasso |first6=M. |last7=Lanza |first7=A. F. |last8=Sozzetti |first8=A. |last9=Lodato |first9=G. |last10=Marzari |first10=F. |last11=Boccato |first11=C. |last12=Claudi |first12=R. U. |last13=Cosentino |first13=R. |last14=Covino |first14=E. |last15=Gratton |first15=R. |date=2017-06-01 |title=The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets |url=https://ui.adsabs.harvard.edu/abs/2017A&A...602A.107B |journal=Astronomy and Astrophysics |volume=602 |pages=A107 |doi=10.1051/0004-6361/201629882 |issn=0004-6361|arxiv=1704.00373 |bibcode=2017A&A...602A.107B}}

{{cite journal | title=WASP-17b: An Ultra-Low Density Planet in a Probable Retrograde Orbit | last1=Anderson | first1=D. R. | last2=Hellier | first2=C. | last3=Gillon | first3=M. | last4=Triaud | first4=A. H. M. J. | last5=Smalley | first5=B. | last6=Hebb | first6=L. | last7=Collier Cameron | first7=A. | last8=Maxted | first8=P. F. L. | last9=Queloz | first9=D. | last10=West | first10=R. G. | last11=Bentley | first11=S. J. | last12=Enoch | first12=B. | last13=Horne | first13=K. | last14=Lister | first14=T. A. | last15=Mayor | first15=M. | last16=Parley | first16=N. R. | last17=Pepe | first17=F. | last18=Pollacco | first18=D. | last19=Ségransan | first19=D. | last20=Udry | first20=S. | last21=Wilson | first21=D. M. | display-authors=1 | journal=The Astrophysical Journal | volume=709 | issue=1 | pages=159–167 | year=2010 | arxiv=0908.1553 | bibcode=2010ApJ...709..159A | doi=10.1088/0004-637X/709/1/159 | s2cid=53628741}}

{{cite web |url=http://news.nationalgeographic.com/news/2009/08/090817-new-planet-orbits-backward.html |archive-url=https://web.archive.org/web/20090820034615/http://news.nationalgeographic.com/news/2009/08/090817-new-planet-orbits-backward.html |archive-date=August 20, 2009 |title="Backward" Planet Has Density of Foam Coffee Cups |first=Rachel |last=Kaufman |date=17 August 2009 |work=National Geographic |publisher=National Geographic Society |access-date=6 February 2011}}

{{cite journal|bibcode=2015A&A...575A..71A|title=SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: A massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars|journal=Astronomy & Astrophysics|volume=575|pages=A71|last1=Almenara|first1=J. M|last2=Damiani|first2=C|last3=Bouchy|first3=F|last4=Havel|first4=M|last5=Bruno|first5=G|last6=Hébrard|first6=G|last7=Diaz|first7=R. F|last8=Deleuil|first8=M|last9=Barros|first9=S. C. C|last10=Boisse|first10=I|last11=Bonomo|first11=A. S|last12=Montagnier|first12=G|last13=Santerne|first13=A|year=2015|doi=10.1051/0004-6361/201424291|arxiv=1501.01486|s2cid=118701259}}

{{Cite journal |last1=Fontanive |first1=Clémence|last2=Allers |first2=Katelyn N. |last3=Pantoja |first3=Blake |last4=Biller |first4=Beth |last5=Dubber |first5=Sophie |last6=Zhang |first6=Zhoujian |last7=Dupuy |first7=Trent |last8=Liu |first8=Michael C. |last9=Albert |first9=Loïc |date=2020-12-01 |title=A Wide Planetary-mass Companion to a Young Low-mass Brown Dwarf in Ophiuchus |journal=The Astrophysical Journal Letters |volume=905 |issue=2 |pages=L14 |arxiv=2011.08871 |bibcode=2020ApJ...905L..14F |doi=10.3847/2041-8213/abcaf8 |doi-access=free |issn=2041-8205}}

{{Cite journal |last1=Martínez |first1=Romy Rodríguez |last2=Gaudi |first2=B. Scott |last3=Rodriguez |first3=Joseph E. |last4=Zhou |first4=George |last5=Labadie-Bartz |first5=Jonathan |last6=Quinn |first6=Samuel N. |last7=Penev |first7=Kaloyan |last8=Tan |first8=Thiam-Guan |last9=Latham |first9=David W. |last10=Paredes |first10=Leonardo A. |last11=Kielkopf |first11=John F. |last12=Addison |first12=Brett |last13=Wright |first13=Duncan J. |last14=Teske |first14=Johanna |last15=Howell |first15=Steve B. |date=2020-09-01 |title=KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS* |journal=The Astronomical Journal |volume=160 |issue=3 |page=111 |arxiv=1912.01017 |bibcode=2020AJ....160..111R |doi=10.3847/1538-3881/ab9f2d |doi-access=free |issn=0004-6256}}

{{Citation |last1=Šubjak |first1=Ján |title=Evolution of BD-14 3065b (TOI-4987b) from giant planet to brown dwarf as possible evidence of deuterium burning at old stellar ages |date=2024-03-18 |arxiv=2403.12311 |last2=Latham |first2=David W. |last3=Quinn |first3=Samuel N. |last4=Berlind |first4=Perry |last5=Calkins |first5=Michael L. |last6=Esquerdo |first6=Gilbert A. |last7=Brahm |first7=Rafael |last8=Guenther |first8=Eike |last9=Janík |first9=Jan|journal=Astronomy & Astrophysics |volume=688 |pages=A120 |doi=10.1051/0004-6361/202349028 |bibcode=2024A&A...688A.120S}}

{{Cite journal|bibcode=2015A&A...576A.134M|title=Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b|journal=Astronomy & Astrophysics|volume=576|pages=A134|last1=Martins|first1=J. H. C|last2=Santos|first2=N. C|last3=Figueira|first3=P|last4=Faria|first4=J. P|last5=Montalto|first5=M|last6=Boisse|first6=I|last7=Ehrenreich|first7=D|last8=Lovis |first8=C|last9=Mayor|first9=M|last10=Melo|first10=C|last11=Pepe|first11=F|last12=Sousa|first12=S. G|last13=Udry|first13=S|last14=Cunha |first14=D|year=2015|doi=10.1051/0004-6361/201425298|arxiv=1504.05962|s2cid=119224213}}

{{Cite journal|bibcode=2016AJ....152..182H|title=HAT-P-65b and HAT-P-66b: Two Transiting Inflated Hot Jupiters and Observational Evidence for the Reinflation of Close-in Giant Planets|journal=The Astronomical Journal|volume=152|issue=6|page=182|last1=Hartman|first1=J. D|last2=Bakos|first2=G. Á|last3=Bhatti|first3=W|last4=Penev|first4=K |last5=Bieryla|first5=A|last6=Latham|first6=D. W|last7=Kovács|first7=G|last8=Torres|first8=G|last9=Csubry|first9=Z|last10=De Val-Borro |first10=M|last11=Buchhave|first11=L|last12=Kovács|first12=T|last13=Quinn|first13=S|last14=Howard|first14=A. W|last15=Isaacson|first15=H |last16=Fulton|first16=B. J|last17=Everett|first17=M. E|last18=Esquerdo|first18=G|last19=Béky|first19=B|last20=Szklenar|first20=T |last21=Falco|first21=E|last22=Santerne|first22=A|last23=Boisse|first23=I|last24=Hébrard|first24=G|last25=Burrows|first25=A|last26=Lázár|first26=J|last27=Papp|first27=I|last28=Sári|first28=P|year=2016|doi=10.3847/0004-6256/152/6/182|arxiv=1609.02767|s2cid=118546031 |doi-access=free}}

{{Cite journal |last1=Cabot |first1=Samuel H. C. |last2=Bello-Arufe |first2=Aaron |last3=Mendonça |first3=João M. |last4=Tronsgaard |first4=René |last5=Wong |first5=Ian |last6=Zhou |first6=George |last7=Buchhave |first7=Lars A. |last8=Fischer |first8=Debra A. |last9=Stassun |first9=Keivan G. |last10=Antoci |first10=Victoria |last11=Baker |first11=David |last12=Belinski |first12=Alexander A. |last13=Benneke |first13=Björn |last14=Bouma |first14=Luke G. |last15=Christiansen |first15=Jessie L. |date=2021-11-01 |title=TOI-1518b: A Misaligned Ultra-hot Jupiter with Iron in Its Atmosphere |journal=The Astronomical Journal |volume=162 |issue=5 |page=218 |arxiv=2108.11403 |bibcode=2021AJ....162..218C |doi=10.3847/1538-3881/ac1ba3 |doi-access=free |issn=0004-6256}}

{{Cite journal |last1=Zhou |first1=G. |last2=Huang |first2=C. X. |last3=Bakos |first3=G. á. |last4=Hartman |first4=J. D. |last5=Latham |first5=David W. |last6=Quinn |first6=S. N. |last7=Collins |first7=K. A. |last8=Winn |first8=J. N. |last9=Wong |first9=I. |last10=Kovács |first10=G. |last11=Csubry |first11=Z. |last12=Bhatti |first12=W. |last13=Penev |first13=K. |last14=Bieryla |first14=A. |last15=Esquerdo |first15=G. A. |date=2019-10-01 |title=Two New HATNet Hot Jupiters around A Stars and the First Glimpse at the Occurrence Rate of Hot Jupiters from TESS ∗ |journal=The Astronomical Journal |volume=158 |issue=4 |page=141 |arxiv=1906.00462 |bibcode=2019AJ....158..141Z |doi=10.3847/1538-3881/ab36b5 |doi-access=free |issn=0004-6256}}

{{Cite journal|bibcode=2017MNRAS.468..835B |title=HATS-22b, HATS-23b and HATS-24b: Three new transiting super-Jupiters from the HATSouth project |journal=Monthly Notices of the Royal Astronomical Society |volume=468 |issue=1 |pages=835–848 |last1=Bento |first1=J |last2=Schmidt |first2=B |last3=Hartman |first3=J. D |last4=Bakos |first4=G. Á |last5=Ciceri |first5=S |last6=Brahm |first6=R |last7=Bayliss |first7=D |last8=Espinoza |first8=N |last9=Zhou |first9=G |last10=Rabus |first10=M |last11=Bhatti |first11=W |last12=Penev |first12=K |last13=Csubry |first13=Z |last14=Jordán |first14=A |last15=Mancini |first15=L |last16=Henning |first16=T |last17=De Val-Borro |first17=M |last18=Tinney |first18=C. G |last19=Wright |first19=D. J |last20=Durkan |first20=S |last21=Suc |first21=V |last22=Noyes |first22=R |last23=Lázár |first23=J |last24=Papp |first24=I |last25=Sári |first25=P |year=2017 |doi=10.1093/mnras/stx500 |doi-access=free |arxiv=1607.00688 |s2cid=119228961}}

{{Cite journal |last1=Wang |first1=Gavin |last2=Balmer |first2=William O. |last3=Pueyo |first3=Laurent |last4=Thorngren |first4=Daniel |last5=Schmidt |first5=Stephen P. |last6=Wang |first6=Le-Chris |last7=Schlaufman |first7=Kevin C. |last8=Stefánsson |first8=Guðmundur |last9=Rustamkulov |first9=Zafar |last10=Sing |first10=David K. |date=2025-06-02 |title=A Revised Density Estimate for the Largest Known Exoplanet, HAT-P-67 b |journal=The Astronomical Journal |volume=169 |issue=6 |pages=336 |arxiv=2504.13997 |bibcode=2025AJ....169..336W |doi=10.3847/1538-3881/adcec9 |doi-access=free |issn=0004-6256}}

{{Cite journal|bibcode=2015ApJ...810...30F|title=KELT-8b: A Highly Inflated Transiting Hot Jupiter and a New Technique for Extracting High-precision Radial Velocities from Noisy Spectra|journal=The Astrophysical Journal|volume=810|issue=1|page=30|last1=Fulton|first1=Benjamin J|last2=Collins|first2=Karen A|last3=Gaudi|first3=B. Scott|last4=Stassun |first4=Keivan G|last5=Pepper|first5=Joshua|last6=Beatty|first6=Thomas G|last7=Siverd|first7=Robert J|last8=Penev|first8=Kaloyan |last9=Howard|first9=Andrew W|last10=Baranec|first10=Christoph|last11=Corfini|first11=Giorgio|last12=Eastman|first12=Jason D |last13=Gregorio|first13=Joao|last14=Law|first14=Nicholas M|last15=Lund|first15=Michael B|last16=Oberst|first16=Thomas E|last17=Penny |first17=Matthew T|last18=Riddle|first18=Reed|last19=Rodriguez|first19=Joseph E|last20=Stevens|first20=Daniel J|last21=Zambelli |first21=Roberto|last22=Ziegler|first22=Carl|last23=Bieryla|first23=Allyson|last24=d'Ago|first24=Giuseppe|last25=Depoy|first25=Darren L |last26=Jensen|first26=Eric L. N|last27=Kielkopf|first27=John F|last28=Latham|first28=David W|last29=Manner|first29=Mark|last30=Marshall |first30=Jennifer|display-authors=29|year=2015|doi=10.1088/0004-637X/810/1/30|arxiv=1505.06738|s2cid=17747458}}

{{Cite journal |last1=Wood |first1=Mackenna L. |last2=Mann |first2=Andrew W. |last3=Barber |first3=Madyson G. |last4=Bush |first4=Jonathan L. |last5=Kraus |first5=Adam L. |last6=Tofflemire |first6=Benjamin M. |last7=Vanderburg |first7=Andrew |last8=Newton |first8=Elisabeth R. |last9=Feiden |first9=Gregory A. |last10=Zhou |first10=George |last11=Bouma |first11=Luke G. |last12=Quinn |first12=Samuel N. |last13=Armstrong |first13=David J. |last14=Osborn |first14=Ares |last15=Adibekyan |first15=Vardan |date=2023-03-01 |title=TESS Hunt for Young and Maturing Exoplanets (THYME). IX. A 27 Myr Extended Population of Lower Centaurus Crux with a Transiting Two-planet System |journal=The Astronomical Journal |volume=165 |issue=3 |page=85 |doi=10.3847/1538-3881/aca8fc |arxiv=2212.03266 |bibcode=2023AJ....165...85W |issn=0004-6256|doi-access=free}}

{{Cite journal |last1=Pineda |first1=J. Sebastian |last2=Youngblood |first2=Allison |last3=France |first3=Kevin |date=2021-09-01 |title=The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars |journal=The Astrophysical Journal |volume=918 |issue=1 |page=40 |arxiv=2106.07656 |bibcode=2021ApJ...918...40P |doi=10.3847/1538-4357/ac0aea |doi-access=free |issn=0004-637X}}

{{Cite journal|bibcode=2017AJ....153..178S|title=KELT-12b: A P ˜ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star|journal=The Astronomical Journal|volume=153|issue=4|page=178|last1=Stevens|first1=Daniel J|last2=Collins |first2=Karen A|last3=Gaudi|first3=B. Scott|last4=Beatty|first4=Thomas G|last5=Siverd|first5=Robert J|last6=Bieryla|first6=Allyson |last7=Fulton|first7=Benjamin J|last8=Crepp|first8=Justin R|last9=Gonzales|first9=Erica J|last10=Coker|first10=Carl T|last11=Penev |first11=Kaloyan|last12=Stassun|first12=Keivan G|last13=Jensen|first13=Eric L. N|last14=Howard|first14=Andrew W|last15=Latham |first15=David W|last16=Rodriguez|first16=Joseph E|last17=Zambelli|first17=Roberto|last18=Bozza|first18=Valerio|last19=Reed |first19=Phillip A|last20=Gregorio|first20=Joao|last21=Buchhave|first21=Lars A|last22=Penny|first22=Matthew T|last23=Pepper |first23=Joshua|last24=Berlind|first24=Perry|last25=Calchi Novati|first25=Sebastiano|last26=Calkins|first26=Michael L|last27=d'Ago |first27=Giuseppe|last28=Eastman|first28=Jason D|last29=Bayliss|first29=D|last30=Colón|first30=Knicole D|display-authors=29|year=2017 |doi=10.3847/1538-3881/aa5ffb|arxiv=1608.04714|s2cid=27321568 |doi-access=free}}

{{Cite journal |last1=Rodriguez |first1=Joseph E. |last2=Quinn |first2=Samuel N. |last3=Zhou |first3=George |last4=Vanderburg |first4=Andrew |last5=Nielsen |first5=Louise D. |last6=Wittenmyer |first6=Robert A. |last7=Brahm |first7=Rafael |last8=Reed |first8=Phillip A. |last9=Huang |first9=Chelsea X. |last10=Vach |first10=Sydney |last11=Ciardi |first11=David R. |last12=Oelkers |first12=Ryan J. |last13=Stassun |first13=Keivan G. |last14=Hellier |first14=Coel |last15=Gaudi |first15=B. Scott |date=2021-04-01 |title=TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images |journal=The Astronomical Journal |volume=161 |issue=4 |page=194 |arxiv=2101.01726 |bibcode=2021AJ....161..194R |doi=10.3847/1538-3881/abe38a |issn=0004-6256 |doi-access=free}}

{{Cite journal |last1=Grunblatt |first1=Samuel K. |last2=Saunders |first2=Nicholas |last3=Sun |first3=Meng |last4=Chontos |first4=Ashley |last5=Soares-Furtado |first5=Melinda |last6=Eisner |first6=Nora |last7=Pereira |first7=Filipe |last8=Komacek |first8=Thaddeus |last9=Huber |first9=Daniel |last10=Collins |first10=Karen |last11=Wang |first11=Gavin |last12=Stockdale |first12=Chris |last13=Quinn |first13=Samuel N. |last14=Tronsgaard |first14=Rene |last15=Zhou |first15=George |date=2022-03-01 |title=TESS Giants Transiting Giants. II. The Hottest Jupiters Orbiting Evolved Stars |journal=The Astronomical Journal |volume=163 |issue=3 |page=120 |arxiv=2201.04140 |bibcode=2022AJ....163..120G |doi=10.3847/1538-3881/ac4972 |doi-access=free |issn=0004-6256}}

{{Cite journal|bibcode=2016AJ....152..108E|title=HATS-25b through HATS-30b: A Half-dozen New Inflated Transiting Hot Jupiters from the HATSouth Survey|journal=The Astronomical Journal|volume=152|issue=4|page=108|last1=Espinoza|first1=N |last2=Bayliss|first2=D|last3=Hartman|first3=J. D|last4=Bakos|first4=G. Á|last5=Jordán|first5=A|last6=Zhou|first6=G|last7=Mancini |first7=L|last8=Brahm|first8=R|last9=Ciceri|first9=S|last10=Bhatti|first10=W|last11=Csubry|first11=Z|last12=Rabus|first12=M|last13=Penev|first13=K|last14=Bento|first14=J|last15=De Val-Borro|first15=M|last16=Henning|first16=T|last17=Schmidt|first17=B|last18=Suc|first18=V |last19=Wright|first19=D. J|last20=Tinney|first20=C. G|last21=Tan|first21=T. G|last22=Noyes|first22=R|year=2016|doi=10.3847/0004-6256/152/4/108|arxiv=1606.00023|s2cid=119104881 |doi-access=free}}

{{Cite journal|last1=Fortney|first1=Jonathan J|last2=Demory|first2=Brice-Olivier|last3=Desert|first3=Jean-Michel|last4=Rowe|first4=Jason|last5=Marcy|first5=Geoffrey W|last6=Isaacson|first6=Howard |last7=Buchhave|first7=Lars A|last8=Ciardi|first8=David|last9=Gautier|first9=Thomas N|display-authors=29|year=2011|title=Discovery and Atmospheric Characterization of Giant Planet Kepler-12b: An Inflated Radius Outlier|journal=The Astrophysical Journal Supplement Series|volume=197|issue=1|page=9 |arxiv=1109.1611|doi=10.1088/0067-0049/197/1/9|last10=Batalha|first10=Natalie M|last11=Caldwell |first11=Douglas A|last12=Bryson |first12=Stephen T|last13=Nutzman|first13=Philip|last14=Jenkins|first14=Jon M|last15=Howard |first15=Andrew|last16=Charbonneau |first16=David|last17=Knutson|first17=Heather A|last18=Howell|first18=Steve B|last19=Everett |first19=Mark|last20=Fressin |first20=Francois|last21=Deming|first21=Drake|last22=Borucki|first22=William J|last23=Brown|first23=Timothy M|last24=Ford|first24=Eric B |last25=Gilliland|first25=Ronald L|last26=Latham|first26=David W|last27=Miller|first27=Neil|last28=Seager |first28=Sara|last29=Fischer |first29=Debra A|last30=Koch|first30=David|bibcode=2011ApJS..197....9F|s2cid=688362}}

{{Cite journal |last1=Bakos |first1=G. á. |last2=Hartman |first2=J. D. |last3=Bhatti |first3=W. |last4=Csubry |first4=Z. |last5=Penev |first5=K. |last6=Bieryla |first6=A. |last7=Latham |first7=D. W. |last8=Quinn |first8=S. |last9=Buchhave |first9=L. A. |last10=Kovács |first10=G. |last11=Torres |first11=Guillermo |last12=Noyes |first12=R. W. |last13=Falco |first13=E. |last14=Béky |first14=Bence |last15=Szklenár |first15=T. |date=2021-07-01 |title=HAT-P-58b–HAT-P-64b: Seven Planets Transiting Bright Stars* |journal=The Astronomical Journal |volume=162 |issue=1 |page=7 |arxiv=2007.05528 |bibcode=2021AJ....162....7B |doi=10.3847/1538-3881/abf637 |doi-access=free |issn=0004-6256}}

{{Cite journal|bibcode=2016AJ....151...45E |title=KELT-4Ab: An Inflated Hot Jupiter Transiting the Bright (V ˜ 10) Component of a Hierarchical Triple |journal=The Astronomical Journal |volume=151 |issue=2 |page=45 |last1=Eastman |first1=Jason D |last2=Beatty |first2=Thomas G |last3=Siverd |first3=Robert J |last4=Antognini |first4=Joseph M. O |last5=Penny |first5=Matthew T |last6=Gonzales |first6=Erica J |last7=Crepp |first7=Justin R |last8=Howard |first8=Andrew W |last9=Avril |first9=Ryan L |last10=Bieryla |first10=Allyson |last11=Collins |first11=Karen |last12=Fulton |first12=Benjamin J |last13=Ge |first13=Jian |last14=Gregorio |first14=Joao |last15=Ma |first15=Bo |last16=Mellon |first16=Samuel N |last17=Oberst |first17=Thomas E |last18=Wang |first18=Ji |last19=Gaudi |first19=B. Scott |last20=Pepper |first20=Joshua |last21=Stassun |first21=Keivan G |last22=Buchhave |first22=Lars A |last23=Jensen |first23=Eric L. N |last24=Latham |first24=David W |last25=Berlind |first25=Perry |last26=Calkins |first26=Michael L |last27=Cargile |first27=Phillip A |last28=Colón |first28=Knicole D |last29=Dhital |first29=Saurav |last30=Esquerdo |first30=Gilbert A |display-authors=29 |year=2016 |doi=10.3847/0004-6256/151/2/45 |arxiv=1510.00015 |s2cid=17613522 |doi-access=free}}{{Cite journal |last1=Berger |first1=Travis A. |last2=Huber |first2=Daniel |last3=Gaidos |first3=Eric |last4=van Saders |first4=Jennifer L. |date=2018-10-01 |title=Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2 |journal=The Astrophysical Journal |volume=866 |issue=2 |page=99 |doi=10.3847/1538-4357/aada83 |doi-access=free |arxiv=1805.00231 |bibcode=2018ApJ...866...99B |issn=0004-637X}}

{{Cite journal |last1=Palma-Bifani |first1=P. |last2=Chauvin |first2=G. |last3=Bonnefoy |first3=M. |last4=Rojo |first4=P. M. |last5=Petrus |first5=S. |last6=Rodet |first6=L. |last7=Langlois |first7=M. |last8=Allard |first8=F. |last9=Charnay |first9=B. |last10=Desgrange |first10=C. |last11=Homeier |first11=D. |last12=Lagrange |first12=A.-M. |last13=Beuzit |first13=J.-L. |last14=Baudoz |first14=P. |last15=Boccaletti |first15=A. |date=February 2023 |title=Peering into the young planetary system AB Pic: Atmosphere, orbit, obliquity, and second planetary candidate |url=https://www.aanda.org/10.1051/0004-6361/202244294 |journal=Astronomy & Astrophysics |volume=670 |pages=A90 |arxiv=2211.01474 |bibcode=2023A&A...670A..90P |doi=10.1051/0004-6361/202244294 |issn=0004-6361}}

{{Cite journal |title=A Companion to AB Pic at the Planet/brown Dwarf Boundary |journal=Astronomy & Astrophysics |last1=Chauvin |first1=G. |date=2005-07-18 |url=https://www.aanda.org/articles/aa/abs/2005/30/aahc231/aahc231.html |volume=438 |issue=3 |pages=L29–L32 |last2=Lagrange |first2=A.-M. |last3=Zuckerman |first3=B. |last4=Dumas |first4=C. |last5=Mouillet |first5=D. |last6=Song |first6=I. |last7=Beuzit |first7=J.-L. |last8=Lowrance |first8=P. |last9=Bessel |first9=M. S. |url-status=live |department=Letter to the Editor |publisher=EDP Sciences |archive-url=https://web.archive.org/web/20241117195951/https://www.aanda.org/articles/aa/abs/2005/30/aahc231/aahc231.html |archive-date=2024-11-17 |bibcode-access=free |doi-access=free |bibcode=2005A&A...438L..29C |doi=10.1051/0004-6361:200500111 |arxiv=astro-ph/0504658}}{{Cite arXiv |eprint=astro-ph/0509906 |first=Ralph |last=Neuhaeuser |title=Homogeneous Comparison of Directly Detected Planet Candidates: GQ Lup, 2M1207, AB Pic |date=30 Sep 2005}}

{{cite journal |last1=Kervella |first1=P. |last2=Thévenin |first2=F. |last3=Lovis |first3=C. |title=Proxima's orbit around α Centauri |journal=Astronomy & Astrophysics |volume=598 |year=2017 |pages=L7 |issn=0004-6361 |doi=10.1051/0004-6361/201629930 |arxiv=1611.03495 |bibcode=2017A&A...598L...7K|s2cid=50867264}} Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.

{{Cite journal |last1=Luhman |first1=K. L. |last2=Tremblin |first2=P. |last3=Birkmann |first3=S. M. |last4=Manjavacas |first4=E. |last5=Valenti |first5=J. |last6=Alves de Oliveira |first6=C. |last7=Beck |first7=T. L. |last8=Giardino |first8=G. |last9=Lützgendorf |first9=N. |last10=Rauscher |first10=B. J. |last11=Sirianni |first11=M. |date=2023-06-01 |title=JWST/NIRSpec Observations of the Planetary Mass Companion TWA 27B* |journal=The Astrophysical Journal Letters |volume=949 |issue=2 |pages=L36 |arxiv=2305.18603 |bibcode=2023ApJ...949L..36L |doi=10.3847/2041-8213/acd635 |doi-access=free |issn=2041-8205}}

{{cite web|title=Planets and Pluto: Physical Characteristics|url=https://ssd.jpl.nasa.gov/?planet_phys_par|website=ssd.jpl.nasa.gov|publisher=Jet Propulsion Laboratory|access-date=7 September 2024}}

{{cite web |url= http://www.universetoday.com/15453/what-is-the-biggest-planet-in-the-solar-system/ |title= What is the Biggest Planet in the Solar System? |author= Jerry Coffey |date= 8 July 2008 |publisher= Universe Today |access-date= 7 November 2014 |archive-url= https://web.archive.org/web/20141116084833/http://www.universetoday.com/15453/what-is-the-biggest-planet-in-the-solar-system/ |archive-date= 16 November 2014 |url-status= live}}

{{cite web |author=Britt, Robert Roy |date=2003 |title=Primeval Planet: Oldest Known World Conjures Prospect of Ancient Life |url=http://thebookofbeginnings.com/sources/10/PrimevalPlanet.pdf |url-status=dead |archive-url=https://web.archive.org/web/20131219075138/http://thebookofbeginnings.com/sources/10/PrimevalPlanet.pdf |archive-date=2013-12-19 |access-date=2013-12-19 |work=Space.com}}

{{cite journal |author=Sigurdsson, S. |author2=Richer, H.B. |author3=Hansen, B.M. |author4=Stairs I.H. |author5=Thorsett, S.E. |date=2003 |title=A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation |journal=Science |volume=301 |issue=5630 |pages=193–196 |arxiv=astro-ph/0307339 |bibcode=2003Sci...301..193S |doi=10.1126/science.1086326 |pmid=12855802 |s2cid=39446560}}

{{Cite web |title=Observing Exoplanets: What Can We Really See? |url=https://science.nasa.gov/universe/exoplanets/observing-exoplanets-what-can-we-really-see/ |access-date=2024-08-16 |website=NASA Science|date=28 October 2019}}

{{Cite web |title=Stanford scientists describe a gravity telescope that could image exoplanets |url=https://news.stanford.edu/stories/2022/05/gravity-telescope-image-exoplanets |access-date=2024-08-16 |website=Stanford University - Stanford Report}}

{{Cite web |title=Just a few pixels would let astronomers map surface features like oceans and deserts on an exoplanet |url=https://phys.org/news/2022-04-pixels-astronomers-surface-features-oceans.html |access-date=2024-08-16 |website=Phys.org - (Universe Today)}}{{cite web |author=Jerry Coffey |date=8 July 2008 |title=What is the Biggest Planet in the Solar System? |url=http://www.universetoday.com/15453/what-is-the-biggest-planet-in-the-solar-system/ |url-status=live |archive-url=https://web.archive.org/web/20141116084833/http://www.universetoday.com/15453/what-is-the-biggest-planet-in-the-solar-system/ |archive-date=16 November 2014 |access-date=7 November 2014 |publisher=Universe Today}}

{{Cite web |title=Planet KPNO-Tau 4 |url=https://exoplanet.eu/catalog/kpno_tau_4--9139/ |access-date=2024-08-15 |website=Encyclopaedia of exoplanetary systems / Exoplanet.eu}}

{{Cite journal |last1=Stolker |first1=Tomas |last2=Haffert |first2=Sebastiaan Y. |last3=Kesseli |first3=Aurora Y. |last4=van Holstein |first4=Rob G. |last5=Aoyama |first5=Yuhiko |last6=Brinchmann |first6=Jarle |last7=Cugno |first7=Gabriele |last8=Girard |first8=Julien H. |last9=Marleau |first9=Gabriel-Dominique |last10=Meyer |first10=Michael R. |last11=Milli |first11=Julien |last12=Quanz |first12=Sascha P. |last13=Snellen |first13=Ignas A. G. |last14=Todorov |first14=Kamen O. |date=2021-12-01 |title=Characterizing the Protolunar Disk of the Accreting Companion GQ Lupi B* |journal=The Astronomical Journal |volume=162 |issue=6 |page=286 |arxiv=2110.04307 |doi=10.3847/1538-3881/ac2c7f |bibcode=2021AJ....162..286S |s2cid=238582841 |issn=0004-6256 |doi-access=free}}

{{Cite journal |last1=Joergens |first1=V. |last2=Bonnefoy |first2=M. |last3=Liu |first3=Y. |last4=Bayo |first4=A. |last5=Wolf |first5=S. |last6=Chauvin |first6=G. |last7=Rojo |first7=P. |date=October 2013 |title=OTS 44: Disk and accretion at the planetary border |url=http://www.aanda.org/10.1051/0004-6361/201322432 |journal=Astronomy & Astrophysics |volume=558 |pages=L7 |arxiv=1310.1936 |bibcode=2013A&A...558L...7J |doi=10.1051/0004-6361/201322432 |issn=0004-6361}}

{{Cite journal |last1=Luhman |first1=K. L. |last2=Adame |first2=Lucía |last3=D'Alessio |first3=Paola |last4=Calvet |first4=Nuria |last5=Hartmann |first5=Lee |last6=Megeath |first6=S. T. |last7=Fazio |first7=G. G. |date=2005-12-10 |title=Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk |url=https://iopscience.iop.org/article/10.1086/498868 |journal=The Astrophysical Journal |language=en |volume=635 |issue=1 |pages=L93–L96 |arxiv=astro-ph/0511807 |bibcode=2005ApJ...635L..93L |doi=10.1086/498868 |issn=0004-637X}}

{{Cite web |title=Planet CFHTWIR-Oph 90 |url=https://exoplanet.eu/catalog/cfhtwir_oph_90--9920/ |access-date=2024-08-15 |website=Encyclopaedia of exoplanetary systems / Exoplanet.eu}}

{{Cite journal |last1=Chakrabarty |first1=Aritra|last2=Sengupta|first2=Sujan|date=2019-07-01 |title=Precise Photometric Transit Follow-up Observations of Five Close-in Exoplanets: Update on Their Physical Properties |journal=The Astronomical Journal |volume=158 |issue=1 |page=39 |doi=10.3847/1538-3881/ab24dd |doi-access=free |arxiv=1905.11258 |bibcode=2019AJ....158...39C |issn=0004-6256}}

[http://www.ria.ru/science/20120206/558647431.html Российские астрономы впервые открыли луну возле экзопланеты] (in Russian) - "Studying of a curve of change of shine of WASP-12b has brought to the Russian astronomers unusual result: regular splashes were found out.<...> Though stains on a star surface also can cause similar changes of shine, observable splashes are very similar on duration, a profile and amplitude that testifies for benefit of exomoon existence."

{{Cite journal|doi=10.1038/nature22392|pmid=28582774|title=A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host|journal=Nature|volume=546|issue=7659|pages=514–518|year=2017|last1=Gaudi|first1=B. Scott|last2=Stassun |first2=Keivan G|last3=Collins|first3=Karen A|last4=Beatty|first4=Thomas G|last5=Zhou|first5=George|last6=Latham |first6=David W |last7=Bieryla|first7=Allyson|last8=Eastman|first8=Jason D|last9=Siverd|first9=Robert J|last10=Crepp|first10=Justin R|last11=Gonzales |first11=Erica J|last12=Stevens|first12=Daniel J|last13=Buchhave|first13=Lars A|last14=Pepper|first14=Joshua |last15=Johnson |first15=Marshall C|last16=Colon|first16=Knicole D|last17=Jensen|first17=Eric L. N|last18=Rodriguez|first18=Joseph E|last19=Bozza |first19=Valerio|last20=Novati|first20=Sebastiano Calchi|last21=d'Ago|first21=Giuseppe|last22=Dumont|first22=Mary T|last23=Ellis |first23=Tyler|last24=Gaillard|first24=Clement|last25=Jang-Condell|first25=Hannah|last26=Kasper|first26=David H|last27=Fukui |first27=Akihiko|last28=Gregorio|first28=Joao|last29=Ito|first29=Ayaka|last30=Kielkopf|first30=John F|display-authors=29 |bibcode=2017Natur.546..514G|arxiv=1706.06723|s2cid=205256410}}

{{Cite journal |last1=Pai Asnodkar |first1=Anusha |last2=Wang 王 |first2=Ji 吉 |last3=Gaudi |first3=B. Scott |last4=Cauley |first4=P. Wilson |last5=Eastman |first5=Jason D. |last6=Ilyin |first6=Ilya |last7=Strassmeier |first7=Klaus |last8=Beatty |first8=Thomas |date=2022-02-01 |title=KELT-9 as an Eclipsing Double-lined Spectroscopic Binary: A Unique and Self-consistent Solution to the System |journal=The Astronomical Journal |volume=163 |issue=2 |page=40 |arxiv=2110.15275 |bibcode=2022AJ....163...40P |doi=10.3847/1538-3881/ac32c7 |doi-access=free |issn=0004-6256}}

{{cite journal |last1=Seidel |first1=J.V. |last2=Ehrenreich |first2=D. |last3=Wyttenbach |first3=A. |last4=Allart |first4=R. |last5=Lendl |first5=M. |last6=Pino |first6=L. |last7=Bourrier |first7=V. |last8=Cegla |first8=H.M. |last9=Lovis |first9=C. |last10=Barrado |first10=D. |last11=Bayliss |first11=D. |last12=Astudillo-Defru |first12=N. |last13=Deline |first13=A. |last14=Fisher |first14=C. |last15=Heng |first15=K. |last16=Joseph |first16=R. |last17=Lavie |first17=B. |last18=Melo |first18=C. |last19=Pepe |first19=F. |last20=Segransan |first20=D. |last21=Udry |first21=S. |title=Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)★ II. A broadened sodium feature on the ultra-hot giant WASP-76b |journal=Astronomy & Astrophysics |date=27 March 2019 |volume=623 |page=A166 |doi=10.1051/0004-6361/201834776|arxiv=1902.00001 |bibcode=2019A&A...623A.166S |s2cid=119348582}}

{{Cite journal|last1=Hartman|first1=J. D|last2=Bakos|first2=G. Á|last3=Torres|first3=G|last4=Latham|first4=D. W|last5=Kovács|first5=G|last6=Béky|first6=B|last7=Quinn|first7=S. N|last8=Mazeh|first8=T|last9=Shporer|first9=A|year=2011|title=HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-Jitter Stars|journal=The Astrophysical Journal|volume=742 |page=59|arxiv=1106.1212|bibcode=2011ApJ...742...59H|doi=10.1088/0004-637X/742/1/59|last10=Marcy|first10=G. W|last11=Howard|first11=A. W |last12=Fischer|first12=D. A|last13=Johnson|first13=J. A|last14=Esquerdo|first14=G. A|last15=Noyes|first15=R. W|last16=Sasselov |first16=D. D|last17=Stefanik|first17=R. P|last18=Fernandez|first18=J. M|last19=Szklenár|first19=T|last20=Lázár|first20=J|last21=Papp |first21=I|last22=Sári|first22=P|issue=1|s2cid=118590713}}

{{Cite journal |last1=Zhang |first1=Yapeng |last2=Snellen |first2=Ignas A. G. |last3=Bohn |first3=Alexander J. |last4=Mollière |first4=Paul |last5=Ginski |first5=Christian |last6=Hoeijmakers |first6=H. Jens |last7=Kenworthy |first7=Matthew A. |last8=Mamajek |first8=Eric E. |last9=Meshkat |first9=Tiffany |last10=Reggiani |first10=Maddalena |last11=Snik |first11=Frans |date=2021-07-15 |title=The 13CO-rich atmosphere of a young accreting super-Jupiter |url=http://www.nature.com/articles/s41586-021-03616-x |journal=Nature |language=en |volume=595 |issue=7867 |pages=370–372 |arxiv=2107.06297 |doi=10.1038/s41586-021-03616-x |pmid=34262209 |bibcode=2021Natur.595..370Z |hdl=1887/3254588 |s2cid=235829633 |issn=0028-0836}}

{{cite journal |last1=González Hernández |first1=J. I. |last2=Suárez Mascareño |first2=A. |last3=Silva |first3=A. M. |last4=Stefanov |first4=A. K. |last5=Faria |first5=J. P. |last6=Tabernero |first6=H. M. |last7=Sozzetti |first7=A. |last8=Rebolo |first8=R. |last9=Pepe |first9=F. |last10=Santos |first10=N. C. |last11=Cristiani |first11=S. |last12=Lovis |first12=C. |last13=Dumusque |first13=X. |last14=Figueira |first14=P. |last15=Lillo-Box |first15=J. |display-authors=1 |date=October 2024 |title=A sub-Earth-mass planet orbiting Barnard's star |journal=Astronomy & Astrophysics |volume=690 |arxiv=2410.00569 |bibcode=2024A&A...690A..79G |doi=10.1051/0004-6361/202451311 |id=A79 |first16=N. |last16=Nari |first17=S. |last17=Benatti |first18=M. J. |last18=Hobson |first19=A. |last19=Castro-González |first20=R. |last20=Allart |first21=V. M. |last21=Passegger |first22=M.-R. |last22=Zapatero Osorio |first23=V. |last23=Adibekyan |first24=Y. |last24=Alibert |first25=C. |last25=Allende Prieto |first26=F. |last26=Bouchy |first27=M. |last27=Damasso |first28=V. |last28=D’Odorico |first29=P. |last29=Di Marcantonio |first30=D. |last30=Ehrenreich |first31=G. |last31=Lo Curto |first32=R. |last32=Génova Santos |first33=C. J. A. P. |last33=Martins |first34=A. |last34=Mehner |first35=G. |last35=Micela |first36=P. |last36=Molaro |first37=N. |last37=Nunes15 |first38=E. |last38=Palle |first39=S. G. |last39=Sousa |first40=S. |last40=Udry|pages=A79}}

{{Cite journal |last1=Deitrick |first1=Russell |last2=Barnes |first2=Rory |last3=McArthur |first3=Barbara |last4=Quinn |first4=Thomas R. |last5=Luger |first5=Rodrigo |last6=Antonsen |first6=Adrienne |last7=Benedict |first7=G. Fritz |date=2014-12-18 |title=The 3-dimensional architecture of the Upsilon Andromedae planetary system |journal=The Astrophysical Journal |volume=798 |issue=1 |page=46 |arxiv=1411.1059 |bibcode=2015ApJ...798...46D |doi=10.1088/0004-637X/798/1/46 |issn=1538-4357}}

{{Cite journal |last1=Piskorz |first1=Danielle |last2=Benneke |first2=Björn |last3=Crockett |first3=Nathan R. |last4=Lockwood |first4=Alexandra C. |last5=Blake |first5=Geoffrey A. |last6=Barman |first6=Travis S. |last7=Bender |first7=Chad F. |last8=Carr |first8=John S. |last9=Johnson |first9=John A. |date=2017-08-01 |title=Detection of Water Vapor in the Thermal Spectrum of the Non-transiting Hot Jupiter Upsilon Andromedae b |journal=The Astronomical Journal |volume=154 |issue=2 |page=78 |arxiv=1707.01534 |bibcode=2017AJ....154...78P |doi=10.3847/1538-3881/aa7dd8 |doi-access=free |issn=0004-6256}}

{{cite journal | display-authors=1 |last1=Butler |first1=R. P. |last2=Wright |first2=J. T. |last3=Marcy |first3=G. W. |last4=Fischer |first4=D. A. |last5=Vogt |first5=S. S. |last6=Tinney |first6=C. G. |last7=Jones |first7=H. R. A. |last8=Carter |first8=B. D. |last9=Johnson |first9=J. A. |last10=McCarthy |first10=C. |last11=Penny |first11=A. J. | doi=10.1086/504701 | title=Catalog of Nearby Exoplanets | journal=The Astrophysical Journal | volume=646 | issue=1 | pages=505–522 | date=2006 | bibcode=2006ApJ...646..505B|arxiv = astro-ph/0607493 |s2cid=119067572}} ([http://exoplanets.org/planets.shtml web version])

{{citation|arxiv=1403.1870|last1=Valsecchi|first1=Francesca|title=Planets on the Edge|journal=The Astrophysical Journal|year=2014|volume=787|issue=1|pages=L9|doi=10.1088/2041-8205/787/1/L9|bibcode=2014ApJ...787L...9V|s2cid=118451863}}{{Cite journal |last1=Alsubai |first1=Khalid |last2=Tsvetanov |first2=Zlatan I. |last3=Latham |first3=David W. |last4=Bieryla |first4=Allyson |last5=Pyrzas |first5=Stylianos |last6=Mislis |first6=Dimitris |last7=Esquerdo |first7=Gilbert A. |last8=Esamdin |first8=Ali |last9=Liu |first9=Jinzhong |last10=Ma |first10=Lu |last11=Bretton |first11=Marc |last12=Pallé |first12=Enric |last13=Murgas |first13=Felipe |last14=Vilchez |first14=Nicolas P. E. |last15=Morton |first15=Timothy D. |date=2019-02-01 |title=Qatar Exoplanet Survey: Qatar-7b—A Very Hot Jupiter Orbiting a Metal-rich F-Star |journal=The Astronomical Journal |volume=157 |issue=2 |page=74 |arxiv=1812.05601 |bibcode=2019AJ....157...74A |doi=10.3847/1538-3881/aaf80a |doi-access=free |issn=0004-6256}}

{{Cite journal |last1=Zhou |first1=Yifan |last2=Sanghi |first2=Aniket |last3=Bowler |first3=Brendan P. |last4=Wu |first4=Ya-Lin |last5=Close |first5=Laird M. |last6=Long |first6=Feng |last7=Ward-Duong |first7=Kimberly |last8=Zhu |first8=Zhaohuan |last9=Kraus |first9=Adam L. |last10=Follette |first10=Katherine B. |last11=Bae |first11=Jaehan |date=2022-07-01 |title=HST/WFC3 Hα Direct-imaging Detection of a Pointlike Source in the Disk Cavity of AB Aur |journal=The Astrophysical Journal Letters |volume=934 |issue=1 |pages=L13 |arxiv=2207.06525 |bibcode=2022ApJ...934L..13Z |doi=10.3847/2041-8213/ac7fef |doi-access=free |issn=2041-8205}}

{{Cite journal |last1=Latham |first1=David W. |last2=Borucki |first2=William J. |last3=Koch |first3=David G. |last4=Brown |first4=Timothy M. |last5=Buchhave |first5=Lars A. |last6=Basri |first6=Gibor |last7=Batalha |first7=Natalie M. |last8=Caldwell |first8=Douglas A. |last9=Cochran |first9=William D. |last10=Dunham |first10=Edward W. |last11=Fűrész |first11=Gabor |last12=Gautier |first12=Thomas N. |last13=Geary |first13=John C. |last14=Gilliland |first14=Ronald L. |last15=Howell |first15=Steve B. |date=2010-04-20 |title=Kepler-7b: A Transiting Planet With Unusually Low Density |url=https://iopscience.iop.org/article/10.1088/2041-8205/713/2/L140 |journal=The Astrophysical Journal |volume=713 |issue=2 |pages=L140–L144 |arxiv=1001.0190 |bibcode=2010ApJ...713L.140L |doi=10.1088/2041-8205/713/2/L140 |issn=2041-8205}}

{{Cite journal |arxiv=1711.00578 |last1=Anglada |first1=Guillem |title=ALMA Discovery of Dust Belts Around Proxima Centauri |journal=The Astrophysical Journal |volume=850 |issue=1 |pages=L6 |last2=Amado |first2=Pedro J |last3=Ortiz |first3=Jose L |last4=Gómez |first4=José F |last5=Macías |first5=Enrique |last6=Alberdi |first6=Antxon |last7=Osorio |first7=Mayra |last8=Gómez |first8=José L | first9=Itziar | last9=de Gregorio-Monsalvo |last10=Pérez-Torres |first10=Miguel A |last11=Anglada-Escudé |first11=Guillem |last12=Berdiñas |first12=Zaira M |last13=Jenkins |first13=James S |last14=Jimenez-Serra |first14=Izaskun |last15=Lara |first15=Luisa M |author-link15=Luisa María Lara |last16=López-González |first16=Maria J |last17=López-Puertas |first17=Manuel |last18=Morales |first18=Nicolas |last19=Ribas |first19=Ignasi |last20=Richards |first20=Anita M. S |last21=Rodríguez-López |first21=Cristina |last22=Rodriguez |first22=Eloy |year=2017 |doi=10.3847/2041-8213/aa978b |url=http://zaguan.unizar.es/record/64319 |bibcode=2017ApJ...850L...6A|s2cid=13431834 |doi-access=free}}

{{Cite journal |last1=Chilcote |first1=Jeffrey |last2=Pueyo |first2=Laurent |last3=De Rosa |first3=Robert J. |last4=Vargas |first4=Jeffrey |last5=Macintosh |first5=Bruce |last6=Bailey |first6=Vanessa P. |last7=Barman |first7=Travis |last8=Bauman |first8=Brian |last9=Bruzzone |first9=Sebastian |last10=Bulger |first10=Joanna |last11=Burrows |first11=Adam S. |last12=Cardwell |first12=Andrew |last13=Chen |first13=Christine H. |last14=Cotten |first14=Tara |last15=Dillon |first15=Daren |date=2017-04-01 |title=1 to 2.4 micron Near-IR spectrum of the Giant Planet $\beta$ Pictoris b obtained with the Gemini Planet Imager |journal=The Astronomical Journal |volume=153 |issue=4 |page=182 |doi=10.3847/1538-3881/aa63e9 |doi-access=free |arxiv=1703.00011 |issn=0004-6256}}

{{Cite journal |last1=Feng |first1=Fabo |last2=Butler |first2=R. Paul |last3=Vogt |first3=Steven S. |last4=Clement |first4=Matthew S. |last5=Tinney |first5=C. G. |last6=Cui |first6=Kaiming |last7=Aizawa |first7=Masataka |last8=Jones |first8=Hugh R. A. |last9=Bailey |first9=J. |last10=Burt |first10=Jennifer |last11=Carter |first11=B. D. |last12=Crane |first12=Jeffrey D. |last13=Dotti |first13=Francesco Flammini |last14=Holden |first14=Bradford |last15=Ma |first15=Bo |date=2022-09-01 |title=3D Selection of 167 Substellar Companions to Nearby Stars |journal=The Astrophysical Journal Supplement Series |volume=262 |issue=1 |page=21 |arxiv=2208.12720 |bibcode=2022ApJS..262...21F |doi=10.3847/1538-4365/ac7e57 |doi-access=free |issn=0067-0049}}

{{Cite journal |last1=Daemgen |first1=S. |last2=Hormuth |first2=F. |last3=Brandner |first3=W. |last4=Bergfors |first4=C. |last5=Janson |first5=M. |last6=Hippler |first6=S. |last7=Henning |first7=T. |date=May 2009 |title=Binarity of transit host stars: Implications for planetary parameters |url=http://www.aanda.org/10.1051/0004-6361/200810988 |journal=Astronomy & Astrophysics |volume=498 |issue=2 |pages=567–574 |arxiv=0902.2179 |bibcode=2009A&A...498..567D |doi=10.1051/0004-6361/200810988 |issn=0004-6361}}

{{Cite web |last=Kramer |first=Miriam |date= 30 November 2001|title=For First Time, Alien Planet's True Color Revealed: 'Deep Cobalt Blue' |url=https://spacenews.com/36398for-first-time-alien-planets-true-color-revealed-deep-cobalt-blue/ |access-date=2024-01-28 |website=SpaceNews |language=en-US}}

{{Cite web |title=Exoplanet Catalog - HD 189733 b |url=https://exoplanets.nasa.gov/exoplanet-catalog/6876/hd-189733-b/ |access-date=2024-01-28 |website=Exoplanet Exploration: Planets Beyond our Solar System |date=22 April 2019 |language=en}}

{{cite news |last=Klotz |first=Irene |url=http://www.space.com/31128-exoplanet-global-winds-5400-mph.html |title=Exoplanet's Global Winds Let Rip at 5,400 MPH |work=Space |date=November 16, 2015 |access-date=2015-11-17}}

{{Cite journal |last1=Benisty |first1=Myriam |last2=Bae |first2=Jaehan |last3=Facchini |first3=Stefano |last4=Keppler |first4=Miriam |last5=Teague |first5=Richard |last6=Isella |first6=Andrea |last7=Kurtovic |first7=Nicolas T. |last8=Pérez |first8=Laura M. |last9=Sierra |first9=Anibal |last10=Andrews |first10=Sean M. |last11=Carpenter |first11=John |last12=Czekala |first12=Ian |last13=Dominik |first13=Carsten |last14=Henning |first14=Thomas |last15=Menard |first15=Francois |date=2021-07-01 |title=A Circumplanetary Disk around PDS70c |journal=The Astrophysical Journal Letters |volume=916 |issue=1 |pages=L2 |arxiv=2108.07123 |bibcode=2021ApJ...916L...2B |doi=10.3847/2041-8213/ac0f83 |doi-access=free |issn=2041-8205}}{{Cite journal |last1=Leggett |first1=S. K. |last2=Tremblin |first2=P. |last3=Esplin |first3=T. L. |last4=Luhman |first4=K. L. |last5=Morley |first5=Caroline V. |date=2017-06-20 |title=The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy |journal=The Astrophysical Journal |volume=842 |issue=2 |page=118 |arxiv=1704.03573 |bibcode=2017ApJ...842..118L |doi=10.3847/1538-4357/aa6fb5 |issn=0004-637X |doi-access=free}}

{{Cite journal |last=Carmichael |first=Theron W |date=2023-01-17 |title=Improved radius determinations for the transiting brown dwarf population in the era of Gaia and TESS |url=https://academic.oup.com/mnras/article/519/4/5177/6965838 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=519 |issue=4 |pages=5177–5190 |arxiv=2212.02502 |bibcode=2023MNRAS.519.5177C |doi=10.1093/mnras/stac3720 |doi-access=free |issn=0035-8711}}{{cite web |title=Definition of a "Planet" |url=http://www.dtm.ciw.edu/boss/definition.html |archive-url=https://web.archive.org/web/20120702204018/http://www.dtm.ciw.edu/boss/definition.html |archive-date=2012-07-02 |access-date=2009-03-27 |publisher=Working Group on Extrasolar Planets (WGESP) of the International Astronomical Union}}{{cite arXiv|eprint=0710.5667v1|class=astro-ph|title=Giant Planet Formation by Core Accretion|author=Mordasini, C.|year=2007|display-authors=etal}}

{{Cite journal |last1=Konacki |first1=Maciej |last2=Wolszczan |first2=Alex |date=2003-07-10 |title=Masses and Orbital Inclinations of Planets in the PSR B1257+12 System |url=https://iopscience.iop.org/article/10.1086/377093 |journal=The Astrophysical Journal |language=en |volume=591 |issue=2 |pages=L147–L150 |arxiv=astro-ph/0305536 |bibcode=2003ApJ...591L.147K |doi=10.1086/377093 |issn=0004-637X}}{{cite web |url=http://www.astro.psu.edu/users/alex/pulsar_planets.htm |title=Pulsar Planets |url-status=dead |archive-url=https://web.archive.org/web/20051230112904/http://www.astro.psu.edu/users/alex/pulsar_planets.htm |archive-date=30 December 2005}}

{{cite journal |author=Wolszczan |first1=A. |last2=Frail |first2=D. |date=1992 |title=A planetary system around the millisecond pulsar PSR1257 + 12 |journal=Nature |volume=355 |issue=6356 |pages=145–147 |bibcode=1992Natur.355..145W |doi=10.1038/355145a0 |s2cid=4260368}}{{Cite journal |last1=Kiefer |first1=F. |last2=Hébrard |first2=G. |last3=Lecavelier des Etangs |first3=A. |last4=Martioli |first4=E. |last5=Dalal |first5=S. |last6=Vidal-Madjar |first6=A. |date=January 2021 |title=Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets |url=https://www.aanda.org/10.1051/0004-6361/202039168 |journal=Astronomy & Astrophysics |volume=645 |pages=A7 |arxiv=2009.14164 |bibcode=2021A&A...645A...7K |doi=10.1051/0004-6361/202039168 |issn=0004-6361}}

{{Cite journal |last1=Knudstrup |first1=E. |last2=Lund |first2=M. N. |last3=Fredslund Andersen |first3=M. |last4=Rørsted |first4=J. L. |last5=Pérez Hernández |first5=F. |last6=Grundahl |first6=F. |last7=Pallé |first7=P. L. |last8=Stello |first8=D. |last9=White |first9=T. R. |last10=Kjeldsen |first10=H. |last11=Vrard |first11=M. |last12=Winther |first12=M. L. |last13=Handberg |first13=R. |last14=Simón-Díaz |first14=S. |date=July 2023 |title=Solar-like oscillations in γ Cephei A as seen through SONG and TESS: A seismic study of γ Cephei A |url=https://www.aanda.org/10.1051/0004-6361/202346707 |journal=Astronomy & Astrophysics |volume=675 |pages=A197 |arxiv=2306.09769 |bibcode=2023A&A...675A.197K |doi=10.1051/0004-6361/202346707 |issn=0004-6361}}

{{Cite journal |last1=Campbell |first1=Bruce |last2=Walker |first2=G. A. H. |last3=Yang |first3=S. |date=August 1988 |title=A search for substellar companions to solar-type stars |url=http://adsabs.harvard.edu/doi/10.1086/166608 |journal=The Astrophysical Journal |language=en |volume=331 |pages=902 |bibcode=1988ApJ...331..902C |doi=10.1086/166608 |issn=0004-637X}}

{{Cite journal |last1=Lawton |first1=A. T. |last2=Wright |first2=P. |date=July 1989 |title=A planetary system for Gamma Cephei? |journal=Journal of the British Interplanetary Society |volume=42 |issue=42 |pages=335–336 |bibcode=1989JBIS...42..335L}}

{{Cite journal |last1=Walker |first1=Gordon A. H. |last2=Bohlender |first2=David A. |last3=Walker |first3=Andrew R. |last4=Irwin |first4=Alan W. |last5=Yang |first5=Stephenson L. S. |last6=Larson |first6=Ana |date=September 1992 |title=Gamma Cephei - Rotation or planetary companion? |url=http://adsabs.harvard.edu/doi/10.1086/186524 |journal=The Astrophysical Journal |language=en |volume=396 |pages=L91 |bibcode=1992ApJ...396L..91W |doi=10.1086/186524 |issn=0004-637X}}

{{Cite journal |last1=Hatzes |first1=Artie P. |last2=Cochran |first2=William D. |last3=Endl |first3=Michael |last4=McArthur |first4=Barbara |last5=Paulson |first5=Diane B. |last6=Walker |first6=Gordon A. H. |last7=Campbell |first7=Bruce |last8=Yang |first8=Stephenson |date=2003-12-20 |title=A Planetary Companion to γ Cephei A |url=https://iopscience.iop.org/article/10.1086/379281 |journal=The Astrophysical Journal |language=en |volume=599 |issue=2 |pages=1383–1394 |arxiv=astro-ph/0305110 |bibcode=2003ApJ...599.1383H |doi=10.1086/379281 |issn=0004-637X}}

{{Cite journal |last1=Gully-Santiago |first1=Michael |last2=Morley |first2=Caroline V. |last3=Luna |first3=Jessica |last4=MacLeod |first4=Morgan |last5=Oklopčić |first5=Antonija |last6=Ganesh |first6=Aishwarya |last7=Tran |first7=Quang H. |last8=Zhang |first8=Zhoujian |last9=Bowler |first9=Brendan P. |last10=Cochran |first10=William D. |last11=Krolikowski |first11=Daniel M. |last12=Mahadevan |first12=Suvrath |last13=Ninan |first13=Joe P. |last14=Stefánsson |first14=Guđmundur |last15=Vanderburg |first15=Andrew |date=2024-03-01 |title=A Large and Variable Leading Tail of Helium in a Hot Saturn Undergoing Runaway Inflation |journal=The Astronomical Journal |volume=167 |issue=4 |pages=142 |doi=10.3847/1538-3881/ad1ee8 |doi-access=free |arxiv=2307.08959 |bibcode=2024AJ....167..142G |issn=0004-6256}}

{{cite journal| author=Snellen| title=OGLE2-TR-L9b: an exoplanet transiting a rapidly rotating F3 star| journal=Astronomy and Astrophysics| date=2009| volume=497| issue=2| pages=545–550| doi=10.1051/0004-6361/200810917| last2=Koppenhoefer| first2=J.| last3=Van Der Burg| first3=R. F. J.| last4=Dreizler| first4=S.| last5=Greiner| first5=J.| last6=De Hoon| first6=M. D. J.| last7=Husser| first7=T. O.| last8=Krühler| first8=T.| last9=Saglia| first9=R. P.| bibcode=2009A&A...497..545S|last10 = Vuijsje| first10=F. N.|arxiv = 0812.0599 | s2cid=15639369| url=http://goedoc.uni-goettingen.de/goescholar/bitstream/handle/1/9693/aa10917-08.pdf?sequence=2}}

{{cite journal | last1=Lothringer | first1=Joshua D. | last2=Sing | first2=David K. | last3=Rustamkulov | first3=Zafar | last4=Wakeford | first4=Hannah R. | last5=Stevenson | first5=Kevin B. | last6=Nikolov | first6=Nikolay | last7=Lavvas | first7=Panayotis | last8=Spake | first8=Jessica J. | last9=Winch | first9=Autumn T. | title=UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b | journal=Nature | volume=604 | issue=7904 | date=2022-04-07 | issn=0028-0836 | doi=10.1038/s41586-022-04453-2 | pages=49–52| pmid=35388193 | arxiv=2204.03639 | bibcode=2022Natur.604...49L}}

{{cite journal | display-authors=1 | last1=Damasceno | first1=Y. C. | last2=Seidel | first2=J. V. | last3=Prinoth | first3=B. | last4=Psaridi | first4=A. | last5=Esparza-Borges | first5=E. | last6=Stangret | first6=M. | last7=Santos | first7=N. C. | last8=Zapatero-Osorio | first8=M. R. | last9=Alibert | first9=Y. | last10=Allart | first10=R. | last11=Azevedo Silva | first11=T. | last12=Cointepas | first12=M. | last13=Costa Silva | first13=A. R. | last14=Cristo | first14=E. | last15=Di Marcantonio | first15=P. | last16=Ehrenreich | first16=D. | last17=González Hernández | first17=J. I. | last18=Herrero-Cisneros | first18=E. | last19=Lendl | first19=M. | last20=Lillo-Box | first20=J. | last21=Martins | first21=C. J. A. P. | last22=Micela | first22=G. | last23=Pallé | first23=E. | last24=Sousa | first24=S. G. | last25=Steiner | first25=M. | last26=Vaulato | first26=V. | last27=Zhao | first27=Y. | last28=Pepe | first28=F. | title=The atmospheric composition of the ultra-hot Jupiter WASP-178 b observed with ESPRESSO | journal=Astronomy & Astrophysics | publisher=EDP Sciences | volume=689 | year=2024 | issn=0004-6361 | doi=10.1051/0004-6361/202450119 | doi-access=free | page=A54| arxiv=2406.08348 | bibcode=2024A&A...689A..54D}}

{{cite news | last1=Kervella | first1=Pierre | last2=Thevenin | first2=Frederic |title=A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars with its hue shifted toward red-yellow|publisher=European Southern Observatory |date=March 15, 2003 |url=https://www.eso.org/public/news/eso0307/ |access-date=May 10, 2016}}

{{citation | postscript=. |title=Two planets around Kapteyn's star : a cold and a temperate super-Earth orbiting the nearest halo red-dwarf |display-authors=1 |first1=Guillem |last1=Anglada-Escudé |first2=Pamela |last2=Arriagada |first3=Mikko |last3=Tuomi |first4=Mathias |last4=Zechmeister |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=443 |pages=L89–L93 |year=2014 |arxiv=1406.0818 |bibcode = 2014MNRAS.443L..89A |doi = 10.1093/mnrasl/slu076 |doi-access=free |s2cid=67807856}}

{{Cite journal |last1=Rodríguez |first1=Luis F. |last2=Zapata |first2=Luis A. |last3=Dzib |first3=Sergio A. |last4=Ortiz-León |first4=Gisela N. |last5=Loinard |first5=Laurent |last6=Macías |first6=Enrique |last7=Anglada |first7=Guillem |date=2014-09-09 |title=An Ionized Outflow from Ab Aur, A Herbig Ae Star with a Transitional Disk |url=https://iopscience.iop.org/article/10.1088/2041-8205/793/1/L21 |journal=The Astrophysical Journal |volume=793 |issue=1 |pages=L21 |arxiv=1408.7068 |bibcode=2014ApJ...793L..21R |doi=10.1088/2041-8205/793/1/L21 |issn=2041-8213}}

{{cite journal|arxiv=2101.04187|year=2021|title=Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ∗|doi=10.3847/1538-3881/abdb2d |last1=Wang |first1=J. J. |last2=Vigan |first2=A. |last3=Lacour |first3=S. |last4=Nowak |first4=M. |last5=Stolker |first5=T. |last6=De Rosa |first6=R. J. |last7=Ginzburg |first7=S. |last8=Gao |first8=P. |last9=Abuter |first9=R. |last10=Amorim |first10=A. |last11=Asensio-Torres |first11=R. |last12=Bauböck |first12=M. |last13=Benisty |first13=M. |last14=Berger |first14=J. P. |last15=Beust |first15=H. |last16=Beuzit |first16=J.-L. |last17=Blunt |first17=S. |last18=Boccaletti |first18=A. |last19=Bohn |first19=A. |last20=Bonnefoy |first20=M. |last21=Bonnet |first21=H. |last22=Brandner |first22=W. |last23=Cantalloube |first23=F. |last24=Caselli |first24=P. |last25=Charnay |first25=B. |last26=Chauvin |first26=G. |last27=Choquet |first27=E. |last28=Christiaens |first28=V. |last29=Clénet |first29=Y. |last30=Du Foresto |first30=V. Coudé |journal=The Astronomical Journal |volume=161 |issue=3 |page=148 |bibcode=2021AJ....161..148W |s2cid=231583118 |display-authors=1 |doi-access=free}}

{{Cite journal |last1=Neuhäuser |first1=R. |last2=Mugrauer |first2=M. |last3=Seifahrt |first3=A. |last4=Schmidt |first4=T. O. B. |last5=Vogt |first5=N. |date=2008-06-01 |title=Astrometric and photometric monitoring of GQ Lupi and its sub-stellar companion |bibcode=2008A&A...484..281N |journal=Astronomy and Astrophysics |volume=484 |issue=1 |pages=281–291 |doi=10.1051/0004-6361:20078493 |issn=0004-6361|arxiv=0801.2287}}

{{Cite journal |last1=Shibaike |first1=Yuhito |last2=Hashimoto |first2=Jun |last3=Dong |first3=Ruobing |last4=Mordasini |first4=Christoph |last5=Fukagawa |first5=Misato |last6=Muto |first6=Takayuki |date=2025-01-15 |title=Predictions of Dust Continuum Emission from a Potential Circumplanetary Disk: A Case Study of the Planet Candidate AB Aurigae b |journal=The Astrophysical Journal |language=en |volume=979 |issue=1 |pages=24 |doi=10.3847/1538-4357/ad9b21 |doi-access=free |arxiv=2412.03923 |bibcode=2025ApJ...979...24S |issn=0004-637X}}

{{Cite journal |last1=Stassun |first1=Keivan G. |last2=Collins |first2=Karen A. |last3=Gaudi |first3=B. Scott |date=2017-03-01 |title=Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes |journal=The Astronomical Journal |volume=153 |issue=3 |page=136 |arxiv=1609.04389 |bibcode=2017AJ....153..136S |doi=10.3847/1538-3881/aa5df3 |doi-access=free |issn=0004-6256}}

{{Cite journal |last1=Luhman |first1=K. L. |last2=Wilson |first2=J. C. |last3=Brandner |first3=W. |last4=Skrutskie |first4=M. F. |last5=Nelson |first5=M. J. |last6=Smith |first6=J. D. |last7=Peterson |first7=D. E. |last8=Cushing |first8=M. C. |last9=Young |first9=E. |date=October 2006 |title=Discovery of a Young Substellar Companion in Chamaeleon |url=https://iopscience.iop.org/article/10.1086/506517 |journal=The Astrophysical Journal |language=en |volume=649 |issue=2 |pages=894–899 |arxiv=astro-ph/0609187 |bibcode=2006ApJ...649..894L |doi=10.1086/506517 |issn=0004-637X}}

{{Cite journal |last1=Itoh |first1=Yoichi |last2=Hayashi |first2=Masahiko |last3=Tamura |first3=Motohide |last4=Tsuji |first4=Takashi |last5=Oasa |first5=Yumiko |last6=Fukagawa |first6=Misato |last7=Hayashi |first7=Saeko S. |last8=Naoi |first8=Takahiro |last9=Ishii |first9=Miki |last10=Mayama |first10=Satoshi |last11=Morino |first11=Jun-ichi |last12=Yamashita |first12=Takuya |last13=Pyo |first13=Tae-Soo |last14=Nishikawa |first14=Takayuki |last15=Usuda |first15=Tomonori |date=2005-02-20 |title=A Young Brown Dwarf Companion to DH Tauri |url=https://iopscience.iop.org/article/10.1086/427086 |journal=The Astrophysical Journal |language=en |volume=620 |issue=2 |pages=984–993 |arxiv=astro-ph/0411177 |bibcode=2005ApJ...620..984I |doi=10.1086/427086 |issn=0004-637X}}

{{cite journal |author=Ignas A. G. Snellen |last2=De Kok |last3=De Mooij |last4=Albrecht |display-authors=etal |date=2010 |title=The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b |journal=Nature |volume=465 |issue=7301 |pages=1049–1051 |arxiv=1006.4364 |bibcode=2010Natur.465.1049S |doi=10.1038/nature09111 |pmid=20577209 |s2cid=205220901}}

{{cite journal |last1=Akeson |first1=Rachel |last2=Beichman |first2=Charles |last3=Kervella |first3=Pierre |last4=Fomalont |first4=Edward |last5=Benedict |first5=G. Fritz |date=20 April 2021 |title=Precision millimeter astrometry of the {{nobr|α Centauri AB}} system |journal= The Astronomical Journal |volume=162 |issue=1 |page=14 |s2cid=233307418 |doi-access=free |doi=10.3847/1538-3881/abfaff |bibcode=2021AJ....162...14A |arxiv=2104.10086}}

{{cite web | url=http://www.solstation.com/stars/sirius2.htm|title = Sirius 2 | publisher = SolStation

| access-date = 4 August 2006}}

{{cite conference | first=D. E. | last=Backman | editor=Gillett, F. C. |editor2=Low, F. J. | title=IRAS observations of nearby main sequence stars and modeling of excess infrared emission | book-title=Proceedings, 6th Topical Meetings and Workshop on Cosmic Dust and Space Debris | publisher=COSPAR and IAF | date=30 June – 11 July 1986 | volume=6 | issue=7 | pages=43–46 | location=Toulouse, France | bibcode=1986AdSpR...6...43B | issn=0273-1177 |doi = 10.1016/0273-1177(86)90209-7 }}

{{harvard citation no brackets|Brosch|2008|p=126}}

{{cite journal

|first1 = M. A. |last1 = Kenworthy

|first2 = E. E. |last2 = Mamajek

|title = Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by exomoons?

|journal = The Astrophysical Journal

|date = February 2015

|volume = 800

|issue = 2

|id = 126

|pages = 10

|doi-access = free

|doi = 10.1088/0004-637X/800/2/126

|arxiv = 1501.05652

|bibcode = 2015ApJ...800..126K

|s2cid = 56118870}}

{{cite news |url=http://science.psu.edu/news-and-events/2013-news/Luhman3-2013 |title=The Closest Star System Found in a Century |publisher=Pennsylvania State University Eberly College of Science |first=Barbara K. |last=Kennedy |date=11 March 2013 |access-date=11 March 2013 |archive-date=17 April 2013 |archive-url=https://web.archive.org/web/20130417184006/http://science.psu.edu/news-and-events/2013-news/Luhman3-2013 |url-status=dead }}

{{cite web |url=http://www.slate.com/blogs/bad_astronomy/2013/03/11/nearby_stars_astronomers_discover_third_closest_star_system_to_earth.html |title=Howdy, Neighbor! New Twin Stars Are Third Closest to the Sun |work=Slate |series=Bad Astronomy |first=Phil |last=Plait |author-link=Phil Plait |date=11 March 2013 |access-date=11 March 2013}}

{{cite journal |last1=Matthews |first1=E. C. |last2=Carter |first2=A. L. |display-authors=etal |title=A temperate super-Jupiter imaged with JWST in the mid-infrared |journal=Nature |volume= 633|issue= 8031|pages= 789–792|date=July 2024 |doi=10.1038/s41586-024-07837-8 |pmid=39048015 |doi-access=free |pmc=11424479 |arxiv=2503.01599 |bibcode=2024Natur.633..789M }}

{{cite web|url=https://science.nasa.gov/missions/webb/nasas-webb-images-cold-exoplanet-12-light-years-away/|title=NASA's Webb Images Cold Exoplanet 12 Light-Years Away|website=nasa.gov|date=24 July 2024 |publisher=NASA Webb Mission Team|access-date=Jul 24, 2024}}

{{cite journal |last1=Bardalez Gagliuffi |first1=Daniella |last2=Balmer |first2=William O. |display-authors=etal |date=June 2025 |title=JWST Coronagraphic Images of 14 Her c: a Cold Giant Planet in a Dynamically Hot, Multi-planet System |journal=The Astrophysical Journal Letters |volume= |issue= |pages= |doi= |arxiv=2506.09201}}

{{cite journal

|title =On the age of Gliese 504

|author =Fuhrmann, K. |author2=Chini, R.

|date =2015

|journal=The Astrophysical Journal

|volume =806

|issue =2

|pages =163 |doi =10.1088/0004-637X/806/2/163

|bibcode=2015ApJ...806..163F

|s2cid =5694316 }}

}}

= Bibliography =

  • {{Cite book |last=Brosch |first=Noah |url=https://www.worldcat.org/title/214308374 |title=Sirius matters |publisher=Springer Netherlands |year=2008 |isbn=978-1-4020-8318-1 |series=Astrophysics and space science library |volume=354 |location=Dordrecht |pages=185–202 |chapter=Sirius revealed – a synthesis of the information |doi=10.1007/978-1-4020-8319-8_10 |oclc=214308374}}

{{Exoplanet}}

{{DEFAULTSORT:Largest exoplanets}}

Category:Lists of exoplanets

Exoplanets, largest