2025 in paleobotany
{{Short description|none}}
{{TOC right}}
{{Year nav topic20 |2025|paleobotany |paleontology |arthropod paleontology |paleoentomology |paleomalacology |reptile paleontology |archosaur paleontology |mammal paleontology |paleoichthyology }}
This paleobotany list records new fossil plant taxa that were described during the year 2025, as well as notes other significant paleobotany discoveries and events which occurred during 2025.
Algae
=Charophytes=
=Chlorophytes=
=Rhodophytes=
=Phycological research=
- A study on the reproduction of Eugonophyllum, based on fossils from the Carboniferous (Gzhelian) Maping Formation (Guizhou, China), is published by Wang et al. (2025).{{Cite journal|last1=Wang |first1=J.-J. |last2=Gong |first2=E.-P. |last3=Zhang |first3=Y.-L. |last4=Huang |first4=W.-T. |last5=Li |first5=X. |last6=Wang |first6=L.-F. |last7=Lai |first7=G.-M. |last8=Li |first8=D.-P. |year=2025 |title=The role of algal reproduction in phylloid algal buildups: A case study in Pennsylvanian Phylloid algae in southern Guizhou, China |journal=Journal of Palaeogeography |doi=10.1016/j.jop.2025.02.002 |doi-access=free }}
Non-vascular plants
=Bryophyta=
class="wikitable sortable" align="center" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Tricosta angeiophoros{{Cite journal|last1=Valois |first1=M. |last2=Blanco-Moreno |first2=C. |last3=Bippus |first3=A. C. |last4=Stockey |first4=R. A. |last5=Rothwell |first5=G. W. |last6=Tomescu |first6=A. M. F. |year=2025 |title=The state of the art on tricostate mosses, with description of a new species of Tricostaceae |journal=Taxon |volume=74 |issue=1 |pages=155–173 |doi=10.1002/tax.13292 }}
| Sp. nov | Valid | Valois et al. | Early Cretaceous (Valanginian) | | {{Flag|Canada}} | | A moss belonging to the family Tricostaceae. Published online in 2024; the final version of the article naming it was published in 2025. | |
=Marchantiophyta=
=Non-vascular plant research=
- Evidence of impact of socio-economic and language factors on the documentation of bryophyte fossil record is presented by Blanco-Moreno, Bippus & Tomescu (2025).{{Cite journal|last1=Blanco-Moreno |first1=C. |last2=Bippus |first2=A. C. |last3=Tomescu |first3=A. M. F. |year=2025 |title=How do the principal megabiases in the fossil record affect the discovery of past bryophyte diversity? |journal=Annals of Botany |doi=10.1093/aob/mcaf070 }}
Lycophytes
Ferns and fern allies
=Pteridological research=
- New fossil material of Nemejcopteris haiwangii, providing evidence of climbing on Psaronius tree hosts, is described from Permian strata of the Taiyuan Formation in the Wuda Coalfield (Inner Mongolia, China) by Li et al. (2025).{{Cite journal|last1=Li |first1=F. |last2=Li |first2=D. |last3=Votočková Frojdova |first3=J. |last4=Pšenička |first4=J. |last5=Boyce |first5=C. K. |last6=Wang |first6=J. |last7=Zhou |first7=W. |year=2025 |title=Climbing habit confirmed in the early Permian zygopterid fern Nemejcopteris haiwangii and its palaeoecological significance |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |at=113101 |doi=10.1016/j.palaeo.2025.113101 }}
Conifers
=Cheirolepidiaceae=
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Frenelopsis callapezii{{cite journal |last1=Kvaček |first1=J. |last2=Mendes |first2=M. M. |last3=Van Konijnenburg-van Cittert |first3=J. H. A. |year=2024 |title=Frenelopsis callapezii, a new cheirolepidiaceous conifer from the Lower Cretaceous (upper Aptian – lower Albian) sedimentary deposits of Lusitanian Basin in western Portugal: systematic and paleoenvironmental implications |journal=International Journal of Plant Sciences |volume=186 |issue=3 |pages=178–192 |doi=10.1086/734301 }}
| Sp. nov | Valid | Kvaček, Mendes & Van Konijnenburg-van Cittert | Early Cretaceous | Figueira da Foz Formation | {{Flag|Portugal}} | | Published online in 2024; the final version of the article naming it was published in 2025. | |
=Cupressaceae=
=Pinaceae=
=Podocarpaceae=
Gnetophyta
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Ephedra transversa{{Cite journal|last1=Li |first1=P. |last2=Deng |first2=M. |last3=Hou |first3=C. |last4=Xing |first4=Y. |year=2025 |title=A new Ephedra macrofossil from the Early Cretaceous Yixian Formation, Liaoning Province, China and its evolutionary significance |journal=Review of Palaeobotany and Palynology |at=105314 |doi=10.1016/j.revpalbo.2025.105314 }}
| Sp. nov | | Song & Wu in Li et al. | Early Cretaceous | | {{Flag|China}} | | A species of Ephedra. | |
Flowering plants
=Magnoliids=
==Magnoliid research==
- Beurel et al. (2025) study the phylogenetic affinities of Nothophylica piloburmensis, and recover it as a member of Laurales related to the families Lauraceae and Hernandiaceae.{{Cite journal |last1=Beurel |first1=S. |last2=Bachelier |first2=J. B. |last3=Coiffard |first3=C. |last4=Schmidt |first4=A. R. |last5=Sadowski |first5=E.-M. |title=Placing Nothophylica piloburmensis from Cretaceous amber into the angiosperm phylogeny |year=2025 |journal=Taxon |doi=10.1002/tax.13350 |doi-access=free }}
=Monocots=
==Alismatales==
==Arecales==
==Liliales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Ripogonum marambio
| Sp. nov | Valid | Iglesias et al. | Paleocene | Cross Valley-Wiman Formation | Antarctica | | A species of Ripogonum. | |
==Poales==
==Monocot research==
- Khan et al. (2025) describe fossil material of palms with one metaxylem vessel in each fibrovascular bundle from the Maastrichtian-Danian Deccan Intertrappean Beds (India), and interpret the studied fossils as Cocos-type palms belonging to the subfamily Arecoideae that likely grew in a tropical rainforest.{{Cite journal|last1=Khan |first1=M. A. |last2=Spicer |first2=R. A. |last3=Su |first3=T. |last4=Roy |first4=K. |year=2025 |title=A tropical rainforest biome once existed in India at the K-Pg: Evidence from 'one-vessel' arecoid palms |journal=Review of Palaeobotany and Palynology |at=105316 |doi=10.1016/j.revpalbo.2025.105316 }}
- Evidence from the study of phytoliths from the Giraffe locality (Northwest Territories, Canada), indicative of presence of palms close to the Arctic Circle over an extensive period of time during the Eocene (approximately 48 million years ago), is presented by Siver et al. (2025).{{Cite journal|last1=Siver |first1=P. A. |last2=Reyes |first2=A. V. |last3=Pisera |first3=A. |last4=Buryak |first4=S. |last5=Wolfe |first5=A. P. |year=2025 |title=Palm phytoliths in subarctic Canada imply ice-free winters 48 million years ago during the late early Eocene |journal=Annals of Botany |doi=10.1093/aob/mcaf021 |doi-access=free |pmid=39928565 }}
=Basal eudicots=
=Superasterids=
==Apiales==
==Ericales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Sideroxylon globosum{{Cite journal |last1=Martinetto |first1=E. |last2=Manchester |first2=S. R. |last3=Barone |first3=R. |last4=Swenson |first4=U. |title=Fossil seeds of Sideroxylon L. (Sapotaceae) from the Neogene of Europe and their relationships to extant species in Macaronesia and West Asia |year=2025 |journal=Earth History and Biodiversity |at=100028 |doi=10.1016/j.hisbio.2025.100028 |doi-access=free }}
| Sp. nov | | (Ludwig) | Miocene | | {{Flag|Germany}} | Sapindus lignitum Unger (1860) | A species of Sideroxylon; moved from Trapa globosa Ludwig (1860). | |
Sideroxylon margaritiferum
| Comb. nov | | (Ludwig) | Miocene | | {{Flag|Germany}} | | A species of Sideroxylon; moved from Taxus margaritifera Ludwig (1860). | |
Sideroxylon ruminatiusculum
| Sp. nov | | Martinetto et al. | Miocene and Pliocene | | {{Flag|Italy}} | | A species of Sideroxylon. | |
==Icacinales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Miquelia yenbaiensis{{Cite journal|last1=Hung |first1=N. B. |last2=Huang |first2=J. |last3=Del Rio |first3=C. |last4=Hoa |first4=N. T. M. |last5=Truong |first5=D. V. |last6=Pha |first6=P. D. |last7=Su |first7=T. |last8=Li |first8=S.-F. |year=2025 |title=First endocarp record of Miquelia (Icacinaceae) from the late Miocene of northern Vietnam and its phytogeographical and paleoecological implications |journal=Review of Palaeobotany and Palynology |at=105285 |doi=10.1016/j.revpalbo.2025.105285 }}
| Sp. nov | | Hung, Huang & Li in Hung et al. | Miocene | | {{Flag|Vietnam}} | | A species of Miquelia. | |
=Superrosids=
==Fabales==
==Fagales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Ostrya parajaponica{{Cite journal|last1=Huang |first1=J. |last2=Jia |first2=H. |last3=Yan |first3=R.-F. |last4=Meng |first4=X.-N. |last5=Han |first5=Z.-C. |last6=Dong |first6=T.-Q. |last7=Pan |first7=J. |last8=Quan |first8=C. |year=2025 |title=Fossil involucres and a nutlet of Ostrya (Betulaceae) from the upper Eocene of Shaanxi and their biogeographic implications |journal=Palaeoworld |doi=10.1016/j.palwor.2025.200955 }}
| Sp. nov | | Huang & Jia in Huang et al. | Eocene | | {{Flag|China}} | | A species of Ostrya. | |
==Rosales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Prunus tonyzhangii{{Cite journal|last1=Wheeler |first1=E. |last2=Manchester |first2=S. R. |last3=Baas |first3=P. |title=Late Eocene woods from central Oregon, western USA |year=2025 |journal=Acta Palaeobotanica |volume=65 |issue=1 |pages=1–39 |url=https://acpa.botany.pl/Late-Eocene-woods-from-central-Oregon-western-USA,200879,0,2.html |doi=10.35535/acpa-2025-0001 |doi-access=free }}
| Sp. nov | Valid | Wheeler, Manchester & Baas | Eocene | | {{Flag|United States}} | | A species of Prunus. | |
==Sapindales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Acer pretataricum{{Cite journal|last1=Dong |first1=H. |last2=Wu |first2=Y. |last3=Wang |first3=X. |last4=Wang |first4=M. |last5=Ji |first5=D. |last6=Liang |first6=J. |last7=Xiao |first7=L. |year=2025 |title=Fossil Samaras of Acer in the Lower Miocene of Central Inner Mongolia, China, and Their Phytogeographical Implications |journal=Diversity |volume=17 |issue=3 |at=218 |doi=10.3390/d17030218 |doi-access=free }}
| Sp. nov | | Xiao & Wang in Dong et al. | Miocene | Hannuoba Formation | {{Flag|China}} | | A maple. | |
Nothopegia oligocastaneifolia{{Cite journal|last1=Bhatia |first1=H. |last2=Srivastava |first2=G. |year=2025 |title=Rising Himalaya and climate change drive endemism in the Western Ghats: Fossil evidence insights |journal=Review of Palaeobotany and Palynology |at=105348 |doi=10.1016/j.revpalbo.2025.105348 }}
| Sp. nov | | Bhatia & Srivastava | Oligocene | Tikak Parbat Formation | {{Flag|India}} | | A species of Nothopegia. | |
Nothopegia oligotravancorica
| Sp. nov | | Bhatia & Srivastava | Oligocene | Tikak Parbat Formation | {{Flag|India}} | | A species of Nothopegia. | |
Zanthoxylum maii
| Comb. nov | Valid | (Gregor) | Miocene | | {{Flag|Germany}} | | A species of Zanthoxylum; moved from Toddalia maii Gregor (1975). | |
Zanthoxylum naviculaeforme
| Comb. nov | Valid | (Reid) | Miocene | | {{Flag|France}} | | A species of Zanthoxylum; moved from Martya naviculaeformis Reid (1923). | |
Zanthoxylum turovense
| Comb. nov | Valid | (Czeczott & Skirgiełło) | Miocene | | {{Flag|Poland}} | | A species of Zanthoxylum; moved from Sapoticarpum turovense Czeczott & Skirgiełło (1975). | |
==Superrosid research==
- Ali et al. (2025) describe a gland-bearing petal of cf. Mcvaughia sp. from the Eocene Palana Formation (India), interpreted as possible evidence that members of the lineage of the studied plant already had volatile glands used to attract pollinators (possibly anthophorid bees) in the early Eocene.{{cite journal |last1=Ali |first1=A. |last2=de Almeida |first2=R. F. |last3=Patel |first3=R. |last4=Rana |first4=R. S. |last5=Khan |first5=M. A. |year=2025 |title=An Early Malpighiaceous Plant-Pollinator Relationship: Evidence by a Gland-Bearing Petal (Osmophores) from the Eocene of India |journal=International Journal of Plant Sciences |doi=10.1086/735171 }}
- Hazra & Khan (2025) report the discovery of a diverse assemblage of legume fruits and leaflet remains from the Rajdanda Formation (India), interpreted as evidence of the presence of a warm and humid tropical environment during the Pliocene.{{Cite journal|last1=Hazra |first1=T. |last2=Khan |first2=M. A. |year=2025 |title=Late Neogene diversity of Fabaceae in the Chotanagpur Plateau, eastern India: palaeoecological implications |journal=Earth History and Biodiversity |doi=10.1016/j.hisbio.2025.100020 |doi-access=free }}
- A study on the anatomy of wood of extant members of the genus Ficus and fossil wood with affinities to Ficus, and on its implications for determination of the organs preserved as fossil wood and their habits, is published by Monje Dussán, Pederneiras & Angyalossy (2025).{{Cite journal|last1=Monje Dussán |first1=C. |last2=Pederneiras |first2=L. C. |last3=Angyalossy |first3=V. |year=2025 |title=Inferring the hemiepiphytic habit of Ficus (Moraceae) through wood anatomical characters in modern and fossil woods |journal=Brazilian Journal of Botany |doi=10.1007/s40415-025-01067-6 }}
- A leaf of Swintonia floribunda, representing the oldest record of the genus Swintonia reported to date, is described from the Oligocene Tikak Parbat Formation (India) by Bhatia & Srivastava (2025), who interpret this finding as supporting the Gondwanan origin of the Anacardiaceae.{{Cite journal|last1=Bhatia |first1=H. |last2=Srivastava |first2=G. |year=2025 |title=Earliest Swintonia (Anacardiaceae) fossil from the late Paleogene of India suggests its Gondwanan origin |journal=Geobios |doi=10.1016/j.geobios.2025.05.008 }}
- The first fossil material assigned to a living endangered tropical tree species (Dryobalanops rappa) is described from the Plio-Pleistocene strata from Brunei by Wang et al. (2025).{{Cite journal|last1=Wang |first1=T.-X. |last2=Wilf |first2=P. |last3=Briguglio |first3=A. |last4=Kocsis |first4=L. |last5=Donovan |first5=M. P. |last6=Zou |first6=X. |last7=Slik |first7=J. W. F. |title=Fossils of an endangered, endemic, giant dipterocarp species open a historical portal into Borneo's vanishing rainforests |year=2025 |journal=American Journal of Botany |at=e70036 |doi=10.1002/ajb2.70036 |doi-access=free |pmc=12094065 }}
=Other angiosperms=
=General angiosperm research=
- A study on the timing of the evolution of the flowering plants is published by Ma et al. (2025), who recover the crown group of the flowering plants as likely originating in the Triassic.{{Cite journal|last1=Ma |first1=X. |last2=Zhang |first2=C. |last3=Yang |first3=L. |last4=Hedges |first4=S. B. |last5=Zhong |first5=B. |year=2025 |title=New insights on angiosperm crown age based on Bayesian node dating and skyline fossilized birth-death approaches |journal=Nature Communications |volume=16 |at=2265 |doi=10.1038/s41467-025-57687-9 |doi-access=free |pmc=11889176 }}
- Clark & Donoghue (2025) study the impact of interpretations of the plant fossil record on molecular clock estimates of the timing of origin of the flowering plants, and estimate that the crown group of the flowering plants diverged in the Late Jurassic–Early Cretaceous interval.{{Cite journal|last1=Clark |first1=J. W. |last2=Donoghue |first2=P. C. J. |year=2025 |title=Uncertainty in the timing of diversification of flowering plants rests with equivocal interpretation of their fossil record |journal=Royal Society Open Science |volume=12 |issue=5 |at=242158 |doi=10.1098/rsos.242158 |doi-access=free |pmc=12115813 }}
- Doughty et al. (2025) use a mechanistic model to study the relationship between seed size of flowering plants, their light environment and the size of animals in their environment, and predict a rapid increase of seed size during the Paleocene that eventually plateaued or declined, likely as a result of the appearance of large herbivores that opened the understory, reducing the competitive advantage of plants with large seeds.{{Cite journal|last1=Doughty |first1=C. E. |last2=Wiebe |first2=B. C. |last3=Keany |first3=J. M. |last4=Gaillard |first4=C. |last5=Abraham |first5=A. J. |last6=Kristensen |first6=J. A. |year=2025 |title=Ecosystem engineers alter the evolution of seed size by impacting fertility and the understory light environment |journal=Palaeontology |volume=68 |issue=1 |at=e70002 |doi=10.1111/pala.70002 }}
Other plants
=Other plant research=
- Doran & Tomescu (2025) identify emergences with possible rooting function in Psilophyton crenulatum from the Devonian Val d'Amour Formation (New Brunswick, Canada), potentially representing the oldest euphyllophyte rooting structures reported to date.{{Cite journal|last1=Doran |first1=J. B. |last2=Tomescu |first2=A. M. F. |year=2025 |title=On the origin of euphyllophyte roots – hypotheses from an Early Devonian Psilophyton |journal=Annals of Botany |doi=10.1093/aob/mcaf121 |pmid=40509904 |doi-access=free }}
- A study on wood anatomy of Devonian euphyllophytes from the Battery Point Formation (Quebec, Canada) is published by Casselman & Tomescu (2025), who identify secondary xylem metrics that allow for distinguishing between different euphyllophyte taxa.{{Cite journal|last1=Casselman |first1=E. |last2=Tomescu |first2=A. M. F. |year=2025 |title=Characterizing and distinguishing the earliest woody euphyllophytes based on secondary xylem anatomy: method development and application |journal=Annals of Botany |doi=10.1093/aob/mcaf122 |pmid=40509900 |doi-access=free }}
- A study on the epidermal anatomy of Pterophyllum ptilum from the Upper Triassic Xujiahe Formation (China) is published by Lu et al. (2025).{{Cite journal|last1=Lu |first1=W. |last2=Wu |first2=H. |last3=Zhao |first3=T. |last4=Blomenkemper |first4=P. |last5=Feng |first5=Z. |year=2025 |title=Epidermal anatomy of Pterophyllum ptilum (Cycadophyta: Bennettitales) from the Upper Triassic of Sichuan Province, Southwest China |journal=Review of Palaeobotany and Palynology |at=105351 |doi=10.1016/j.revpalbo.2025.105351 }}
- Partial leaf representing the first record of a fossil Cycas from Australia is described from the Miocene Stuarts Creek site by Greenwood, Conran & West (2025).{{cite journal |last1=Greenwood |first1=D. R. |last2=Conran |first2=J. G. |last3=West |first3=C. K. |year=2025 |title=A Cycas L. (Cycadaceae) Leaf from the Miocene of Northern South Australia |journal=International Journal of Plant Sciences |volume=186 |issue=2 |pages=114–126 |doi=10.1086/733819 }}
Palynology
=Palynological research=
- Nhamutole et al. (2025) study the composition of palynological assemblages from the Permian (Lopingian) strata of the Maniamba Basin (Mozambique), reporting evidence of the presence of plants indicative of lowland fluvial setting.{{Cite journal|last1=Nhamutole |first1=N. |last2=Bamford |first2=M. |last3=Souza |first3=P. A. |last4=Félix |first4=C. M. |last5=Carmo |first5=D. A. |last6=Zimba |first6=A. |last7=Bande |first7=P. |year=2025 |title=New palynological data from Maniamba Basin, Mozambique (Karoo): Correlations and implications for Lopingian floristic ecosystem reconstruction |journal=Review of Palaeobotany and Palynology |at=105310 |doi=10.1016/j.revpalbo.2025.105310 }}
- Evidence from the study of palynological assemblages from the South Chinese Meishan section, indicative of presence of persistent gymnosperm-dominated vegetation during the Permian-Triassic transition, is presented by Schneebeli-Hermann & Galasso (2025).{{Cite journal|last1=Schneebeli-Hermann |first1=E. |last2=Galasso |first2=F. |year=2025 |title=Resilient gymnosperms: reassessing floral dynamics at the permian–triassic extinction in Meishan |journal=Review of Palaeobotany and Palynology |at=105373 |doi=10.1016/j.revpalbo.2025.105373 |doi-access=free}}
- Evidence from the study of palynofloral assemblages from the Germig Section (Qinghai-Tibetan Plateau; Tibet, China), interpreted as indicative of a shift from floras dominated by seed ferns and conifers to floras dominated by cheirolepids during the Triassic-Jurassic transition, is presented by Li et al. (2025).{{Cite journal|last1=Li |first1=J.-H. |last2=Peng |first2=J.-G. |last3=Slater |first3=S. M. |last4=Vajda |first4=V. |year=2025 |title=Palynofloras across the Triassic–Jurassic boundary on Qinghai-Tibetan Plateau, Southwest China |journal=Palaeoworld |doi=10.1016/j.palwor.2025.200910 }}
- Description of the palynological assemblage from the Middle Jurassic Challacó Formation (Argentina), including a Mesozoic record of the otherwise Proterozoic to Paleozoic taxon Gloeocapsomorpha, is presented by Olivera et al. (2025).{{Cite journal|last1=Olivera |first1=D. E. |last2=Martínez |first2=M. A. |last3=Iturain |first3=V. R. |last4=Zavala |first4=C. |year=2025 |title=New palynological insights into the Middle Jurassic Challacó Formation, Neuquén Basin, northwestern Patagonia, Argentina |journal=Papers in Palaeontology |volume=11 |issue=2 |at=e70011 |doi=10.1002/spp2.70011 }}
- Tricolpate pollen, identified as pollen of flowering plants belonging to the eudicot clade, is described from the Barremian strata from nearshore marine sediments in the Lusitanian Basin (Portugal) by Gravendyck et al. (2025).{{Cite journal|last1=Gravendyck |first1=J. |last2=Krencker |first2=F.-N. |last3=Riding |first3=J. B. |last4=Coimbra |first4=R. |last5=Heimhofer |first5=U. |year=2025 |title=Barremian tricolpate pollen from Portugal—New evidence for the age of eudicot-related angiosperms |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=21 |at=e2421470122 |doi=10.1073/pnas.2421470122 |doi-access=free }}
- A study on the composition of the gymnosperm-dominated palynoflora from the Lower Cretaceous strata from the Koonwarra fossil bed (Australia) is published by Vajda et al. (2025).{{Cite journal|last1=Vajda |first1=V. |last2=Shevchuk |first2=O. A. |last3=Poropat |first3=S. F. |last4=Krüger |first4=A. |last5=Vickers-Rich |first5=P. |last6=Rich |first6=T. H. |year=2025 |title=Early Cretaceous vegetation in a polar ecosystem—Palynology and zircon dating of the Koonwarra Fossil Bed, Victoria, Australia |journal=Review of Palaeobotany and Palynology |volume=338 |at=105336 |doi=10.1016/j.revpalbo.2025.105336 }}
- Evidence from the study of palynological assemblages from the Barremian–Aptian Gippsland Basin and the Albian Otway Basin (Victoria, Australia), indicative of a high-rainfall regime of a floral turnover in the studied resulting in different composition of the assemblages from the studied basins, is presented by Korasidis & Wagstaff (2025).{{Cite journal|last1=Korasidis |first1=V. A. |last2=Wagstaff |first2=B. E. |title=Cool-temperate riparian floras in the Early Cretaceous rift valley of Victoria, Australia |year=2025 |journal=Alcheringa: An Australasian Journal of Palaeontology |doi=10.1080/03115518.2025.2489614 |doi-access=free }}
- A study on palynofloral assemblages from the Las Loras UNESCO Global Geopark (Spain), providing evidence of gradual shift from conifer-dominated floras to ones with increased presence of flowering plants through the Albian–Cenomanian, is published by Rodríguez-Barreiro et al. (2025).{{Cite journal|last1=Rodríguez-Barreiro |first1=I. |last2=Santos |first2=A. A. |last3=Villanueva-Amadoz |first3=U. |last4=Hernández |first4=J. M. |last5=McLoughlin |first5=S. |last6=Diez |first6=J. B. |year=2025 |title=Angiosperm radiation, diversification, and vegetation shifts through the Albian–Cenomanian of the northern Iberian Peninsula: Palynological evidence from the Las Loras UNESCO Global Geopark |journal=Cretaceous Research |at=106086 |doi=10.1016/j.cretres.2025.106086 |doi-access=free }}
- Evidence from the study of palynomorph and palynofacies from the Bahariya Formation (Egypt), interpreted as indicative of warm and humid climate during the early-middle Cenomanian with a short episode of semi-arid to arid conditions during the late early Cenomanian, is presented by Abdelhalim et al. (2025).{{Cite journal|last1=Abdelhalim |first1=L. A. |last2=Mansour |first2=A. |last3=Tahoun |first3=S. S. |last4=Abdelrahman |first4=K. |last5=Wagreich |first5=M. |year=2025 |title=Paleoenvironmental and paleoclimatic trends during the early-middle Cenomanian in northeastern Africa (Egypt): Insights from palynomorph and palynofacies analyses |journal=Review of Palaeobotany and Palynology |at=105297 |doi=10.1016/j.revpalbo.2025.105297 }}
- Evidence from the study of palynological assemblages from the Llanos basin (Colombia), indicative of impact of environmental changes on the diversification of Neotropical plants during the Cenozoic, is presented by de la Parra & Benson (2025).{{Cite journal |last1=de la Parra |first1=F. |last2=Benson |first2=R. |title=Diversification dynamics of vegetation during the Cenozoic in the Neotropics: a palynological perspective from Colombia |year=2025 |journal=Paleobiology |pages=1–14 |doi=10.1017/pab.2024.62 |doi-access=free }}
- Rull (2025) revises purported fossil pollen records of Pelliciera found outside the Neotropics, and argues that only a subset of Cenozoic pollen records from tropical West Africa can be confirmed as likely fossils of members of Pelliciera.{{Cite journal|last=Rull |first=V. |year=2025 |title=A critical evaluation of fossil pollen records from the mangrove tree Pelliciera beyond the Neotropics: Biogeographical and evolutionary implications |journal=Review of Palaeobotany and Palynology |volume=335 |at=105299 |doi=10.1016/j.revpalbo.2025.105299 |doi-access=free }}
- Revision of the fossil pollen of members of Fabales, Rosales, Fagales, Malpighiales, Myrtales, Sapindales, Malvales, Santalales and Caryophyllales from the palynological assemblage from the Eocene Messel Formation (Germany) is published by Bouchal et al. (2025).{{Cite journal|last1=Bouchal |first1=J. M. |last2=Geier |first2=C. |last3=Ulrich |first3=S. |last4=Wilde |first4=V. |last5=Lenz |first5=O. K. |last6=Zetter |first6=R. |last7=Grímsson |first7=F. |year=2025 |title=Qualitative LM and SEM study of the Messel palynoflora: Part II. Fabales to Caryophyllales |journal=Review of Palaeobotany and Palynology |at=105349 |doi=10.1016/j.revpalbo.2025.105349 |doi-access=free }}
- Evidence from the study of fossil pollen from the Dingqinghu Formation (China), indicative of presence of a mixed deciduous and coniferous forest in the central Qinghai-Tibet Plateau during the Oligocene-Miocene transition, is presented by Xie et al. (2025).{{cite journal|last1=Xie |first1=G. |last2=Li |first2=J.-F. |last3=Yao |first3=Y.-F. |last4=Wang |first4=S.-Q. |last5=Sun |first5=B. |last6=Ferguson |first6=D. K. |last7=Li |first7=C.-S. |last8=Li |first8=M. |last9=Deng |first9=T. |last10=Wang |first10=Y.-F. |year=2025 |title=Palynological evidence reveals vegetation succession in the central Qinghai-Tibet Plateau during the Late Oligocene to Early Miocene |journal=Journal of Systematics and Evolution |volume=63 |issue=1 |pages=53–61 |doi=10.1111/jse.13168 }}
- Evidence from the study of pollen record from the Zoige Basin, indicative of changes of vegetation in the Tibetan Plateau related to temperature changes during the last 3.5 million years, is presented by Zhao et al. (2025).{{Cite journal |last1=Zhao |first1=Y. |last2=Qin |first2=F. |last3=Cui |first3=Q. |last4=Li |first4=Q. |last5=Cui |first5=Y. |last6=Birks |first6=H. J. B. |last7=Liang |first7=C. |last8=Zhao |first8=W. |last9=Li |first9=H. |last10=Ren |first10=W. |last11=Deng |first11=C. |last12=Ge |first12=J. |last13=Kong |first13=Y. |last14=Liu |first14=Y. |last15=Zhang |first15=Z. |last16=Zhang |first16=J. |last17=Cai |first17=M. |last18=Wei |first18=H. |last19=Qiu |first19=H. |last20=Xu |first20=H. |last21=Yang |first21=H. |last22=Chen |first22=C. |last23=Piao |first23=S. |last24=Guo |first24=Z. |title=Three-and-a-half million years of Tibetan Plateau vegetation dynamics in response to climate change |year=2025 |journal=Nature Ecology & Evolution |pages=1–15 |doi=10.1038/s41559-025-02743-2 |doi-access=free }}
- A study on the environment and climate in Java (Indonesia) during the early Pleistocene, based on data from palynological assemblages from the Kalibiuk and Kaliglagah formations, is published by Morley & Morley (2025), who interpret the studied assemblages as indicative of a strongly seasonal climate, and interpret the assemblages from the Kalibuik Formation and the basal Kaliglagah Formation as indicative of presence of a large delta dominated by mangroves, while considering the assemblages from the upper Kaliglagah Formation to be consistent with the presence of a freshwater swamp.{{Cite journal|last1=Morley |first1=H. P. |last2=Morley |first2=R. J. |year=2025 |title=Palynology of the Early Pleistocene Kalibiuk and Kaliglagah Formations at Bentasari, Central Java, Indonesia |journal=Review of Palaeobotany and Palynology |at=105352 |doi=10.1016/j.revpalbo.2025.105352 }}
- Evidence from the study of pollen record from the eastern Mainland Southeast Asia, indicative of presence of forest-seasonal savanna mosaics in the studied region during the Last Glacial Maximum, is presented by Lin et al. (2025), who find no evidence of presence of savanna corridors linking the Leizhou Peninsula and Singapore during the Last Glacial Maximum.{{Cite journal|last1=Lin |first1=G. |last2=Luo |first2=C. |last3=Herath |first3=D. B. |last4=Wan |first4=S. |last5=Su |first5=X. |last6=Yang |first6=Y. |last7=Zhong |first7=M. |last8=Wang |first8=Z. |last9=Yuan |first9=X. |last10=Xiang |first10=R. |year=2025 |title=Forest and mosaic vegetation cut off savanna corridors during the Last Glacial Maximum in Southeast Asia recorded by marine pollen |journal=Global and Planetary Change |doi=10.1016/j.gloplacha.2025.104871 }}
General research
- A study on the floral assemblage from the Permian strata of the East Bokaro Coalfield (India), providing evidence of the presence of a diverse ecosystem of large trees and shrubs, is published by Dash et al. (2025).{{Cite journal|last1=Dash |first1=P. R. |last2=Goswami |first2=S. |last3=Aggarwal |first3=N. |last4=Pradhan |first4=S. |last5=Das |first5=D. |last6=Behera |first6=D. |year=2025 |title=Permian fossil whispers of ancient climates and forests: a megafloral-palynofacies odyssey in a part of eastern India |journal=Historical Biology: An International Journal of Paleobiology |doi=10.1080/08912963.2025.2475198 }}
- Ferraz et al. (2025) report the discovery of a diverse plant association in the Guadalupian strata from the Cerro Chato outcrop (Paraná Basin, Brazil).{{Cite journal |last1=Ferraz |first1=J. S. |last2=Manfroi |first2=J. |last3=Machado |first3=A. F. |last4=Gobo |first4=W. V. |last5=Guerra-Sommer |first5=M. |last6=Pinheiro |first6=F. L. |title=An Oasis in Western Gondwana: A Diverse Guadalupian Paleoflora from South America |year=2025 |journal=Journal of South American Earth Sciences |volume=158 |at=105508 |doi=10.1016/j.jsames.2025.105508 }}
- Evidence of changes of composition of gigantopterid-dominated rainforests known from the Longtan Formation (China) during the Lopingian is presented by Shu et al. (2025), who also report evidence of the presence of climbing structures in Gigantonoclea.{{Cite journal|last1=Shu |first1=W. |last2=Yu |first2=J. |last3=Hilton |first3=J. |last4=Shi |first4=X. |last5=Tian |first5=L. |last6=Diez |first6=J. B. |last7=Tong |first7=J. |last8=Lu |first8=Y. |year=2025 |title=Floral dynamics and ecological adaptations in the Lopingian gigantopterid rainforest of South China |journal=Review of Palaeobotany and Palynology |volume=338 |at=105335 |doi=10.1016/j.revpalbo.2025.105335 }}
- Evidence from the study of fossil material from the South Taodonggou Section in the Turpan-Hami Basin (China), interpreted as indicative of presence of a refugium of land vegetation that preserved the stability of food chains during the Permian–Triassic extinction event and might have been one of the source regions for the diversification of terrestrial life in the aftermath of the extinction event, is presented by Peng et al. (2025).{{Cite journal|last1=Peng |first1=H. |last2=Yang |first2=W. |last3=Wan |first3=M. |last4=Liu |first4=J. |last5=Liu |first5=F. |year=2025 |title=Refugium amidst ruins: Unearthing the lost flora that escaped the end-Permian mass extinction |journal=Science Advances |volume=11 |issue=11 |at=eads5614 |doi=10.1126/sciadv.ads5614 |doi-access=free |pmc=11900852 }}
- Evidence of a staggered recovery of plant communities from the Sydney Basin (Australia) in the aftermath of the Permian–Triassic extinction event, indicative of the presence of a succession gymnosperm-dominated and lycophyte-dominated plant communities lasting until the early Middle Triassic, is presented by Amores et al. (2025).{{Cite journal|last1=Amores |first1=M. |last2=Frank |first2=T. D. |last3=Fielding |first3=C. R. |last4=Hren |first4=M. T. |last5=Mays |first5=C. |year=2025 |title=Age-controlled south polar floral trends show a staggered Early Triassic gymnosperm recovery following the end-Permian event |journal=GSA Bulletin |doi=10.1130/B38017.1 }}
- A study on the composition of the Middle Jurassic plant assemblage from the Khamarkhoovor Formation (Mongolia) is published by Muraviev et al. (2025).{{Cite journal|last1=Muraviev |first1=A. |last2=Kvaček |first2=J. |last3=Uranbileg |first3=L. |last4=Otgonsuren |first4=D. |last5=Dashkhorol |first5=J. |last6=Kustatscher |first6=E. |year=2025 |title=Middle Jurassic plant fossils from the East Gobi Basin (Mongolia) |journal=Review of Palaeobotany and Palynology |at=105371 |doi=10.1016/j.revpalbo.2025.105371 }}
- Evidence of the presence of a plant community dominated by ferns belonging to the family Osmundaceae, similar to extant plant communities such as those from swamp settings from the Parana Forest in northeastern Argentina, is reported from the Jurassic La Matilde Formation (Argentina) by García Massini et al. (2025).{{Cite journal|last1=García Massini |first1=J. L. |last2=Nunes |first2=G. C. |last3=Yañez |first3=A. |last4=Escapa |first4=I. H. |last5=Guido |first5=D. |year=2025 |title=Jurassic Osmundaceous Landscapes in Patagonia: Exploring the Concept of Ecological Stasis in the Deseado Massif, Argentina |journal=Plants |volume=14 |issue=2 |at=165 |doi=10.3390/plants14020165 |doi-access=free |pmc=11768899 }}
- Silva et al. (2025) study the taphonomy of exceptionally preserved plant remains from the Upper Cretaceous Santa Marta Formation (Antarctica).{{Cite journal|last1=Silva |first1=E. |last2=Iglesias |first2=A. |last3=Atkinson |first3=B. |last4=Smith |first4=S. Y. |last5=Olivero |first5=E. B. |title=Exceptional preservation of plants in calcareous concretions from Santa Marta Formation (Late Cretaceous), James Ross Island, Antarctic Peninsula |year=2025 |journal=Ameghiniana |volume=62 |issue=2 |pages=130–143 |doi=10.5710/AMGH.29.01.2025.3611 }}
- Evidence from the study of phytoliths from the Lunpola Basin of the Qinghai–Tibetan Plateau, interpreted as indicative of presence mixed coniferous and broad-leaved forest during the late Oligocene–Early Miocene, is presented by Zhang et al. (2025).{{Cite journal|last1=Zhang |first1=X.-W. |last2=Liu |first2=J. |last3=Spicer |first3=R. A. |last4=Gao |first4=Y. |last5=Yao |first5=X.-R. |last6=Qin |first6=X.-Y. |last7=Zhou |first7=Z.-K. |last8=Su |first8=T. |year=2025 |title=Vegetation history of the central Tibetan region during the late Oligocene–Early Miocene |journal=Journal of Systematics and Evolution |volume=63 |issue=1 |pages=39–52 |doi=10.1111/jse.13152 }}
- A study on the timing of the uplift of the Lhasa and Qiangtang terranes, based on composition of fossil plant communities from the Qinghai–Tibet Plateau (China), is published by Lai et al. (2025).{{cite journal|last1=Lai |first1=Y.-J. |last2=Ye |first2=J.-F. |last3=Liu |first3=B. |last4=Liu |first4=Y. |last5=Lu |first5=A.-M. |last6=Wei |first6=F.-W. |last7=Chen |first7=Z.-D. |year=2025 |title=Integrating fossil and extant plant communities to calibrate paleoelevation of the Qinghai–Tibet Plateau |journal=Journal of Systematics and Evolution |volume=63 |issue=1 |pages=25–38 |doi=10.1111/jse.13172 }}
- Evidence indicating that climate and geographic changes in the Miocene resulted in vegetation changes that in turn caused climate change feedbacks that impacted cooling and precipitation changes during the late Miocene climate transition is presented by Zhang et al. (2025).{{Cite journal|last1=Zhang |first1=R. |last2=Guo |first2=J. |last3=Bradshaw |first3=C. D. |last4=Xu |first4=X. |last5=Shen |first5=T. |last6=Li |first6=S. |last7=Nie |first7=J. |last8=Zhang |first8=C. |last9=Li |first9=X. |last10=Liu |first10=Z. |last11=Zhang |first11=J. |last12=Jiang |first12=D. |last13=Hu |first13=Y. |last14=Sun |first14=J. |title=Vegetation feedbacks accelerated the late Miocene climate transition |year=2025 |journal=Science Advances |volume=11 |issue=18 |at=eads4268 |doi=10.1126/sciadv.ads4268 |pmid=40315310 |pmc=12047422 |doi-access=free }}
- Evidence from the study of plant macrofossils and palynoflora from the Pisco Formation (Peru), indicative of presence of a diverse dry forest biome in the area of present-day coastal Peruvian desert during the Miocene, is presented by Ochoa et al. (2025).{{Cite journal|last1=Ochoa |first1=D. |last2=Carré |first2=M. |last3=Montenegro |first3=J.-F. |last4=DeVries |first4=T. J. |last5=Caballero-Rodríguez |first5=D. |last6=Rodríguez-Reyes |first6=O. |last7=Barbosa-Espitia |first7=A. |last8=Cardich |first8=J. |last9=Cruz-Acevedo |first9=E. |last10=Cruz |first10=D. |last11=Foster |first11=D. A. |last12=LaTorre-Acuy |first12=M. |last13=Quispe |first13=F. |last14=Rivera-Chira |first14=M. |last15=Romero |first15=P. E. |last16=Salas-Gismondi |first16=R. |last17=Urbina |first17=M. |last18=Flores |first18=J.-A. |year=2025 |title=Late Miocene greening of the Peruvian Desert |journal=Communications Earth & Environment |volume=6 |at=391 |doi=10.1038/s43247-025-02322-0 |doi-access=free }}
- A study on ancient DNA from sediment cores from lakes in Alaska and Siberia, providing evidence of plant extinctions associated with environmental changes during the Pleistocene–Holocene transition, is published by Courtin et al. (2025).{{Cite journal|last1=Courtin |first1=J. |last2=Stoof-Leichsenring |first2=K. R. |last3=Lisovski |first3=S. |last4=Liu |first4=Y. |last5=Alsos |first5=I. G. |last6=Biskaborn |first6=B. K. |last7=Diekmann |first7=B. |last8=Melles |first8=M. |last9=Wagner |first9=B. |last10=Pestryakova |first10=L. |last11=Russell |first11=J. |last12=Huang |first12=Y. |last13=Herzschuh |first13=U. |year=2025 |title=Potential plant extinctions with the loss of the Pleistocene mammoth steppe |journal=Nature Communications |volume=16 |issue=1 |at=645 |doi=10.1038/s41467-024-55542-x |doi-access=free |pmid=39809751 |pmc=11733255 }}
- Evidence of changes of the upper range limit of trees in the Tibetan Plateau since the Last Glacial Maximum, and of a relationship between those changes and pattern of beta diversity of the studied flora, is presented Xu et al. (2025).{{Cite journal |last1=Xu |first1=J. |last2=Wang |first2=T. |last3=Wang |first3=X. |last4=Körner |first4=C. |last5=Cao |first5=X. |last6=Liang |first6=E. |last7=Yang |first7=Y. |last8=Piao |first8=S. |year=2025 |title=Late Quaternary fluctuation in upper range limit of trees shapes endemic flora diversity on the Tibetan Plateau |journal=Nature Communications |volume=16 |issue=1 |at=1819 |doi=10.1038/s41467-025-57036-w |pmid=39979368 |pmc=11842749 |doi-access=free }}
- El-Saadawi et al. (2025) present an annotated catalog of plant macrofossil remains from Egypt, including fossils ranging from Devonian to Quaternary.{{Cite journal|last1=El-Saadawi |first1=W. |last2=Nour-El-Deen |first2=D. |last3=El-Din |first3=M. K. |last4=El-Noamani |first4=Z. |year=2025 |title=Annotated catalog of the Egyptian macrofossil plants: An overview of over 200 years of research—Cryptogamae and Phanerogamae |journal=Review of Palaeobotany and Palynology |at=105320 |doi=10.1016/j.revpalbo.2025.105320 }}
- Jardine, Morck & Lomax (2025) compare the utility of morphological traits which might be proxies for genome size of fossil plants, and report evidence of a robust relationship between genome size and guard cell length in plants.{{Cite journal|last1=Jardine |first1=P. E. |last2=Morck |first2=H. |last3=Lomax |first3=B. H. |year=2025 |title=Which morphological traits can be used to reconstruct genome size in fossil plants? Assessing sporomorph size and stomatal guard cell length as paleo-genome size proxies |journal=Paleobiology |pages=1–14 |doi=10.1017/pab.2025.8 |doi-access=free }}
- Liu et al. (2025) review the development and application of artificial intelligence in paleobotany and palynology from the 1980s to 2025.{{Cite journal|last1=Liu |first1=Y. |last2=Torres |first2=L. N. |last3=Wang |first3=B. |last4=Pei |first4=W. |last5=Na |first5=Y. |last6=Song |first6=Q. |last7=Shi |first7=X. |year=2025 |title=Artificial Intelligence in Paleobotany and Palynology |journal=Geological Journal |doi=10.1002/gj.70007 }}