HiSilicon#Kirin 970

{{short description|Chinese fabless semiconductor manufacturing company, fully owned by Huawei}}

{{Use dmy dates|date=December 2021}}

{{Infobox company

| name = HiSilicon Co., Ltd.

| native_name = 海思半导体有限公司;上海海思

| logo = Hisilicon.svg

| traded_as =

| foundation = {{Start date and age|1991}}{{Cite web|url=https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=29568267|title=HiSilicon Technologies Co., Ltd.: Private Company Information|website=Bloomberg|access-date=18 January 2019|archive-url=https://web.archive.org/web/20190119121157/https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=29568267|archive-date=19 January 2019|url-status=live}}{{citation needed|reason=date has been removed from website|date=September 2020}}

| type = Subsidiary

| parent = Huawei

| brands = {{Hlist|Kirin

Gigahom

Kunpeng

Balong

Ascend}}

| location = Shenzhen, Guangdong, China

| industry = Fabless semiconductors, Semiconductors, Integrated circuit design

| products = SoCs

| homepage = {{Official URL}}

}}

{{Infobox Chinese

| s = 海思半导体有限公司

| t = 海思半導體有限公司

| p = Hǎisī Bàndǎotǐ Yǒuxiàn Gōngsī

| l = Haisi Semiconductor Limited Company

| order = st

}}

HiSilicon ({{lang-zh|c=海思|p=Hǎisī}}) is a Chinese fabless semiconductor company based in Shenzhen, Guangdong province and wholly owned by Huawei. HiSilicon purchases licenses for CPU designs from ARM Holdings, including the ARM Cortex-A9 MPCore, ARM Cortex-M3, ARM Cortex-A7 MPCore, ARM Cortex-A15 MPCore,[http://www.arm.com/about/newsroom/hisilicon-licenses-arm-technology-for-use-in-networking-infrastructure-and-mobile-computing-applications.php HiSilicon Licenses ARM Technology for use in Innovative 3G/4G Base Station, Networking Infrastructure and Mobile Computing Applications] {{Webarchive|url=https://web.archive.org/web/20130127182027/http://www.arm.com/about/newsroom/hisilicon-licenses-arm-technology-for-use-in-networking-infrastructure-and-mobile-computing-applications.php |date=27 January 2013 }}, 2 August 2011 on ARM.com{{cite web|title=HiSilicon Technologies Co., Ltd. 海思半导体有限公司|url=http://www.arm.com/community/partners/display_company/rw/company/hisilicon-technologies-co-ltd/|publisher=ARM Holdings|access-date=26 April 2013|archive-url=https://web.archive.org/web/20130115132900/http://www.arm.com/community/partners/display_company/rw/company/hisilicon-technologies-co-ltd/|archive-date=15 January 2013|url-status=dead}} ARM Cortex-A53, ARM Cortex-A57 and also for their Mali graphics cores.[http://www.arm.com/about/newsroom/arm-launches-cortex-a50-series-the-worlds-most-energy-efficient-64-bit-processors.php ARM Launches Cortex-A50 Series, the World's Most Energy-Efficient 64-bit Processors] {{Webarchive|url=https://web.archive.org/web/20130105105727/http://www.arm.com/about/newsroom/arm-launches-cortex-a50-series-the-worlds-most-energy-efficient-64-bit-processors.php |date=5 January 2013 }} on ARM.com{{cite web|last=Lai|first=Richard|title=Huawei's HiSilicon K3V3 chipset due 2H 2013, to be based on Cortex-A15|date=9 January 2013 |url=https://www.engadget.com/2013/01/08/huawei-hisilicon-k3v3/|publisher=Engadget|access-date=26 April 2013|archive-url=https://web.archive.org/web/20130515174722/http://www.engadget.com/2013/01/08/huawei-hisilicon-k3v3/|archive-date=15 May 2013|url-status=live}} HiSilicon has also purchased licenses from Vivante Corporation for their GC4000 graphics core.

HiSilicon is reputed to be the largest domestic designer of integrated circuits in China.{{cite news |title = Hisilicon grown into the largest local IC design companies |url = http://www.windosi.com/news/201209/395909.html |access-date = 26 April 2013 |newspaper = Windosi |date = September 2012 |archive-url = https://web.archive.org/web/20140821115038/http://www.windosi.com/news/201209/395909.html |archive-date = 21 August 2014 |url-status = live }} In 2020, the United States instituted rules that require any American firms providing equipment to HiSilicon or non-American firms who use American technologies or IPR (such as TSMC) that supply HiSilicon to have licenses{{Cite news|last=Josh|first=Horwitz|date=21 May 2020|title=U.S. strikes at a Huawei prize: chip juggernaut HiSilicon|work=Reuters|url=https://www.reuters.com/article/us-usa-huawei-tech-chips-analysis/u-s-strikes-at-a-huawei-prize-chip-juggernaut-hisilicon-idUSKBN22X2T3|url-status=live|access-date=22 May 2020|archive-url=https://web.archive.org/web/20200522233151/https://www.reuters.com/article/us-usa-huawei-tech-chips-analysis/u-s-strikes-at-a-huawei-prize-chip-juggernaut-hisilicon-idUSKBN22X2T3|archive-date=22 May 2020}} as part of the ongoing trade dispute, and Huawei announced it will stop producing its Kirin chipsets from 15 September 2020 onwards{{Cite news|date=8 August 2020|title=Huawei to stop making flagship chipsets as U.S. pressure bites, Chinese media say|language=en|work=Reuters|url=https://www.reuters.com/article/us-huawei-chip-idUSKCN2540HA|access-date=8 August 2020}} due to this disruption of its supply chain. On 29 August 2023, Huawei announced the first fully domestically fabricated chip, the Kirin 9000S, which is used on its latest Mate 60 Pro phablet series of phones and MatePad 13.2 tablets.

History

HiSilicon was Huawei's ASIC design center, which was founded in 1991.{{Cite journal |last=Qing |first=Lingli |last2=Chun |first2=Dongphil |last3=Xiong |first3=Peng |date=2022-12-01 |title=What Cultivates a Path of Disruptive Innovation within Semiconductor Latecomers? An Exploratory Case Study of HiSilicon |url=https://journals.sagepub.com/doi/10.1177/09717218221124884?icid=int.sj-abstract.citing-articles.13& |journal=Science, Technology and Society |language=en |volume=27 |issue=4 |pages=502–523 |doi=10.1177/09717218221124884 |issn=0971-7218}}

  • 2004– Shenzhen HiSilicon Semiconductor Co., Ltd. was registered and the company was formally established.
  • 2016– HiSilicon's Kirin 960 chipset was rated one of the "best of Android 2016" in performance by Android Authority.{{Cite web|date=29 December 2016|title=Best of Android 2016: Performance|url=https://www.androidauthority.com/best-android-2016-performance-738247/|access-date=18 May 2021|website=Android Authority|language=en-US}}
  • 2019– Shanghai HiSilicon, a wholly-owned subsidiary of Huawei, was established.{{Cite web|date=3 January 2020|title=HiSilicon No Longer Just an Internal Unit for Huawei|url=https://www.eetasia.com/hisilicon-no-longer-just-an-internal-unit-for-huawei/|access-date=18 May 2021|website=EE Times Asia|language=en}}

Smartphone application processors

File:Huawei P8 Lite 2017 - main board - HiSilicon Hi6250-6719.jpg

HiSilicon develops SoCs based on the ARM architecture. Though not exclusive, these SoCs see preliminary use in handheld and tablet devices of its parent company Huawei.

= K3V2 =

The first well known product of HiSilicon is the K3V2 used in Huawei Ascend D Quad XL (U9510) smartphones[http://armdevices.net/2012/03/17/brightsideofnews-com-huawei-u9510-ascend-d-quad-xl-benchmarked/ brightsideofnews.com: Huawei U9510 Ascend D Quad XL Benchmarked] {{Webarchive|url=https://web.archive.org/web/20130508144429/http://armdevices.net/2012/03/17/brightsideofnews-com-huawei-u9510-ascend-d-quad-xl-benchmarked/ |date=8 May 2013 }} on ARMdevices.net and Huawei MediaPad 10 FHD7 tablets. This chipset is based on the ARM Cortex-A9 MPCore fabbed at 40 nm and uses a 16 core Vivante GC4000 GPU.[http://www.anandtech.com/show/6572/hands-on-with-the-huawei-ascend-w1-ascend-d2-and-ascend-mate Hands On with the Huawei Ascend W1, Ascend D2, and Ascend Mate] {{Webarchive|url=https://web.archive.org/web/20190629114726/https://www.anandtech.com/show/6572/hands-on-with-the-huawei-ascend-w1-ascend-d2-and-ascend-mate |date=29 June 2019 }} on Anandtech The SoC supports LPDDR2-1066, but actual products are found with LPDDR-900 instead for lower power consumption.

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

K3V2 (Hi3620)

| 40 nm

| ARMv7

| Cortex-A9 L1: 32 KB instruction + 32 KB data, L2: 1 MB

41.4

| Vivante GC4000

240 MHz

(15.3GFlops)

| LPDDR2

64-bit dual-channel7.2 (up to 8.5)

| {{N/A}}

{{N/A}}{{N/A}}{{N/A}}

| Q1 2012

| {{Collapsible list

| Huawei MediaPad 10 FHD, Huawei Ascend D2 (U9510), Huawei Honor 2 (U9508), Huawei Ascend P6, Huawei Ascend P6S, Huawei Ascend P2, Huawei Ascend Mate, Lenovo A376, STREAM X (GSL07S)

}}

= K3V2E =

This is a revised version of K3V2 SoC with improved support of Intel baseband.

The SoC supports LPDDR2-1066, but actual products are found with LPDDR-900 instead for lower power consumption.

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

K3V2E (Hi3620)

| 40 nm

| ARMv7

| Cortex-A9 L1: 32 KB instruction + 32 KB data, L2: 1 MB

41.5

| Vivante GC4000

240 MHz

(15.3GFlops)

| LPDDR2

64-bit dual-channel7.2 (up to 8.5)

| {{N/A}}

{{N/A}}{{N/A}}{{N/A}}

| 2013

| {{Collapsible list

| Huawei Honor 3

}}

= Kirin 620 =

• supports – USB 2.0 / 13 MP / 1080p video encode

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

Kirin 620 (Hi6220){{Cite web|title=Hi6220V100 Multi-Mode Application Processor: Function Description |url=https://github.com/96boards/documentation/blob/master/consumer/hikey/hikey620/hardware-docs/Hi6220V100_Multi-Mode_Application_Processor_Function_Description.pdf|date=29 December 2014 |website=96Boards' github}}

| 28 nm

| ARMv8-A

| Cortex-A53

| 8{{Cite web|title=Kirin 620|url=https://www.hisilicon.com/en/products/Kirin/Mid-range-and-high-end/Kirin%20620|access-date=10 April 2021|website=www.hisilicon.com}}

| 1.2

| Mali-450 MP4

| 500 MHz (32GFlops)

| LPDDR3 (800 MHz)

32-bit single-channel6.4

| {{N/A}}

| Dual SIM LTE Cat.4 (150 Mbit/s)

{{N/A}}{{N/A}}

| Q1 2015

| {{Collapsible list

| Huawei P8 Lite, Honor 4X, Honor 4C, Huawei G Play Mini, Honor Holly 3, Y6ll, 96Boards HiKey

}}

= Kirin 650, 655, 658, 659 =

class="wikitable"
rowspan="2" | Model number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling
availability

! rowspan="2" | Devices using

ISA

! μarch

! Cores

! Freq (GHz)

! μarch

! Freq
(MHz)

! Type

! Bus
width
(bit)

! Band
width

(GB/s)

! Cellular

! WLAN

! PAN

Kirin 650 (Hi6250)

| rowspan="4" | 16 nm
FinFET+

| rowspan="4" | ARM
v8-A

| rowspan="4" | Cortex-A53
Cortex-A53

| rowspan="4" | 4+4

| 2.0 (4x A53)
1.7 (4x A53)

| rowspan="4" | Mali-T830
MP2

| rowspan="4" | 900 MHz
(40.8 GFlops)

| rowspan="4" | LPDDR3
(933 MHz)

rowspan="4" | 64-bit
dual-channel
(2x 32-bit) {{Cite web |url=http://www.notebookcheck.net/HiSilicon-Kirin-650-SoC-Benchmarks-and-Specs.167874.0.html |title=HiSilicon Kirin 650 SoC – Benchmarks and Specs |website=www.notebookcheck.net |language=en |access-date=4 February 2017 |archive-url=https://web.archive.org/web/20170205181634/http://www.notebookcheck.net/HiSilicon-Kirin-650-SoC-Benchmarks-and-Specs.167874.0.html |archive-date=5 February 2017 |url-status=live}}
| rowspan="4" | A-GPS, Glonass

| rowspan="4" | Dual SIM LTE Cat.6 (300 Mbit/s)

rowspan="2" | 802.11nrowspan="3" | Bluetooth 4.1

| Q2 2016

| {{Collapsible list

| Huawei P9 Lite

| Honor 5C }}

Kirin 655

| 2.12 (4x A53)
1.7 (4x A53)

| Q4 2016

| {{Collapsible list

| Huawei Mate9 Lite,

| Huawei Honor 6X,

| P8 Lite (2017),

| Honor 8 Lite

}}

Kirin 658

| 2.35 (4x A53)
1.7 (4x A53)

| 802.11ac

| Q2 2017

| {{Collapsible list

| P10 Lite

}}

= Kirin 710 =

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

Kirin 710 (Hi6260)

| rowspan="2" | TSMC 12 nm FinFET

| rowspan="3" | ARMv8-A

| rowspan="3" | Cortex-A73
Cortex-A53

| rowspan="3" | 4+4

| rowspan="2" | 2.2 (A73)

1.7 (A53)

| rowspan="3" | Mali-G51 MP4

| rowspan="3" | 1000 MHz
(64 GFLOPS in FP32)

| rowspan="3" | LPDDR3 LPDDR4

rowspan="3" | 32-bitrowspan="3" |

| rowspan="3" | A-GPS, GLONASS

| rowspan="3" | Dual SIM LTE Cat.12 (600 Mbit/s)

rowspan="3" | 802.11 b/g/nrowspan="3" | Bluetooth v4.2

| Q3 2018

| {{Collapsible list

| Huawei Nova 3i, Honor 10 Lite, Huawei P Smart+, Huawei P Smart 2019, Huawei Mate 20 Lite, Honor 8X, Huawei Y9 (2019), Huawei P30 Lite,Huawei Y9 Prime 2019, Huawei Y9s, Huawei Mate 20 Lite, Honor 20i

}}

Kirin 710F{{Cite web|last=Mallick|first=Subhrojit|date=18 January 2020|title=Is the Kirin 710F in the Honor 9X any different from the Kirin 710? {{!}} Digit|url=https://www.digit.in/features/mobile-phones/is-the-kirin-710f-in-the-honor-9x-any-different-from-the-kirin-710-51873.html|access-date=2 July 2020|website=digit.in|language=en}}

|

|{{Collapsible list

| title = |Honor 9X, Huawei P40 lite E, Huawei Y8p

}}
Kirin 710A

|SMIC 14 nm FinFET{{Cite web|date=13 May 2020|title=Huawei HiSilicon's new 14nm Kirin 710A chip was manufactured by Shanghai-based SMIC|url=https://www.xda-developers.com/huawei-hisilicon-14-nm-kirin-710a-chip-manufactured-shanghai-based-simc/|access-date=2 July 2020|website=xda-developers|language=en-US}}

|2.0 (A73)

1.7 (A53)

|

|{{Collapsible list

| title = |Honor Play 4T, Huawei P smart 2021, Huawei Nova Y70, Huawei Nova Y71, Huawei Nova Y72, Huawei MatePad SE 11

|

}}

= Kirin 810 and 820 =

  • DaVinci NPU based on Tensor Arithmetic Unit
  • Kirin 820 supported 5G NSA & SA

class="wikitable"
rowspan="2" | Model number

! rowspan="2" |Fab

! colspan="4" |CPU

! colspan="2" |GPU

! colspan="3" | Memory technology

! rowspan="2" |Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling
availability

! rowspan="2" | Devices using

ISA

!μarch

! Cores

! Freq (GHz)

!μarch

! Freq
(MHz)

! Type

! Bus
width
(bit)

!Band
width

(GB/s)

!Cellular

!WLAN

!PAN

Kirin 810
(Hi6280)

| rowspan="3" | 7 nm
FinFET

| rowspan="3" |ARM
v8.2-A

| rowspan="3" |Cortex-A76
Cortex-A55
(big.LITTLE)

| rowspan="1" | 2+6

| 2.27 (2x A76)
1.90 (6x A55)

| rowspan="1" | Mali-G52
MP6

| rowspan="1" | 820 MHz
(157.4 GFLOPS in FP32)

| rowspan="3" |LPDDR4X
(2133 MHz)

rowspan="3" |64-bit (16-bit
quad-channel)

| rowspan="3" | 31.78

| rowspan="3" | A-GPS, Glonass, BDS

| rowspan="1" | Dual SIM LTE Cat.12
(600 Mbit/s)

rowspan="1" | 802.11acrowspan="1" | Bluetooth 5.0

| Q2 2019

| {{ Collapsible list

|

  • Huawei Nova 5
  • Huawei Honor 9x
  • Huawei Honor 9x Pro
  • Huawei Mate 30 Lite
  • Huawei P40 Lite
  • Huawei Nova 7i
  • Huawei nova 6 SE
  • Huawei P smart Pro 2019
  • Huawei nova 5z
  • Huawei nova 5i Pro
  • Huawei Honor 20S
  • Huawei MatePad 10.4

}}

Kirin 820 5G
(Hi6290L V100)

| (1+3)+4

| 2.36 (1x A76 H)
2.22 (3x A76 L)
1.84 (4x A55)

| Mali-G57 MP6

|

| Balong 5000 (Sub-6 GHz Only; NSA & SA)

|

|

| Q1 2020

|{{ Collapsible list

|

  • Honor 30S
  • Honor X10 5G

}}

Kirin 820E 5G

| 3+3

| 2.22 (4x A76 L)
1.84 (4x A55)

| Mali-G57 MP6

|

| Balong 5000 (Sub-6 GHz Only; NSA & SA)

|

|

| Q1 2021

|{{ Collapsible list }}

= Kirin 8000 =

HiSilicon Kirin 8000 is a mid-range Kirin 8 series chip not officially announced, however, it was released along with the announcement of Huawei nova 12.[https://reameizu.com/huawei-secretly-introduces-kirin-8000-to-market/ Huawei、秘密裏にKirin 8000を市場に投入]

class="wikitable"
rowspan="2" | Model number

! rowspan="2" |Fab

! colspan="4" |CPU

! colspan="2" |GPU

! colspan="3" | Memory technology

! rowspan="2" |Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling
availability

! rowspan="2" | Devices using

ISA

!μarch

! Cores

! Freq (GHz)

!μarch

! Freq
(MHz)

! Type

! Bus width (bit)

!Band
width

(GB/s)

!Cellular

!WLAN

!PAN

Kirin 8000
(Hi6290V110)

| rowspan="3" | SMIC N+2
7 nm FinFET

| rowspan="3" |ARM
v8.2-A

| rowspan="3" |Cortex-A77
Cortex-A55
(big.LITTLE)

| rowspan="2" | 1+3+4

| rowspan="2" | 2.40 (1x A77 H)
2.19 (3x A77 L)
1.84 (4x A55)

| rowspan="2" | Mali-G610
MP4

| rowspan="2" | 864 MHz

| rowspan="3" |LPDDR4X
-4266

rowspan="3" |64-bit (16-bit
quad-channel)

| rowspan="3" | 51.2

| rowspan="3" | GPS, A-GPS, Glonass, BeiDou, Galileo, QZSS

| rowspan="2" | Balong modem

rowspan="2" | Wi-Fi 6
(802.11ax)
rowspan="2" | Bluetooth 5.2

| Q2 2019

| {{ Collapsible list

|

  • Huawei Nova 12
  • Huawei Nova 12 Pro
  • Huawei Nova Flip

}}

Kirin T80
(Hi6290V110)

| Q1 2025

| Huawei MatePad 11.5 PaperMatte (2025)

= Kirin 910 and 910T =

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

Kirin 910 (Hi6620)

| rowspan="2" | 28 nm HPM

| rowspan="2" | ARMv7

| rowspan="2" | Cortex-A9

rowspan="2" | 41.6

| rowspan="2" | Mali-450 MP4

533 MHz

(32GFlops)

| rowspan="2" | LPDDR3

rowspan="2" | 32-bit single-channelrowspan="2" | 6.4

| {{N/A}}

| rowspan="2" | LTE Cat.4

{{N/A}}{{N/A}}

| H1 2014

| {{Collapsible list

| HP Slate 7 VoiceTab Ultra, Huawei MediaPad X1,{{cite web|url=http://www.hitmobile.pk/phones/huawei/mediapad-m1/ |title=Huawei MediaPad X1 |publisher=DeviceSpecifications |access-date=14 March 2014 |url-status=dead |archive-url=https://web.archive.org/web/20140723011936/http://www.hitmobile.pk/phones/huawei/mediapad-m1/ |archive-date=23 July 2014 }} Huawei P6 S,{{cite web |url=http://www.vmall.com/product/883.html#1382/ |title=Huawei P6 S |publisher=Huawei |access-date=12 June 2014 |archive-url=https://web.archive.org/web/20140622160550/http://www.vmall.com/product/883.html#1382/ |archive-date=22 June 2014 |url-status=dead }} Huawei MediaPad M1,{{cite web|url=http://www.hitmobile.pk/phones/huawei/mediapad-x1/ |title=Huawei MediaPad M1 |publisher=DeviceSpecifications |access-date=14 March 2014 |url-status=dead |archive-url=https://web.archive.org/web/20150429204120/http://www.hitmobile.pk/phones/huawei/mediapad-x1/ |archive-date=29 April 2015 }} Huawei Honor 3C 4G

}}

Kirin 910T

| 1.8

| 700 MHz

(41.8GFlops)

| {{N/A}}

{{N/A}}{{N/A}}

| H1 2014

| {{Collapsible list

| Huawei Ascend P7

}}

= Kirin 920, 925 and 928 =

• The Kirin 920 SoC also contains an image processor that supports up to 32-megapixel

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

Kirin 920

| rowspan="3" | 28 nm HPM

| rowspan="3" | ARMv7

| rowspan="3" | Cortex-A15
Cortex-A7
big.LITTLE

rowspan="3" | 4+41.7 (A15)
1.3 (A7)

| rowspan="3" | Mali-T628 MP4

rowspan="2" | 600 MHz

(76.8GFlops)

| rowspan="3" | LPDDR3 (1600 MHz)

rowspan="3" | 64-bit dual-channelrowspan="3" | 12.8

| {{N/A}}

| rowspan="3" | LTE Cat.6 (300 Mbit/s)

{{N/A}}{{N/A}}

| H2 2014

| {{Collapsible list

| Huawei Honor 6{{cite web |url = http://www.devicespecifications.com/en/model/6dee2d53 |title = Huawei Honor 6 |publisher = DeviceSpecifications |access-date = 25 June 2014 |archive-url = https://web.archive.org/web/20140627131315/http://www.devicespecifications.com/en/model/6dee2d53 |archive-date = 27 June 2014 |url-status = dead }}

}}

Kirin 925 (Hi3630)

| 1.8 (A15)
1.3 (A7)

| {{N/A}}

{{N/A}}{{N/A}}

| Q3 2014

| {{Collapsible list

| Huawei Ascend Mate7

| Huawei Honor 6 Plus

}}

Kirin 928

|2.0 (A15)
1.3 (A7)

| {{N/A}}

{{N/A}}

| {{N/A}}

| {{N/A}}

|

| {{Collapsible list

| Huawei Honor6 extreme Edition

}}

= Kirin 930 and 935 =

• supports – SD 3.0 (UHS-I) / eMMC 4.51 / Dual-band a/b/g/n Wi-Fi / Bluetooth 4.0 Low Energy / USB 2.0 / 32 MP ISP / 1080p video encode

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

Kirin 930 (Hi3635)

| rowspan="2" | 28 nm HPC

| rowspan="2" | ARMv8-A

| rowspan="2" | Cortex-A53
Cortex-A53

| rowspan="2" | 4+4

| 2.0 (A53)
1.5 (A53)

| rowspan="2" | Mali-T628 MP4

| 600 MHz

(76.8GFlops)

| rowspan="2" | LPDDR3 (1600 MHz)

rowspan="2" | 64-bit(2x32-bit) Dual-channelrowspan="2" | 12.8 GB/s

| {{N/A}}

| rowspan="2" | Dual SIM LTE Cat.6 (DL:300 Mbit/s UP:50 Mbit/s)

{{N/A}}{{N/A}}

| Q1 2015

| {{Collapsible list

| Huawei MediaPad X2,

| Huawei P8,

| Huawei MediaPad M2,

}}

Kirin 935

| 2.2 (A53)
1.5 (A53)

| 680 MHz

(87GFlops)

| {{N/A}}

{{N/A}}{{N/A}}

| Q1 2015

| {{Collapsible list

| Huawei P8 MAX,

| Honor 7,

| Huawei Mate S

}}

= Kirin 950 and 955 =

• supports – SD 4.1 (UHS-II) / UFS 2.0 / eMMC 5.1 / MU-MIMO 802.11ac Wi-Fi / Bluetooth 4.2 Smart / USB 3.0 / NFS / Dual ISP (42 MP) / Native 10-bit 4K video encode / i5 coprocessor / Tensilica HiFi 4 DSP

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

Kirin 950 (Hi3650)

| rowspan="2" | TSMC 16 nm FinFET+{{Cite web |url=http://www.gizmochina.com/2015/03/12/huawei-ascend-mate-8honor-7s-kirin-940950-processor-performance-specs/ |title=Huawei Ascend Mate 8/Honor 7's Kirin 940/950 Processor Performance & Specs |access-date=13 May 2015 |archive-url=https://web.archive.org/web/20150316184401/http://www.gizmochina.com/2015/03/12/huawei-ascend-mate-8honor-7s-kirin-940950-processor-performance-specs/ |archive-date=16 March 2015 |url-status=dead }}

| rowspan="2" | ARMv8-A

| rowspan="2" | Cortex-A72
Cortex-A53
big.LITTLE

| rowspan="2" | 4+4

| 2.3 (A72)
1.8 (A53)

| rowspan="2" | Mali-T880 MP4

| rowspan="2" | 900 MHz

(168 GFLOPS FP32)

| LPDDR4

rowspan="2" | 64-bit(2x32-bit) Dual-channelrowspan="2" | 25.6

| {{N/A}}

| rowspan="2" | Dual SIM LTE Cat.6

{{N/A}}{{N/A}}

| Q4 2015

| {{Collapsible list

| Huawei Mate 8, Huawei Honor V8 32 GB, Huawei Honor 8, Huawei Honor Magic, Huawei MediaPad M3 (BTV-W09){{cite web|title=HUAWEI MediaPad M3 8.0|url=http://consumer.huawei.com/en/tablets/mediapad-m3-8/index.htm|website=Huawei-Consumer|publisher=Huawei|access-date=18 January 2017|language=en|archive-url=https://web.archive.org/web/20161120223658/http://consumer.huawei.com/en/tablets/mediapad-m3-8/index.htm|archive-date=20 November 2016|url-status=live}}

}}

Kirin 955{{Cite web |url=http://anandtech.com/show/10231/huawei-launches-the-p9-and-p9-plus |title=Kirin 955, Huawei P9, P9 Plus |access-date=7 April 2016 |archive-url=https://web.archive.org/web/20160409034251/http://www.anandtech.com/show/10231/huawei-launches-the-p9-and-p9-plus |archive-date=9 April 2016 |url-status=live }}

| 2.5 (A72)
1.8 (A53)

| LPDDR3 (3 GB) LPDDR4 (4 GB)

| {{N/A}}

{{N/A}}{{N/A}}

| Q2 2016

| {{Collapsible list

| Huawei P9, Huawei P9 Plus, Honor Note 8, Honor V8 64 GB

}}

= Kirin 960 =

  • Interconnect: ARM CCI-550, Storage: UFS 2.1, eMMC 5.1, Sensor Hub: i6

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

Kirin 960 (Hi3660){{cite web |url=http://www.anandtech.com/show/10766/huawei-announces-hisilicon-kirin-960-a73-g71 |title=Huawei announces the HiSilicon Kirin 960: 4xA73 + 4xA53, G71MP8, CDMA |publisher=AnandTech |date=19 October 2016 |access-date=19 October 2016 |archive-url=https://web.archive.org/web/20161020040121/http://www.anandtech.com/show/10766/huawei-announces-hisilicon-kirin-960-a73-g71 |archive-date=20 October 2016 |url-status=live }}

| TSMC 16 nm FFC

| ARMv8-A

| Cortex-A73
Cortex-A53
big.LITTLE

| 4+4

| 2.36 (A73)
1.84 (A53)

| Mali-G71 MP8

| 1037 MHz
(199.1 GFLOPS in FP32)

| LPDDR4-1600

64-bit(2x32-bit) Dual-channel28.8

| {{N/A}}

| Dual SIM LTE Cat.12 LTE 4x CA, 4x4 MIMO

{{N/A}}{{N/A}}

| Q4 2016

| {{Collapsible list

| Huawei Mate 9, Huawei Mate 9 Porsche Design, Huawei Mate 9 Pro, Huawei P10, Huawei P10 Plus, Huawei Nova 2s, Honor 8 Pro (Honor V9), Honor 9, Huawei MediaPad M5

}}

= Kirin 970 =

  • Interconnect: ARM CCI-550, Storage: UFS 2.1, Sensor Hub: i7
  • Cadence Tensilica Vision P6 DSP.{{Cite web|url=https://www.anandtech.com/show/12195/hisilicon-kirin-970-power-performance-overview|title=HiSilicon Kirin 970 – Android SoC Power & Performance Overview|last=Frumusanu|first=Andrei|website=www.anandtech.com|access-date=28 January 2019|archive-url=https://web.archive.org/web/20190128194055/https://www.anandtech.com/show/12195/hisilicon-kirin-970-power-performance-overview|archive-date=28 January 2019|url-status=live}}
  • NPU made in collaboration with Cambricon Technologies. 1.92T FP16 OPS.{{Cite web|url=https://www.anandtech.com/show/12815/cambricon-makers-of-huaweis-kirin-npu-ip-build-a-big-ai-chip-and-pcie-card|title=Cambricon, Makers of Huawei's Kirin NPU IP, Build A Big AI Chip and PCIe Card|last=Cutress|first=Ian|website=www.anandtech.com|access-date=28 January 2019|archive-url=https://web.archive.org/web/20190128135610/https://www.anandtech.com/show/12815/cambricon-makers-of-huaweis-kirin-npu-ip-build-a-big-ai-chip-and-pcie-card|archive-date=28 January 2019|url-status=live}}

class="wikitable"
rowspan="2" | Model Number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory Technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling availability

! rowspan="2" | Devices using

ISA

! Microarchitecture

! Cores

! Frq (GHz)

! Microarchitecture

! Frq (MHz)

! Type

! Bus width (bit)

! Bandwidth (GB/s)

! Cellular

! WLAN

! PAN

Kirin 970 (Hi3670)

| TSMC 10 nm FinFET+

| ARMv8-A

| Cortex-A73
Cortex-A53
big.LITTLE

| 4+4

| 2.36 (A73)
1.84 (A53)

| Mali-G72 MP12

| 746 MHz
(214.8 GFLOPS in FP32)

| LPDDR4X-1866

64-bit(4x16-bit) Quad-channel29.8

| Galileo

| Dual SIM LTE Cat.18 LTE 5x CA, No 4x4 MIMO

{{N/A}}{{N/A}}

| Q4 2017

| {{Collapsible list

| Huawei Nova 3

| Huawei P20

| Huawei P20 Pro

| Huawei Mate 10

| Huawei Mate 10 Pro

| Huawei Mate 10 Porsche Design

| Huawei Mate RS Porsche Design

| Honor V10/ Honor View 10

| Honor 10

| Honor Note 10

| Honor Play

}}

= Kirin 980 and Kirin 985 5G/4G=

Kirin 980 is HiSilicon's first SoC based on 7 nm FinFET technology.

  • Interconnect: ARM Mali G76-MP10, Storage: UFS 2.1, Sensor Hub: i8
  • Dual NPU made in collaboration with Cambricon Technologies.

Kirin 985 5G is the second Hisilicon's 5G SoC based on 7 nm FinFET Technology.

  • Interconnect: ARM Mali-G77 MP8, Storage UFS 3.0
  • Big-Tiny Da Vinci NPU: 1x Da Vinci Lite + 1x Da Vinci Tiny

class="wikitable"
rowspan="2" | Model number

! rowspan="2" | Fab

! colspan="4" | CPU

! colspan="2" | GPU

! colspan="3" | Memory technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling
availability

! rowspan="2" | Devices using

ISA

! μarch

! Cores

! Freq (GHz)

! μarch

! Freq
(MHz)

! Type

! Bus
width
(bit)

! Band
width

(GB/s)

! Cellular

! WLAN

! PAN

Kirin 980

| rowspan="2" | TSMC 7 nm
FinFET

| rowspan="2" | ARM
v8.2-A

| rowspan="2" | Cortex-A76
Cortex-A55
(big.LITTLE)

| (2+2)+4

| 2.6 (A76 H)
1.92 (A76 L)
1.8 (A55)

| Mali-G76
MP10 {{Cite web |url=https://www.notebookcheck.net/ARM-Mali-G76-MP10-Graphics-Card.338068.0.html|title=ARM Mali-G76 MP10 |last=Hinum |first=Klaus (12 October 2018) |website=Notebookcheck |access-date=3 December 2018 |archive-url=https://web.archive.org/web/20181204103812/https://www.notebookcheck.net/ARM-Mali-G76-MP10-Graphics-Card.338068.0.html |archive-date=4 December 2018 |url-status=live}}

| 720 MHz
(345.6 GFLOPS in FP32)

| rowspan="2" | LPDDR4X
-2133

rowspan="2" | 64-bit (4x16-bit)
Quad-channel
rowspan="2" | 34.1

| rowspan="2" | Galileo

| Dual SIM LTE Cat.21 LTE 5x CA, No 4x4 MIMO

{{N/A}}{{N/A}}

| Q4 2018

| {{Collapsible list

| title = |Huawei Mate 20|Huawei Mate 20 Pro|Huawei Mate 20 RS Porsche Design|Huawei Mate 20 X|Honor Magic 2|Honor View 20/V20|Honor 20|Honor 20 Pro|Huawei P30|Huawei P30 Pro|Huawei Nova 5 Pro|Huawei MediaPad M6|Huawei Nova 5T}}

Kirin 985 5G/4G
(Hi6290V110)

|(1+3)+4

|2.58 (A76 H)
2.40 (A76 L)
1.84 (A55)

|Mali-G77 MP8

|700 MHz
(358.4 GFLOPS in FP32)

|rowspan="2"|Balong 5000 (Sub-6 GHz only; NSA & SA), 4G version available

|{{N/A}}

|{{N/A}}

|rowspan="2"|Q2 2020

| {{Collapsible list

| title= |Honor 30|Honor V6|Huawei nova 7 5G|Huawei nova 7 Pro 5G|Huawei nova 8 5G|Huawei nova 8 Pro 5G

}

|-

|}

= Kirin 990 4G, Kirin 990 5G and Kirin 990E 5G=

Kirin 990 5G is HiSilicon's first 5G SoC based on N7 nm+ FinFET technology.{{Cite web|url=http://www.hisilicon.com/en/Products/ProductList/Kirin|title=Kirin|website=www.hisilicon.com|access-date=21 September 2019|archive-url=https://web.archive.org/web/20191002230707/http://www.hisilicon.com/en/Products/ProductList/Kirin|archive-date=2 October 2019|url-status=live}}

  • Interconnect
  • Kirin 990 4G: ARM Mali-G76 MP16
  • Kirin 990 5G: ARM Mali-G76 MP16
  • Kirin 990E 5G: ARM Mali-G76 MP14
  • Da Vinci NPU.
  • Kirin 990 4G: 1x Da Vinci Lite + 1x Da Vinci Tiny
  • Kirin 990 5G: 2x Da Vinci Lite + 1x Da Vinci Tiny
  • Kirin 990E 5G: 1x Da Vinci Lite + 1x Da Vinci Tiny
  • Da Vinci Lite features 3D Cube Tensor Computing Engine (2048 FP16 MACs + 4096 INT8 MACs), Vector unit (1024bit INT8/FP16/FP32)
  • Da Vinci Tiny features 3D Cube Tensor Computing Engine (256 FP16 MACs + 512 INT8 MACs), Vector unit (256bit INT8/FP16/FP32)

class="wikitable"
rowspan="2" | Model number

! rowspan="2" |Fab

! colspan="4" |CPU

! colspan="2" |GPU

! colspan="3" | Memory technology

! rowspan="2" |Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling
availability

! rowspan="2" | Devices using

ISA

!μarch

! Cores

! Freq (GHz)

!μarch

! Freq
(MHz)

! Type

! Bus
width
(bit)

!Band
width

(GB/s)

!Cellular

!WLAN

!PAN

Kirin 990 4G

| TSMC 7 nm
FinFET (DUV)

| rowspan="3" |ARM
v8.2-A

| rowspan="3" |Cortex-A76
Cortex-A55
(big.LITTLE)

| rowspan="3" | (2+2)+4

| 2.86 (A76 H)
2.09 (A76 L)
1.86 (A55)

| rowspan="2" | Mali-G76
MP16

| rowspan="2" | 600 MHz
(460.8 GFLOPS in FP32)

| rowspan="3" |LPDDR4X
-2133

rowspan="3" | 64-bit (4x16-bit)
Quad-channel
rowspan="3" | 34.1

| rowspan="3" | Beidou, Galileo, Glonass

| Balong 765 (LTE Cat.19)

{{N/A}}{{N/A}}

| rowspan="2" | Q4 2019

| {{Collapsible list

| Huawei Mate 30

| Huawei Mate 30 Pro

| Huawei P40 4G

| Huawei Nova 6

| Huawei Nova 6 5G

| Honor V30

| Honor Play4 Pro

| Huawei MatePad Pro (WiFi/4G) (2019–2020)

}}

Kirin 990 5G

| rowspan="2+| TSMC 7 nm+
FinFET (EUV)

| rowspan="2" | 2.86 (A76 H)
2.36 (A76 L)
1.95 (A55)

| rowspan="2" | Balong 5000 (Sub-6-GHz only; NSA & SA)

{{N/A}}

| {{N/A}}

| {{Collapsible list

| title = |Huawei Mate 30 5G|Huawei Mate 30 Pro 5G|Huawei Mate 30 RS Porche Design|Huawei P40|Huawei P40 Pro|Huawei P40 Pro+|Honor V30 Pro|Huawei MatePad Pro 5G (2020)|Honor 30 Pro|Honor 30 Pro+

}}

Kirin 990E 5G

|Mali-G76 MP14

|600 MHz
(403.2 GFLOPS in FP32)

|{{N/A}}

|{{N/A}}

|Q4 2020

| {{Collapsible list|Huawei Mate 30E Pro 5G|Huawei Mate 40E (4G/5G)}}

= Kirin 9000 5G/4G and Kirin 9000E, Kirin 9000L =

Kirin 9000 is HiSilicon's first SoC based on 5 nm+ FinFET (EUV) TSMC technology (N5 node) and the first 5 nm SoC to be launched on the international market.{{cite web|url=https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-9000|title=Kirin 9000|website=www.hisilicon.com|access-date=16 September 2021}} This octa-core system on a chip is based on the 9th Gen of the HiSilicon Kirin series and is equipped with 15.3 billion transistors in a 1+3+4 core configuration: 4 Arm Cortex-A77 CPU (1x 3.13 GHz and 3x 2.54 GHz), 4 Arm Cortex-A55 (4x 2.05 GHz) and a 24-core Mali-G78 GPU (22-core in the Kirin 9000E version) The Kirin 9000L uses a 1+2+3 core configuration: 3 Arm Cortex-A77 (1x 3.13 GHz and 2x 2.54 GHz), 3 Arm Cortex-A55 (3x 2.05 GHz) and a 22-core Mali-G78 GPU with Kirin Gaming+ 3.0 implementation.

The integrated quad pipeline NPU (Dual Big Core + 1 Tiny Core configuration) is equipped with the Kirin ISP 6.0 to support advanced computational photography. The Huawei Da Vinci Architecture 2.0 for AI supports 2x Ascend Lite + 1x Ascend Tiny (only 1 Lite in 9000E/L). The system cache is 8 MB and the SoC works with the new LPDDR5/4X memories (made by Samsung in the Huawei Mate 40 series). Due to the integrated 3rd generation 5G proprietary modem "Balong 5000", Kirin 9000 supports 2G, 3G, 4G and 5G SA & NSA Sub-6 GHz connectivity. The SoC's TDP is 6W.

The 2021 4G version of the Kirin 9000 has the Balong modem limited via software to comply with the ban imposed on Huawei by the US government for non-chinese 5G technologies. The Kirin 9006C is a rebranded variant of the Kirin 9000E for the Huawei Qingyun L420 and L540 laptops.{{cite web |last1=Shilov |first1=Anton |title=Huawei's 5nm Kirin 9006C laptop chip was reportedly produced by TSMC in 2020, dispelling production rumors at Chinese fab SMIC |url=https://www.tomshardware.com/tech-industry/semiconductors/huaweis-5nm-kirin-9006c-laptop-chip-was-reportedly-produced-by-tsmc-in-2020-dispelling-smic-production-rumors |website=tom's HARDWARE |date=5 January 2024 |access-date=6 February 2024}}{{cite web |last1=AleksandarK |title=Huawei Prepares Laptop Powered by Custom Kirin 5 nm SoC and DDR5 Memory |url=https://www.techpowerup.com/289685/huawei-prepares-laptop-powered-by-custom-kirin-5-nm-soc-and-ddr5-memory |website=TechPowerUp |date=7 December 2021 |access-date=6 February 2024}}

  • GPU
  • Kirin 9000L: ARM Mali-G78 MP22
  • Kirin 9000E: ARM Mali-G78 MP22
  • Kirin 9000: ARM Mali-G78 MP24
  • Da Vinci NPU architecture 2.0
  • Kirin 9000L: 1x Big Core + 1x Tiny Core
  • Kirin 9000E: 1x Big Core + 1x Tiny Core
  • Kirin 9000: 2x Big Cores + 1x Tiny Core

class="wikitable"
rowspan="2" | Model number

! rowspan="2" |Fab

! colspan="4" |CPU

! colspan="2" |GPU

! colspan="3" | Memory technology

! rowspan="2" |Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling
availability

! rowspan="2" | Devices using

ISA

!μarch

! Cores

! Freq (GHz)

!μarch

! Freq
(MHz)

! Type

! Bus
width
(bit)

!Band
width

(GB/s)

!Cellular

!WLAN

!PAN

Kirin 9000L

| rowspan="3" |TSMC 5 nm+
FinFET (EUV)

| rowspan="3" |ARM
v8.2-A

| rowspan="3" |Cortex-A77
Cortex-A55
(big.LITTLE)

|(1+2)+3

| rowspan="3" |3.13 (A77 H)
2.54 (A77 L)
2.05 (A55)

| rowspan="2" |Mali-G78
MP22

| rowspan="2" |759 MHz
(1068.7 GFLOPS in FP32)

| rowspan="3" |LPDDR4X
-2133
LPDDR5
-2750

| rowspan="3" |64-bit (4x16-bit)
Quad-channel

| rowspan="3" |34.1 (LPDDR4X)
44 (LPDDR5)

| rowspan="3" |Beidou, Galileo, Glonass

|Balong 5000 (Sub-6-GHz only; NSA & SA)

|Wi-Fi 6

|

| rowspan="3" |Q4 2020

|Huawei Mate 40E Pro

Kirin 9000E

| rowspan="2" | (1+3)+4

| rowspan="2" | Balong 5000 (Sub-6-GHz only; NSA & SA), 4G version available

{{N/A}}{{N/A}}

| {{Collapsible list

| Huawei Mate 40| Huawei MatePad Pro 12.6

}}

Kirin 9000
(Hi36A0V101)

| Mali-G78
MP24

|759 MHz
(1165.8 GFLOPS in FP32)

|Wi-Fi 6

|

|
{{Collapsible list

| title = |Huawei Mate 40 Pro|Huawei Mate 40 Pro+|Huawei Mate 40 RS Porsche Design|Huawei P50 Pro|Huawei Mate X2}}

= Kirin 9000S, Kirin 9010, Kirin 9020 series=

The Kirin 9000S, Kirin 9000S1, and Kirin 9010 of the Kirin 9000 Hi36A0 family are the first HiSilicon-developed SoCs manufactured in high volumes in mainland China by SMIC. The SoC had its debut with the Huawei Mate 60 in late 2023 with the Kirin 9000S alongside overclocked enhancements of the Kirin 9000S1 and Kirin 9010 with the Huawei Pura 70 series in early 2024.{{Cite web |date=2024-04-18 |title=Huawei Pura 70 series of smartphones launched - TechCentral |url=https://techcentral.co.za/huawei-pura-70-specs-series-smartphones/243131/ |access-date=2024-04-18 |language=en-US}} According to Tom's Hardware, the Taishan V120 core, developed by HiSilicon, was roughly on par with AMD's Zen 3 cores from late 2020.{{Cite web |author1=Matthew Connatser |date=2024-02-25 |title=Huawei's new CPU matches Zen 3 in single-core performance - HiSilicon Taishan V120 server CPU benchmark |url=https://www.tomshardware.com/pc-components/cpus/huaweis-new-cpu-matches-zen-3-in-single-core-performance-hisilicon-taishan-v120-server-cpu-benchmark |access-date=2024-04-03 |website=Tom's Hardware |language=en}} Four of these cores were used in the 9000 series alongside four efficiency-focused Arm Cortex-A510 cores.{{Cite web |author1=Anton Shilov |date=2023-09-03 |title=Huawei's New Mystery 7nm Chip from Chinese Fab Defies US Sanctions |url=https://www.tomshardware.com/news/huaweis-new-mystery-7nm-chip-from-chinese-fab-defies-us-sanctions |access-date=2024-04-03 |website=Tom's Hardware |language=en}} The SoCs are based on SMIC's 7nm technology node, referred to as "N+2". It also includes 1 Da Vinci "big" NPU core and 1 Da Vinci "small" NPU core. Kirin 9000W, a Wi-Fi only SoC for the Huawei MatePad Pro 13.2 Wi-Fi only model, debuted in global markets in Q1 2024. The Kirin 9010 and Kirin 9000S1 debuted in Q2 2024, using a modified 2+6+4 core configuration with a new large Taishan core with the same configurations of medium and small cores from the Kirin 9000S with faster enhancements over the Kirin 9000S.{{Cite web |last=Sohail |first=Omar |date=2024-04-18 |title=Kirin 9010 Is Huawei's Latest Smartphone SoC With A 12-core CPU Cluster, Is Regarded As A Faster Variant To The Kirin 9000S, Lithography Unknown |url=https://wccftech.com/kirin-9010-specifications-shared-upgraded-version-of-kirin-9000s/ |access-date=2024-04-21 |website=Wccftech |language=en-US}}

class="wikitable"
rowspan="2" | Model number

! rowspan="2" | Fab

! colspan="5" | CPU

! colspan="2" | GPU

! colspan="3" | Memory technology

! rowspan="2" | Nav

! colspan="3" | Wireless

! rowspan="2" | Sampling
availability

! rowspan="2" | Devices using

ISA

! μarch

! Cores
(total)

! Threads
(total)

! Freq (GHz)

! μarch

! Freq (MHz)

! Type

! Bus
width
(bit)

! Band
width

(GB/s)

! Cellular

! WLAN

! PAN

Kirin 9000S
(Hi36A0V120)

| rowspan="17" | SMIC
7 nm
FinFET {{Cite web |last=NanoReview.net |title=HiSilicon Kirin 9000S |url=https://nanoreview.net/en/soc/hisilicon-kirin-9000s}}{{Cite web |last=The Nikkei |title=美智库:华为7纳米芯片是对华包围网的失败 |url=https://cn.nikkei.com/industry/itelectric-appliance/53760-2023-10-18-05-00-20.html |language=zh}}

| rowspan="17" | ARMv8.x

| rowspan="15" | HiSilicon
Taishan,
Cortex-A510

|rowspan="7"|1+3+4 (8)

|rowspan="7"|2+6+4 (12)

| 2.62 GHz (TaishanV120)
2.15 GHz (TaishanV120)
1.53 GHz (Cortex-A510)

| rowspan="15" | HiSilicon
Maleoon 910

| rowspan="15" | 750 MHz

| rowspan="17" | LPDDR5
-6400 @2750Mhz
LPDDR5X
-8533 @4266Mhz

| rowspan="17" | 64-bit (4x16-bit) Quad-
channel

| rowspan="17" | 51.2 (LPDDR5)
68.2 (LPDDR5X)

| rowspan="17" | Beidou, Galileo, GLONASS

| rowspan="2" | Balong 5000 5G 3GPP Rel. 15 (Sub-6-GHz)

| rowspan="17" | Wi-Fi 6
(external
module)

| rowspan="17" | Bluetooth 5.2, NearLink, NFC

| Q3 2023

| {{Collapsible list

| Huawei Mate 60

| Huawei Mate 60 Pro

| Huawei Mate 60 Pro+

| Huawei Mate 60 RS Ultimate Design

| Huawei Mate X5

}}

Kirin 9000S1
(Hi36A0V120)

|rowspan="6"|2.49 GHz (TaishanV120)
2.15 GHz (TaishanV120)
1.53 GHz (Cortex-A510)

|Q1 2024

|Huawei Pura 70

Kirin 9000W
(Hi36A0V120)

|{{N/A}}

|Q4 2023

|{{Collapsible list

|Huawei MatePad Pro 13.2

|Huawei MatePad Air (2024)

}}

Kirin 9000WL
(Hi36A0V120)

|{{N/A}}

|Q2 2024

|Huawei MatePad 11.5 S PaperMatte Edition

Kirin 9000WE
(Hi36A0V120)

|{{N/A}}

|Q2 2024

|Huawei MatePad 11.5 S (12GB RAM)

Kirin T90
(Hi36A0V120)

|{{N/A}}

|Q3 2024

|Huawei MatePad Air (2024)

Kirin T90A
(Hi36A0V120)

|{{N/A}}

|Q3 2024

|Huawei MatePad 12 X

Kirin 9000SL
(Hi36A0V120)

|rowspan="2"|1+2+3 (6)

|rowspan="2"|2+4+3 (9)

|rowspan="2"|2.35 GHz (TaishanV120)
2.15 GHz (TaishanV120)
1.53 GHz (Cortex-A510)

|Balong 5000 5G 3GPP Rel. 15 (Sub-6-GHz)

|Q4 2023

|Huawei Nova 12 Ultra

Kirin 9000WM
(Hi36A0V120)

|{{N/A}}

|Q2 2024

|Huawei MatePad 11.5 S Smart Model

Kirin 9010
(Hi36A0V121)

|rowspan="5"|1+3+4 (8)

|rowspan="5"|2+6+4 (12)

|2.30 GHz (TaishanV121)
2.18 GHz (TaishanV120)
1.55 GHz (Cortex-A510)

|rowspan="2" | Balong 5000 5G 3GPP Rel. 15 (Sub-6-GHz)

|Q2 2024

| {{Collapsible list

|Huawei Pura 70 Pro

|Huawei Pura 70 Pro+

|Huawei Pura 70 Ultra

|Huawei Mate XT Ultimate

|Huawei Mate 70

}}

Kirin 9010E
(Hi36A0V121)

|rowspan="4"|2.19 GHz (TaishanV121)
2.18 GHz (TaishanV120)
1.55 GHz (Cortex-A510)

|Q3 2024

|Huawei Nova Flip

Kirin 9010A
(Hi36A0V121)

|

|Q3 2024

|

Kirin 9010W
(Hi36A0V121)

|{{N/A}}

|Q3 2024

|

Kirin T91
(Hi36A0V121)

|{{N/A}}

|Q3 2024

|Huawei MatePad Pro 12.2 (2024)

Kirin 9010L
(Hi36A0V121)

|1+2+3 (6)

|2+4+3 (9)

|2.19 GHz (TaishanV121)
2.18 GHz (TaishanV120)
1.40 GHz (Cortex-A510)

|Balong 5000 5G 3GPP Rel. 15 (Sub-6-GHz)

|Q2 2024

|Huawei Nova 12 Ultra Star Edition

Kirin 9020
(Hi36C0V110) {{Cite web |last=极客湾Geekerwan (youtube.com) |title=华为Mate70 Pro+性能分析:麒麟9020来啦!|website=YouTube |date=6 December 2024 |url=https://www.youtube.com/watch?v=S1RQhFOngFc}}

| rowspan="2" | HiSilicon
Taishan

| rowspan="2" |1+3+4 (8)

| rowspan="2" |2+6+4 (12)

| rowspan="2" |2.50 GHz (TaishanV123)
2.15 GHz (TaishanV120)
1.60 GHz (Taishan-Little)

| rowspan="2" |HiSilicon
Maleoon 920

| rowspan="2" |840 MHz

|Balong 6000 5G 3GPP Rel. 17 (Sub-6-GHz)

|Q4 2024

|{{Collapsible list

|Huawei Mate 70 Pro

|Huawei Mate 70 Pro+

}}

Kirin T92
(Hi36C0V110)

|{{N/A}}

|Q4 2024

|Huawei MatePad Pro 13.2 (2025)

Smartphone modems

HiSilicon develops smartphone modems which are primarily used in its parent company Huawei's handheld and tablet devices.

= Balong 700 =

The Balong 700 supports LTE TDD/FDD.{{Cite web|url=http://www.hisilicon.com/en/Products/ProductList/Balong|title=Balong|website=www.hisilicon.com|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190504130659/http://www.hisilicon.com/en/Products/ProductList/Balong|archive-date=4 May 2019|url-status=live}} Its specs:

  • 3GPP R8 protocol
  • LTE TDD and FDD
  • 4x2/2x2 SU-MIMO

= Balong 710 =

At MWC 2012, HiSilicon released the Balong 710.{{Cite web|url=http://www.hisilicon.com/en/Media-Center/News/20120227_HiSilicon|title=HiSilicon Releases Leading LTE Multi-mode Chipset {{!}} HiSilicon|website=www.hisilicon.com|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505044530/http://www.hisilicon.com/en/Media-Center/News/20120227_HiSilicon|archive-date=5 May 2019|url-status=live}} It is a multi-mode chipset supporting 3GPP Release 9 and LTE Category 4 at GTI (Global TD-LTE Initiative). The Balong 710 was designed to be used with the K3V2 SoC. Its specs:

  • LTE FDD mode : 150 Mbit/s downlink and 50 Mbit/s uplink.
  • TD-LTE mode: up to 112 Mbit/s downlink and up to 30 Mbit/s uplink.
  • WCDMA Dual Carrier with MIMO: 84 Mbit/s downlink and 23 Mbit/s uplink.

= Balong 720 =

The Balong 720 supports LTE Cat6 with 300 Mbit/s peak download rate. Its specs:

  • TSMC 28 nm HPM process
  • TD-LTE Cat.6 standard
  • Dual-carrier aggregation for the 40 MHz bandwidth
  • 5-mode LTE Cat6 Modem

= Balong 750 =

The Balong 750 supports LTE Cat 12/13, and it is first to support 4CC CA and 3.5 GHz. Its specs:

  • LTE Cat.12 and Cat.13 UL network standards
  • 2CC (dual-carrier) data aggregation
  • 4x4 multiple-input multiple-output (MIMO)
  • TSMC 16 nm FinFET+ process

= Balong 765 =

The Balong 765 supports 8×8 MIMO technology, LTE Cat.19 with downlink data-rate up to 1.6 Gbit/s in FDD network and up to 1.16 Gbit/s in the TD-LTE network.{{Cite web|url=http://www.hisilicon.com/en/Media-Center/News/Balong%20765%20news|title=Huawei Launches the World's First 8-Antenna 4.5G Modem Chipset|website=www.hisilicon.com|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190517044535/http://www.hisilicon.com/en/Media-Center/News/Balong%20765%20news|archive-date=17 May 2019|url-status=live}} Its specs:

  • 3GPP Rel.14
  • LTE Cat.19 Peak data rate up to 1.6 Gbit/s
  • 4CC CA + 4×4 MIMO/2CC CA + 8×8 MIMO
  • DL 256QAM
  • C-V2X

= Balong 5G01 =

The Balong 5G01 supports the 3GPP standard for 5G with downlink speeds of up to 2.3 Gbit/s. It supports 5G across all frequency bands including sub-6 GHz and millimeter wave (mmWave). Its specs:

  • 3GPP Release 15
  • Peak data rate up to 2.3 Gbit/s
  • Sub-6 GHz and mmWave
  • NSA/SA
  • DL 256QAM

= Balong 5000 =

The Balong 5000 was the world's first 7 nm TSMC 5G multi-mode chipset (launched in Q1 2019), the world's first SA/NSA implementation, and the first smartphone chipset to support the full NR TDD/FDD spectrum.{{cite web|url=https://www.hisilicon.com/en/products/Balong/Balong-5000|title=Balong 5000|website=www.hisilicon.com|access-date=16 September 2021}} The modem has an advanced 2G, 3G, 4G, and 5G connectivity.{{cite web|url=http://www.hisilicon.com/en/Media-Center/News/Balong5000|title=Huawei Launches Industry-Leading 5G Multi-Mode Chipset Balong 5000 to Lead the 5G Era|website=www.hisilicon.com|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505044533/http://www.hisilicon.com/en/Media-Center/News/Balong5000|archive-date=5 May 2019|url-status=live}} Its specs:

  • 2G/3G/4G/5G Multi Mode
  • Fully compliant with 3GPP Release 15
  • Sub-6 GHz: 100 MHz x 2CC CA
  • Sub-6 GHz: Downlink up to 4.6 Gbit/s, Uplink up to 2.5 Gbit/s
  • mmWave: Downlink up to 6.5 Gbit/s, Uplink up to 3.5 Gbit/s
  • NR+LTE: Downlink up to 7.5 Gbit/s
  • FDD & TDD Spectrum Access
  • SA & NSA Fusion Network Architecture
  • Supports 3GPP R14 V2X
  • 3 GB LPDDR4X RAM{{Cite web|url=https://www.ifixit.com/Teardown/Huawei+Mate+20+X+5G+Teardown/124808|title=Huawei Mate 20 X 5G Teardown|date=25 July 2019|website=iFixit|language=en|access-date=27 July 2019|archive-url=https://web.archive.org/web/20190727045138/https://www.ifixit.com/Teardown/Huawei%2BMate%2B20%2BX%2B5G%2BTeardown/124808|archive-date=27 July 2019|url-status=live}}

= Balong 6000 =

The Balong 6000 is an iteration of the HiSilicon Balong 5G baseband series and first appeared in the Huawei Mate 70 Pro, launched on November 26, 2024.

It is one of the first 3GPP Rel. 18 and therefore 5.5G/5G-Advanced supporting modem in the world alongside the Qualcomm Snapdragon X75/X80 and onwards series.{{cite web|url= https://www.huaweicentral.com/huawei-mate-70-pro-network-speed-is-2x-faster-than-mate-60-pro/amp/ |title=Huawei Mate 70 Pro+ network speed is 2x faster than Mate 60 Pro|website=www.huaweicentral.com|date=27 November 2024|access-date=30 November 2024}}

  • 2G/3G/4G/5G Multi Mode
  • Fully compliant with 3GPP Release 17, probably compliant with 3GPP Release 18{{cite web|url= https://library.techinsights.com/public/sectioned-blog-viewer/66d83383-7b6f-42e0-9e6b-bb3b0e03e684 |title=Huawei's Mate 70 and the push for "Made-In-China"|website=www.techinsights.com|date=13 December 2024|access-date=16 January 2025}}
  • Sub-6 GHz: 100 MHz x 4CC CA
  • Sub-6 GHz: Downlink up to 4.6 Gbit/s, Uplink up to 2.5 Gbit/s
  • mmWave: Downlink up to 12 Gbit/s, Uplink up to 3.5 Gbit/s
  • NR+LTE: Downlink up to 10 Gbit/s
  • FDD & TDD Spectrum Access
  • SA & NSA Fusion Network Architecture

Wearable SoCs

HiSilicon develops SoCs for wearables such as wireless earbuds, wireless headphones, neckband earbuds, smart speakers, smart eyewear, and smartwatches.{{Cite web|url=https://www.huaweicentral.com/kirin-a1-the-worlds-first-bluetooth-5-1-and-bluetooth-low-energy-5-1-wearable-chip/|title=Kirin A1: The world's first Bluetooth 5.1 and Bluetooth Low Energy 5.1 Wearable Chip|last=S|first=Amy|date=7 September 2019|website=Huawei Central|language=en-US|access-date=21 September 2019|archive-url=https://web.archive.org/web/20190921063847/https://www.huaweicentral.com/kirin-a1-the-worlds-first-bluetooth-5-1-and-bluetooth-low-energy-5-1-wearable-chip/|archive-date=21 September 2019|url-status=live}}

= Kirin A1 =

The Kirin A1 (Hi1132) was announced on 6 September 2019. It features:

  • BT/BLE dual-mode Bluetooth 5.1{{Cite web|url=https://consumer.huawei.com/en/accessories/freebuds3/|title=HUAWEI FreeBuds 3, Kirin A1, Intelligent Noise Cancellation {{!}} HUAWEI Global|website=consumer.huawei.com|access-date=21 September 2019|archive-url=https://web.archive.org/web/20190921005323/https://consumer.huawei.com/en/accessories/freebuds3/|archive-date=21 September 2019|url-status=live}}
  • Isochronous Dual Channel transmission technology
  • 356 MHz audio processor
  • Cortex-M7 microprocessor

= Kirin A2 =

The Kirin A2 was announced on September 25, 2023.{{cite web |last1=Ouz |title=Huawei FreeBuds Pro 3 Launches with Kirin A2 Chip and Ultra Lossless Sound Quality |url=https://www.gizmochina.com/2023/09/25/huawei-freebuds-pro-3-spec-price/ |website=GIZMOCHINA |date=25 September 2023 |access-date=5 February 2024}} It features:

  • Faster Transmission
  • Stable signal with Polar code technology
  • Increase of 50% in computing power performance
  • Audio Vivid

Server processors

HiSilicon develops server processor SoCs based on the ARM architecture.

= Hi1610 =

The Hi1610 is HiSilicon's first generation server processor announced in 2015. It features:

  • 16x ARM Cortex-A57 at up to 2.1 GHz{{Cite web|url=https://www.anandtech.com/show/13620/huawei-server-efforts-hi1620-and-arms-big-server-core-ares|title=Huawei Server Efforts: Hi1620 and Arm's Big Server Core, Ares|last=Cutress|first=Ian|website=www.anandtech.com|access-date=4 May 2019|archive-url=https://web.archive.org/web/20190609030801/https://www.anandtech.com/show/13620/huawei-server-efforts-hi1620-and-arms-big-server-core-ares|archive-date=9 June 2019|url-status=live}}
  • 48 KB L1-I, 32 KB L1-D, 1 MB L2/4 cores and 16 MB CCN L3
  • TSMC 16 nm
  • 2x DDR4-1866
  • 16 PCIe 3.0

= Hi1612 =

The Hi1612 is HiSilicon's second generation server processor launched in 2016. It is the first chiplet-based Kunpeng with two computing dies. It features:

  • 32x ARM Cortex-A57 at up to 2.1 GHz
  • 48 KB L1-I, 32 KB L1-D, 1 MB L2/4 cores and 32 MB CCN L3
  • TSMC 16 nm
  • 4x DDR4-2133
  • 16 PCIe 3.0

= Kunpeng 916 (formerly Hi1616) =

The Kunpeng 916 (formerly known as Hi1616) is HiSilicon's third generation server processor launched in 2017. The Kunpeng 916 is used in Huawei's TaiShan 2280 Balanced Server, TaiShan 5280 Storage Server, TaiShan XR320 High-Density Server Node and TaiShan X6000 High-Density Server.{{Cite web|url=https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-2280|title=TaiShan 2280 Balanced Server ─ Huawei Enterprise|website=Huawei Enterprise|language=en|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505041844/https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-2280|archive-date=5 May 2019|url-status=dead}}{{Cite web|url=https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-5280|title=TaiShan 5280 Storage Server|website=Huawei Enterprise|language=en|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505041848/https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-5280|archive-date=5 May 2019|url-status=dead}}{{Cite web|url=https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-xr320|title=TaiShan XA320 High-Density Server Node|website=Huawei Enterprise|language=en|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505041847/https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-xr320|archive-date=5 May 2019|url-status=dead}}{{Cite web|url=https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-x6000|title=TaiShan X6000 ARM High-Density Server|website=Huawei Enterprise|language=en|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505041845/https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-x6000|archive-date=5 May 2019|url-status=dead}} It features:

  • 32x ARM Cortex-A72 at up to 2.4 GHz
  • 48 KB L1-I, 32 KB L1-D, 1 MB L2/4 cores and 32 MB CCN L3
  • TSMC 16 nm
  • 4x DDR4-2400
  • 2-way Symmetric multiprocessing (SMP), Each socket has 2x ports with 96 Gbit/s per port (total of 192 Gbit/s per each socket interconnects)
  • 46 PCIe 3.0 and 8x 10 Gigabit Ethernet
  • 85 W

= Kunpeng 920 (formerly Hi1620) =

The Kunpeng 920 (formerly known as Hi1620) is HiSilicon's fourth generation server processor announced in 2018, and launched in 2019. Huawei claims the Kunpeng 920 CPU scores more than an estimated 930 on SPECint_rate_base2006.{{Cite web|url=http://www.hisilicon.com/en/Media-Center/News/Kunpeng|title=Huawei Unveils Industry's Highest-Performance ARM-based CPU Bringing Global Computing Power to Next Level|website=www.hisilicon.com|access-date=4 May 2019|archive-url=https://web.archive.org/web/20190504141501/http://www.hisilicon.com/en/Media-Center/News/Kunpeng|archive-date=4 May 2019|url-status=live}} The Kunpeng 920 is used in Huawei's TaiShan 2280 V2 Balanced Server, TaiShan 5280 V2 Storage Server, and TaiShan XA320 V2 High-Density Server Node.{{Cite web|url=https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-2280-v2|title=TaiShan 2280 V2 Balanced Server ─ Huawei Enterprise|website=Huawei Enterprise|language=en|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505041844/https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-2280-v2|archive-date=5 May 2019|url-status=dead}}{{Cite web|url=https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-5280-v2|title=TaiShan 5280 V2 Storage Server ─ Huawei Enterprise|website=Huawei Enterprise|language=en|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505041847/https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-5280-v2|archive-date=5 May 2019|url-status=dead}}{{Cite web|url=https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-xa320-v2|title=TaiShan XA320 V2 High-Density Server Node|website=Huawei Enterprise|language=en|access-date=5 May 2019|archive-url=https://web.archive.org/web/20190505041844/https://e.huawei.com/en/products/cloud-computing-dc/servers/arm-based/taishan-xa320-v2|archive-date=5 May 2019|url-status=dead}} It features:

  • 32 to 64x custom TaiShan V110 cores at up to 2.6 GHz.{{cite web|url=https://fuse.wikichip.org/news/2274/huawei-expands-kunpeng-server-cpus-plans-smt-sve-for-next-gen/|title=Huawei Expands Kunpeng Server CPUs, Plans SMT, SVE For Next Gen|last=Schor|first=David|date=3 May 2019|website=WikiChip Fuse|language=en-US|access-date=4 May 2019|archive-url=https://web.archive.org/web/20190504140701/https://fuse.wikichip.org/news/2274/huawei-expands-kunpeng-server-cpus-plans-smt-sve-for-next-gen/|archive-date=4 May 2019|url-status=live}}
  • The TaiShan V110 core is a 4-way superscalar, out-of-order microarchitecture that implements the ARMv8.2-A ISA. Huawei reports the core supports almost all the ARMv8.4-A ISA features with a few exceptions, including the dot product and FP16 FML extensions.
  • The TaiShan V110 cores are likely a new core not based on ARM designs{{cite web|url=https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/config/aarch64/tsv110.md|title=gcc.gnu.org Git – gcc.git/blob – gcc/config/aarch64/tsv110.md|website=gcc.gnu.org|access-date=13 June 2019}}{{Original research inline|date=April 2020}}
  • 3x Simple ALUs, 1x Complex MDU, 2x BRUs (sharing ports with ALU2/3), 2x FSUs (ASIMD FPU), 2x LSUs
  • 64 KB L1-I, 64 KB L1-D, 512 KB Private L2 and 1 MB L3/core Shared.
  • TSMC 7 nm HPC
  • 8x DDR4-3200
  • 2-way and 4-way symmetric multiprocessing (SMP). Each socket has 3x Hydra ports with 240 Gbit/s per port (total of 720 Gbit/s per each socket interconnects)
  • 40 PCIe 4.0 with CCIX support, 4x USB 3.0, 2x SATA 3.0, 8x SAS 3.0 and 2x 100 gigabit ethernet
  • 100 to 200 W
  • Compression engine (GZIP, LZS, LZ4) capable of up to 40 Git/s compress and 100 Gbit/s decompress
  • Crypto offload engine (for AES, DES, 3DES, SHA1/2, etc..) capable of throughputs up to 100 Gbit/s

= Kunpeng 930 (formerly Hi1630) =

The Kunpeng 930 (formerly known as Hi1630) is HiSilicon's fifth-generation server processor announced in 2019 and scheduled for launch in 2021. It features:

  • 80 custom TaishanV120 cores at 3 GHz frequency, with support for simultaneous multithreading (SMT) and ARM's Scalable Vector Extension (SVE).
  • 64 KB L1-I, 64 KB L1-D, 512 KB Private L2 and 1 MB L3/core Shared
  • TSMC 5 nm
  • 8x DDR5

= Kunpeng 950 =

The Kunpeng 950 is HiSilicon's sixth-generation server processor announced in 2019 and scheduled for launch in 2023.

AI acceleration

HiSilicon also develops AI Acceleration chips.

= Da Vinci architecture =

Each Da Vinci Max AI Core features a 3D Cube Tensor Computing Engine (4096 FP16 MACs + 8192 INT8 MACs), a vector unit (2048bit INT8/FP16/FP32), and a scalar unit. It includes a new AI framework called "MindSpore", a platform-as-a-service product called ModelArts, and a lower-level library called Compute Architecture for Neural Networks (CANN).

== Ascend 310 ==

The Ascend 310 is an AI inference SoC, it was codenamed Ascend-Mini. The Ascend 310 is capable of 16 TOPS@INT8 and 8 TOPS@FP16.{{Cite web|url=http://www.hisilicon.com/en/Products/ProductList/Ascend|title=Ascend {{!}} HiSilicon|website=www.hisilicon.com|access-date=4 May 2019|archive-url=https://web.archive.org/web/20190504130426/http://www.hisilicon.com/en/Products/ProductList/Ascend|archive-date=4 May 2019|url-status=live}} The Ascend 310 features:

  • 2x Da Vinci Max AI cores{{cite web|url=https://www.anandtech.com/show/14756/hot-chips-live-blogs-huawei-da-vinci-architecture|title=Hot Chips 31 Live Blogs: Huawei Da Vinci Architecture|last=Cutress|first=Dr Ian|website=www.anandtech.com|access-date=21 August 2019|archive-url=https://web.archive.org/web/20190821040707/https://www.anandtech.com/show/14756/hot-chips-live-blogs-huawei-da-vinci-architecture|archive-date=21 August 2019|url-status=live}}
  • 8x ARM Cortex-A55 CPU cores
  • 8 MB on-chip buffer
  • 16 channel video decode – H.264/H.265
  • 1 channel video encode – H.264/H.265
  • TSMC 12 nm FFC process
  • 8W TDP

== Ascend 910 ==

The Ascend 910 is an AI training SoC, it was codenamed Ascend-Max. which delivers 256 TFLOPS@FP16 and 512 TOPS@INT8. The Ascend 910 features:

  • 32x Da Vinci Max AI cores arranged in 4 clusters
  • 1024-bit NoC Mesh @ 2 GHz, with 128 GB/s bandwidth Read/Write per core
  • 3x 240 Gbit/s HCCS ports for Numa connections
  • 2x 100 Gbit/s RoCE interfaces for networking
  • 4x HBM2E, 1.2 TB/s bandwidth
  • 3D-SRAM stacked below AI SoC die
  • 1228 mm2 Total die size (456 mm2 Virtuvian AI SoC, 168 mm2 Nimbus V3 IO Die, 4x96 mm2 HBM2E, 2x110 mm2 Dummy Die)
  • 32 MB on-chip buffer
  • 128 channel video decode – H.264/H.265
  • TSMC 7 nm EUV (N7+) process
  • 350 W

== Ascend 910B ==

Ascend 910B is manufactured by SMIC and is very different from Ascend 910.{{cite web|url=https://www.tomshardware.com/tech-industry/artificial-intelligence/huaweis-homegrown-ai-chip-examined-chinese-fab-smic-produced-ascend-910b-is-massively-different-from-the-tsmc-produced-ascend-910|title=Huawei's homegrown AI chip examined — Chinese fab SMIC-produced Ascend 910B is massively different from the TSMC-produced Ascend 910|website=www.tomshardware.com|access-date=26 April 2025}}

  • 21.32 mm × 31.22 mm size
  • 25 DaVinci AI cores
  • produced using SMIC 7nm N+1 process

== Ascend 910C ==

Huawei Ascend 910C is expected to be mass shipped in May 2025, Ascend 910C combines two Ascend 910B processors. Ascend 910C is an evolution rather than a breakthrough, it achieves performance similar to NVIDIA H100. NVIDIA H100 chips were banned from sale to China by US government in 2022.{{cite web|url=https://www.reuters.com/world/china/huawei-readies-new-ai-chip-mass-shipment-china-seeks-nvidia-alternatives-sources-2025-04-21/|title=Exclusive: Huawei readies new AI chip for mass shipment as China seeks Nvidia alternatives, sources say|website=www.reuters.com|access-date=26 April 2025}}

DeepSeek researchers say Huawei Ascend 910C provides 60% of NVIDIA H100 inference performance. Ascend 910C compute chiplet is made by SMIC at 2nd generation 7nm process known as N+2.{{cite web|url=https://www.tomshardware.com/tech-industry/artificial-intelligence/deepseek-research-suggests-huaweis-ascend-910c-delivers-60-percent-nvidia-h100-inference-performance|title=DeepSeek research suggests Huawei's Ascend 910C delivers 60% of Nvidia H100 inference performance|website=www.tomshardware.com|access-date=26 April 2025}}

DeepSeek R1 model was trained on NVIDIA H800, but runs inference on Ascend 910C.{{cite web|url=https://www.gsmarena.com/huawei_chips_are_powering_deepseek_ai-news-66297.php|title=Huawei chips are powering DeepSeek AI|website=www.gsmarena.com|access-date=26 April 2025}}

Huawei is expected to sell more than 800,000 of Ascend 910B and Ascend 910C in 2025.{{cite web|url=https://www.wsj.com/tech/chinas-huawei-develops-new-ai-chip-seeking-to-match-nvidia-8166f606|title=China’s Huawei Develops New AI Chip, Seeking to Match Nvidia|website=www.wsj.com|access-date=27 April 2025}}

In late April 2025 Huawei started delivering to customers CloudMatrix 384 - a cluster consisting of Ascend 910C chips. The system performs better than NVL72 (72 GB200 chips) from NVIDIA, however the power consumption is significantly higher. CloudMatrix 384 sells for Rmb60mn ($8.2mn) a set.{{cite web|url=https://www.ft.com/content/cac568a2-5fd1-455c-b985-f3a8ce31c097|title=Huawei delivers advanced AI chip ‘cluster’ to Chinese clients cut off from Nvidia|website=www.ft.com|access-date=30 April 2025}}

== Ascend 910D ==

In late April 2025 WSJ has reported that Huawei approached several China based companies about testing Ascend 910D, the companies will receive first samples in May 2025.

== Ascend 920 ==

Ascend 920 was announced in April 2025 and expected to provide performance similar to NVIDIA H20 chip (which was banned in April 2025 from selling to China). Ascend 920 is expected to be mass produced in late 2025. Ascend 920 features:{{cite web|url=https://www.tomshardware.com/pc-components/gpus/huawei-introduces-the-ascend-920-ai-chip-to-fill-the-void-left-by-nvidias-h20|title=Huawei introduces the Ascend 920 AI chip to fill the void left by Nvidia's H20|website=www.tomshardware.com|access-date=26 April 2025}}

  • 6nm SMIC process
  • HBM3 memory, 4 TB/s bandwidth
  • 900 TFLOPs per card

Semiconductor equipment export control by US

US government started to pressure ASML Holding not to sell new EUV machines to China in 2018.{{cite web|url=https://www.bloomberg.com/news/features/2022-03-16/when-will-the-chip-shortage-end-u-s-eu-spend-billions-in-race-to-beat-china|title=The Global Fight Over Chips Is About to Get Even Worse|website=www.bloomberg.com|access-date=26 April 2025}}

In 2022 US government was lobbying Dutch government to bar ASML from selling older DUV (deep ultraviolet lithography) machines to China. These DUV machines are a generation behind of newer EUV models.{{cite web|url=https://www.bloomberg.com/news/articles/2022-07-05/us-pushing-for-asml-to-stop-selling-key-chipmaking-gear-to-china|title=US Wants Dutch Supplier to Stop Selling Chipmaking Gear to China|website=www.bloomberg.com|access-date=26 April 2025}}

Lam Research and Applied Materials have suspended sales and services to Chinese counterparts in 2022.{{cite web|url=https://techhq.com/2022/10/lam-research-paying-a-hefty-price-due-to-export-ban/|title=Lam Research paying a hefty price due to export ban|website=techhq.com|access-date=26 April 2025}}

In late 2024 US government expanded export control which will hit semiconductor toolmakers such as KLA Corporation, Lam Research and Applied Materials.{{cite web|url=https://www.reuters.com/technology/latest-us-strike-chinas-chips-hits-semiconductor-toolmakers-2024-12-02/|title=Latest US clampdown on China's chips hits semiconductor toolmakers|website=www.reuters.com|access-date=26 April 2025}}

China based SiCarrier is developing equipment to replace products from ASML Holding, Lam Research and Applied Materials.{{cite web|url=https://asia.nikkei.com/Business/Tech/Semiconductors/China-s-SiCarrier-emerges-as-challenger-to-ASML-other-chip-tool-titans|title=China's SiCarrier emerges as challenger to ASML, other chip tool titans|website=asia.nikkei.com|access-date=26 April 2025}}

See also

References

{{Reflist|30em}}