2021 in paleobotany
{{Short description|none}}
{{Year nav topic20 |2021|paleobotany |paleontology |arthropod paleontology |paleoentomology |paleomalacology |reptile paleontology |archosaur paleontology |mammal paleontology |paleoichthyology }}
This article records new taxa of fossil plants described during the year 2021, as well as other significant discoveries and events related to paleobotany that occurred in 2021.
Ferns and fern allies
Bennettitales
Cycadales
Ginkgoales
Vladimariales
Conifers
=Araucariaceae=
=Cheirolepidiaceae=
=Cupressaceae=
=Pinaceae=
=Podocarpaceae=
=Other conifers=
Flowering plants
=Basal angiosperms=
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Allonymphaea{{Cite journal|last=Doweld |first=A. B. |year=2021 |title=Fossil Alloceltidoxylon, Allonymphaea, Arecocaryon, Paralnoxylon and Paranyssa and extant Komaroviopsis, Marcanodendron, and Papyrocactus (Magnoliophyta), new replacement generic names |journal=Phytotaxa |volume=524 |issue=2 |pages=92–98 |doi=10.11646/phytotaxa.524.2.3 |s2cid=243482734 }}
| Nom. nov | Valid | Doweld | Eocene | | {{Flag|Egypt}} | A replacement name for Thiebaudia Chandler (1954). | |
=Unplaced non-eudicots=
=Magnoliids=
==Canellales==
=Monocots=
==Alismatid monocots==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Bognerospadix{{Cite journal|last1=Stockey |first1=R. A. |last2=Hoffman |first2=G. L. |last3=Rothwell |first3=G. W. |year=2021 |title=Fossil evidence for Paleocene diversification of Araceae: Bognerospadix gen. nov. and Orontiophyllum grandifolium comb. nov. |journal=American Journal of Botany |volume=108 |issue=8 |pages=1417–1440 |doi=10.1002/ajb2.1707 |pmid=34431509 |s2cid=237292226 |doi-access=free }}
| Gen. et sp. nov | Valid | Stockey, Hoffman & Rothwell | | | {{Flag|Canada}} | A member of the family Araceae. Genus includes new species B. speirsiae. | |
==Lilioid monocots==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Mirafloris{{Cite journal|last=Poinar |first=G. O. |title=A Monocot Flower, Mirafloris burmitis gen. et sp. nov. (Monocots: Angiospermae), in Burmese Amber |year=2021 |journal=Biosis: Biological Systems |volume=2 |issue=3 |pages=342–348 |doi=10.37819/biosis.002.03.0126 |s2cid=238732295 |doi-access=free }}
| Gen. et sp. nov | Valid | | Cretaceous | | {{Flag|Myanmar}} | A member of the family Liliaceae. Genus includes new species M. burmitis. | |
==Commelinid monocots==
===Commelinid monocot research===
- A study on the evolutionary history of palms throughout the Cenozoic era, aiming to determine the impact of Cenozoic environmental changes on the diversification and biogeography of palms, is published by Lim et al. (2021).{{Cite journal|last1=Lim |first1=J. Y. |last2=Huang |first2=H. |last3=Farnsworth |first3=A. |last4=Lunt |first4=D. J. |last5=Baker |first5=W. J. |last6=Morley |first6=R. J. |last7=Kissling |first7=W. D. |last8=Hoorn |first8=C. |year=2021 |title=The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests |journal=Global Ecology and Biogeography |volume=31 |issue=3 |pages=425–439 |doi=10.1111/geb.13436 |hdl=1983/fa5f36f6-5dbe-4109-bcaa-f9838a88e337 |s2cid=245284265 |url=https://research-information.bris.ac.uk/ws/files/308458806/Full_text_PDF_final_published_version_.pdf }}
- Pollens of member of the family Poaceae preserving the same morphological characteristics as that of modern cereal grains are described from a sedimentary core from Lake Acıgöl (Turkey) by Andrieu-Ponel et al. (2021), who interpret this finding as indicative of the presence of proto-cereals in Anatolia since 2.3 million years ago, likely evolving from wild Poaceae as a result of trampling, nitrogen enrichment of soils and browsing by large mammal herds, and evaluate possible benefits from the availability of these proto-cereals for early hominins.{{Cite journal|last1=Andrieu-Ponel |first1=V. |last2=Rochette |first2=P. |last3=Demory |first3=F. |last4=Alçiçek |first4=H. |last5=Boulbes |first5=N. |last6=Bourlès |first6=D. |last7=Helvacı |first7=C. |last8=Lebatard |first8=A.-E. |last9=Mayda |first9=S. |last10=Michaud |first10=H. |last11=Moigne |first11=A.-M. |last12=Nomade |first12=S. |last13=Perrin |first13=M. |last14=Ponel |first14=P. |last15=Rambeau |first15=C. |last16=Vialet |first16=A. |last17=Gambin |first17=B. |last18=Alçiçek |first18=M. C. |title=Continuous presence of proto-cereals in Anatolia since 2.3 Ma, and their possible co-evolution with large herbivores and hominins |year=2021 |journal=Scientific Reports |volume=11 |issue=1 |pages=Article number 8914 |doi=10.1038/s41598-021-86423-8 |pmid=33903602 |pmc=8076274 |bibcode=2021NatSR..11.8914A }}
=Basal eudicots=
== Proteales ==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Platanocarpelia{{Cite journal|last1=Maslova |first1=N. P. |last2=Kodrul |first2=T. M. |last3=Kachkina |first3=V. V. |title=Leaves of Ettingshausenia cuneifolia (Bronn) Stiehler (Angiospermae) and Associated Carpels and Stamens from the Turonian of Southern Kazakhstan |year=2021 |journal=Paleontological Journal |volume=55 |issue=10 |pages=1193–1214 |doi=10.1134/S0031030121100063 |s2cid=245540003 }}
| Gen. et sp. nov | Valid | Maslova, Kodrul & Kachkina | | | {{Flag|Kazakhstan}} | A member of the family Platanaceae. Genus includes new species P. kyzyljarica. | |
Proteacidites pseudodehaanii
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Pollen of a member of the family Proteaceae. | |
=Superasterids=
==Campanulid euasterids==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Pittosporum ettingshausenii{{Cite journal|last=Doweld |first=A. B. |year=2021 |title=New names in Pittosporum, extant and fossil (Pittosporaceae) |journal=Phytotaxa |volume=498 |issue=4 |pages=298–300 |doi=10.11646/phytotaxa.498.4.9 |s2cid=235540500 }}
| Nom. nov | Valid | Doweld | | | {{Flag|New Zealand}} | A species of Pittosporum; a replacement name for Pittosporum elegans (Ettingshausen) W.R.B. Oliver (1950). | |
Xenopanax
| Gen. et comb. nov | Valid | Doweld | | | {{Flag|Russia}} | A new genus for "Pittosporum" beringianum Chelebaeva & Akhmetiev (1983). | |
==Lamiid euasterids==
==Non euasterids==
=Superrosids=
==Fabids==
===Fabales===
===Fagales===
====Fagalean research====
===Malpighiales===
===Oxalidales===
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Tropidogyne euthystyla{{Cite journal|last1=Poinar |first1=G. O. |last2=Chambers |first2=K. L. |last3=Vega |first3=F. E. |year=2021 |title=Tropidogyne euthystyla sp. nov., a new small-flowered addition to the genus from mid-Cretaceous Myanmar amber |journal=Journal of the Botanical Research Institute of Texas |volume=15 |issue=1 |pages=113–119 |doi=10.17348/jbrit.v15.i1.1053 |s2cid=237700194 |doi-access=free }}
| Sp. nov | Valid | Poinar, Chambers & Vega | Cretaceous | Burmese amber | {{Flag|Myanmar}} | A possible member of Cunoniaceae. | |
===Rosales===
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Alloceltidoxylon
| Nom. nov | Valid | Doweld | Eocene | | {{Flag|United States}} | A flowering plant with possible affinities with urticalean rosids; a replacement name for Scottoxylon Wheeler & Manchester (2002). | |
Celtis popsii
| Sp nov | Valid | Wheeler & Manchester | | | {{Flag|USA}} | A Celtis species wood. | |
Crataegoxylon sibiricum
| Sp. nov | Valid | Dolezych, LePage & Williams | Oligocene (Chattian) | Korlikov Formation | {{Flag|Russia}} | | |
Morus asiatica{{Cite journal|last1=Patel |first1=R. |last2=Hazra |first2=T. |last3=Rana |first3=R. S. |last4=Hazra |first4=M. |last5=Bera |first5=S. |last6=Khan |first6=M. A. |year=2021 |title=First fossil record of mulberry from Asia |journal=Review of Palaeobotany and Palynology |volume=292 |pages=Article 104459 |doi=10.1016/j.revpalbo.2021.104459 |bibcode=2021RPaPa.29204459P }}
| Sp. nov | In press | Patel, Rana & Khan in Patel et al. | Early Eocene | | {{Flag|India}} | A species of Morus. | |
Prunoidoxylon prunoides
| Sp. nov | Valid | Akkemik | Early Miocene | Hançili Formation | {{Flag|Turkey}} | A member of the family Rosaceae. | |
Psilatriporites minimus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Pollen of a member of the genus Celtis. | |
Pyracantha pseudococcinea
| Sp. nov | Valid | Striegler | Miocene (Tortonian) | Rauno Formation | {{Flag|Germany}} | A species of Pyracantha. | |
Ulmoxylon kasapligilii
| Sp. nov | Valid | Akkemik | Early Miocene | Hançili Formation | {{Flag|Turkey}} | A member of the family Ulmaceae. | |
Ventilago tibetensis{{Cite journal|last1=Del Rio |first1=C. |last2=Wang |first2=T.-X. |last3=Xu |first3=X.-T. |last4=Sabroux |first4=R. |last5=Spicer |first5=T. E. V. |last6=Liu |first6=J. |last7=Chen |first7=P.-R. |last8=Wu |first8=F.-X. |last9=Zhou |first9=Z.-K. |last10=Su |first10=T. |year=2021 |title=Ventilago (Rhamnaceae) Fruit from the Middle Eocene of the Central Tibet, China |journal=International Journal of Plant Sciences |volume=182 |issue=7 |pages=638–648 |doi=10.1086/715507 |s2cid=236410986 }}
| Sp. nov | Valid | Del Rio et al. | Middle Eocene | | {{Flag|China}} | A species of Ventilago. | |
Zelkovoxylon crystalliferum
| Sp. nov | Valid | Akkemik | Early Miocene | Hançili Formation | {{Flag|Turkey}} | A member of the family Ulmaceae. | |
==Malvids==
===Malvales===
===Myrtales===
===Sapindales===
==Non eurosid superrosids==
= Other angiosperms =
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Araliaephyllum vittenburgii{{Cite journal|last1=Golovneva |first1=L. |last2=Bugdaeva |first2=E. |last3=Volynets |first3=E. |last4=Sun |first4=Y. |last5=Zolina |first5=A. |title=Angiosperm diversification in the Early Cretaceous of Primorye, Far East of Russia |year=2021 |journal=Fossil Imprint |volume=77 |issue=2 |pages=231–255 |doi=10.37520/fi.2021.017 |s2cid=245545364 |url=http://fi.nm.cz/clanek/angiosperm-diversification-in-the-early-cretaceous-of-primorye-far-east-of-russia/ |doi-access=free }}
| Sp. nov | Valid | Golovneva & Volynets in Golovneva et al. | | Galenki Formation | {{Flag|Russia}} | A flowering plant of uncertain phylogenetic placement. | |
Baderadea{{Cite journal|last1=Pessoa |first1=E. M. |last2=Ribeiro |first2=A. C. |last3=Jud |first3=N. A. |year=2021 |title=A eudicot leaf from the Lower Cretaceous (Aptian, Araripe Basin) Crato Konservat-Lagerstätte |journal=American Journal of Botany |volume=108 |issue=10 |pages=2055–2065 |doi=10.1002/ajb2.1751 | issn=0002-9122 |pmid=34647319 |s2cid=238858698 |doi-access=free }}
| Gen. et sp. nov | Valid | Pessoa, Ribeiro & Jud | Early Cretaceous (Aptian) | | {{Flag|Brazil}} | A herbaceous eudicot similar to some members of Ranunculales. Genus includes new species B. pinnatissecta. | |
Byttneripollis rugulatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Dilcherifructus{{Cite journal|last=Wang |first=X. |title=The Currently Earliest Angiosperm Fruit from the Jurassic of North America |year=2021 |journal=Biosis: Biological Systems |volume=2 |issue=4 |pages=416–422 |doi=10.37819/biosis.001.04.0160 |s2cid=245724946 |doi-access=free }}
| Gen. et sp. nov | Valid | Wang | | | {{Flag|Mexico}} | Possibly a fruit of an early flowering plant. Genus includes new species D. mexicana. | |
Farabeipollis deccanensis{{Cite journal|last1=Sonkusare |first1=H. |last2=Samant |first2=B. |last3=Mohabey |first3=D. M. |year=2021 |title=Palynoassemblage from intertrappean sediments of Satpura Group, Betul district, Madhya Pradesh: implications in understanding age and palaeoclimate |journal=Journal of the Palaeontological Society of India |volume=66 |issue=1 |pages=35–54 |url=https://www.researchgate.net/publication/353006021 }}
| Sp. nov | Valid | Sonkusare, Samant & Mohabey | Late Cretaceous (Maastrichtian) | Deccan Intertrappean Beds | {{Flag|India}} | Pollen of a flowering plant of uncertain affinity. | |
Florigerminis{{cite book |last1=Cui |first1=D.-F. |last2=Hou |first2=Y. |last3=Yin |first3=P. |last4=Wang |first4=X. |year=2021 |chapter=A Jurassic flower bud from the Jurassic of China |editor1=S-C. Chang |editor2=D. Zheng |title=Mesozoic Biological Events and Ecosystems in East Asia |journal=Geological Society, London, Special Publications |publisher=The Geological Society of London |doi=10.1144/SP521-2021-122 |s2cid=244737990 }}
| Gen. et sp. nov | In press | Cui et al. | Middle-Late Jurassic | | {{Flag|China}} | A possible flower bud. | |
Gansufructus{{cite journal |last1=Du |first1=B. |last2=Zhang |first2=M. |last3=Sun |first3=B. |last4=Li |first4=A. |last5=Zhang |first5=J. |last6=Yan |first6=D. |last7=Xie |first7=S. |last8=Wu |first8=J. |year=2021 |title=An Exceptionally Well-Preserved Herbaceous Eudicot from the Early Cretaceous (late Aptian-early Albian) of Northwest China |journal=National Science Review |volume=8 |issue=12 |pages=nwab084 |doi=10.1093/nsr/nwab084 |pmid=34987839 |pmc=8692937 }}
| Gen. et sp. nov | In press | Du in Du et al. | Early Cretaceous (late Aptian-early Albian) | | {{Flag|China}} | A eudicot of uncertain phylogenetic placement. Genus includes new species G. saligna. | |
Inaperturopollenites tectatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Ladakhipollenites? corvattatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Ladakhipollenites? endoporatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Ladakhipollenites nanus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Ladakhipollenites? sphaericus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Margocolporites bilinearis
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Margocolporites incertus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Multiporopollenites intermedius
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Nigericolpites{{Cite journal|last=Hernández |first=J. A. R. |year=2021 |title=Nigericolpites: a replacement name for the illegitimate Maastrichtian magnoliopsid pollen genus Clavatricolpites Hoeken-Klink. (Angiospermae: Magnoliopsida) |journal=Grana |volume=60 |issue=5 |pages=370–371 |doi=10.1080/00173134.2020.1827025|issn=0017-3134 |s2cid=234286062 }}
| Nom. nov | Valid | Hernández | Late Cretaceous (Maastrichtian) | | {{Flag|Nigeria}} | Pollen of a flowering plant; a replacement name for Clavatricolpites Hoeken-Klinkenberg (1964). | |
Psilaperiporites circinatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Psilaperiporites depressus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Psilastephanocolporites ectoporatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Psilastephanocolporites pseudomarinamensis
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Ranunculacidites pontoreticulatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retibrevitricolpites pseudoretibolus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retiperiporites retiporatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retistephanocolpites liberalis
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retistephanocolporites loxocolpatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retitrescolpites benjaminensis
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retitrescolpites brevicolpatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retitrescolpites grossus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retitrescolpites kriptoporus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retitrescolpites marginatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retitriporites discretus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Retitriporites sifonis
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites apertus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites? colpiverrucosus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites crassinexinicus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites crassitectatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites grossomurus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites guttatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites lolongatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites protoguttatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites pseudocrassopolaris
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites pseudopilatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites pseudoscabratus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites quantulus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Rhoipites vilis
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Tetracolporopollenites nanus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Tetracolporopollenites xatanawensis
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil pollen. | |
Other plants
Palynology
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Camarozonosporites trilobatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | A spore of lycopodialean affinity. | |
Echinatisporis infantulus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Erlansonisporites duwaensis{{Cite book|last1=Li |first1=W.B. |last2=Batten |first2=D. J. |last3=Li |first3=J.G. |last4=Peng |first4=J.G. |year=2021 |title=Mesozoic Megaspores and Palynomorphs from Tarim Basin, Northwest China |series=Palaeontologia Sinica |volume=202 |pages=1–250 |isbn=978-7030696526 }}
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Erlansonisporites exquisitus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Erlansonisporites perbellus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Erlansonisporites textilis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Ginkgomonocolpites{{Cite journal|last=Hernández |first=J. A. R. |year=2021 |title=A replacement name for the poorly known illegitimate Paleogene genus Psilamonocolpites Y.K.Mathur (Ginkgoales) |journal=Phytotaxa |volume=500 |issue=1 |pages=57–58 |doi=10.11646/phytotaxa.500.1.10 |s2cid=236595043 }}
| Nom. nov | Valid | Hernández | Paleogene | | {{Flag|India}} | A gymnosperm pollen; a replacement name for Psilamonocolpites Mathur (1966). | |
Hamulatisporis bareanus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Henrisporites longibaculiformis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Horstisporites comitus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Horstisporites denticulatus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Horstisporites subtilis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Horstisporites tarimensis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Hughesisporites reticulatus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Hughesisporites unicus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Ischyosporites dubius
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | A spore of dicksoniaceous affinity. | |
Ischyosporites granulatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Laevigatosporites indigestus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Luntaispora
| Gen. et sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | Genus includes new species L. laevigata. | |
Microfoveolatosporis simplex
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Minerisporites tarimensis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Minerisporites triangularis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Narkisporites conicus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Narkisporites densibaculatus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Narkisporites densiconicus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Narkisporites tarimensis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Neoraistrickia dubia
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Noniasporites triassicus{{cite book |last1=Ghosh |first1=A. K. |last2=Chatterjee |first2=R. |last3=Pramanik |first3=S. |last4=Kar |first4=R. |year=2021 |chapter=Radiation of Flora in the Early Triassic Succeeding the End Permian Crisis: Evidences from the Gondwana Supergroup of Peninsular India |editor1=S. Banerjee |editor2=S. Sarkar |title=Mesozoic Stratigraphy of India |series=Society of Earth Scientists Series |pages=87–113 |publisher=Springer |doi=10.1007/978-3-030-71370-6_3 |isbn=978-3-030-71369-0 |s2cid=243201506 }}
| Sp. nov | Valid | Ghosh et al. | | | {{Flag|India}} | A megaspore. | |
Otynisporites tarimensis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Polypodiisporites discretus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Psilatriletes delicatus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Punctatosporites latrubessei
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Rotverrusporites amazonicus
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
Stellibacutriletes
| Gen. et 4 sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | Genus includes new species S. capillaris, S. gracilis, S. rarus and S. solidus. | |
Striatriletes inconspicuus
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Tarimispora
| Gen. et 2 sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | Genus includes new species T. auriculata and T. perfecta. | |
Tricristatispora trilobata
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Tricristatispora yingmailensis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Trileites plicatilis
| Sp. nov | Valid | Li et al. | Mesozoic | | {{Flag|China}} | | |
Verrucatotriletes pseudovirueloides
| Sp. nov | Valid | D'Apolito, Jaramillo & Harrington | Miocene | Solimões Formation | {{Flag|Brazil}} | Fossil spores. | |
=Palynological research=
- Strother & Foster (2021) describe an assemblage of fossil spores from the Ordovician (Tremadocian) of Australia, representing a morphology that was intermediate morphology between confirmed land plant spores and earlier forms of uncertain phylogenetic placement, and evaluate the implications of these fossils for the knowledge of the evolution of land plants from their algal ancestors.{{Cite journal|last1=Strother |first1=P. K. |last2=Foster |first2=C. |year=2021 |title=A fossil record of land plant origins from charophyte algae |journal=Science |volume=373 |issue=6556 |pages=792–796 |doi=10.1126/science.abj2927 |pmid=34385396 |bibcode=2021Sci...373..792S |s2cid=236991210 }}
- A study on the fossil pollen record from New Zealand, dating from 100 million years ago to the present, is published by Prebble et al. (2021), who report evidence indicating that Cretaceous diversification was closely followed by an increase in flowering plants frequency, but their maximum frequency did not occur until the Eocene.{{cite journal |last1=Prebble |first1=J. G. |last2=Kennedy |first2=E. M. |last3=Reichgelt |first3=T. |last4=Clowes |first4=C. |last5=Womack |first5=T. |last6=Mildenhall |first6=D. C. |last7=Raine |first7=J. I. |last8=Crouch |first8=E. M. |year=2021 |title=A 100 million year composite pollen record from New Zealand shows maximum angiosperm abundance delayed until Eocene |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=566 |pages=Article 110207 |doi=10.1016/j.palaeo.2020.110207 |bibcode=2021PPP...56610207P |s2cid=233656482 }}
- A study on changes of abundance in spores and pollen record from the Danish Basin, and on their implications for the knowledge of the impact of the Triassic–Jurassic extinction event on land plants, is published by Lindström (2021).{{cite journal |last=Lindström |first=S. |year=2021 |title=Two-phased Mass Rarity and Extinction in Land Plants During the End-Triassic Climate Crisis |journal=Frontiers in Earth Science |volume=9 |pages=Article 780343 |doi=10.3389/feart.2021.780343 |bibcode=2021FrEaS...9.1079L |doi-access=free }}
- A study on the vegetation history in the southwestern Balkans, as indicated by pollen from the sedimentary record in the Lake Ohrid extending to 1.36 million years ago, is published by Donders et al. (2021).{{Cite journal|last1=Donders |first1=T. |last2=Panagiotopoulos |first2=K. |last3=Koutsodendris |first3=A. |last4=Bertini |first4=A. |last5=Mercuri |first5=A. M. |last6=Masi |first6=A. |last7=Combourieu-Nebout |first7=N. |last8=Joannin |first8=S. |last9=Kouli |first9=K. |last10=Kousis |first10=I. |last11=Peyron |first11=O. |last12=Torri |first12=P. |last13=Florenzano |first13=A. |last14=Francke |first14=A. |last15=Wagner |first15=B. |last16=Sadori |first16=L. |year=2021 |title=1.36 million years of Mediterranean forest refugium dynamics in response to glacial–interglacial cycle strength |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=118 |issue=34 |pages=e2026111118 |doi=10.1073/pnas.2026111118 |pmid=34400496 |pmc=8403972 |bibcode=2021PNAS..11826111D |doi-access=free }}
Research
- A study on changes of the morphological complexity of reproductive structures of land plants throughout their evolutionary history, based on data from fossil and extant land plants, is published by Leslie, Simpson & Mander (2021).{{Cite journal|last1=Leslie |first1=A. B. |last2=Simpson |first2=C. |last3=Mander |first3=L. |year=2021 |title=Reproductive innovations and pulsed rise in plant complexity |journal=Science |volume=373 |issue=6561 |pages=1368–1372 |doi=10.1126/science.abi6984 |pmid=34529461 |bibcode=2021Sci...373.1368L |s2cid=237547326 |url=http://oro.open.ac.uk/79109/1/Leslie%20et%20al%20accepted%20manuscript.pdf }}
- Revision of Silurian (Wenlock to Přídolí) assemblages of polysporangiophytes with dispersed spores and cryptospores, aiming to determine the relationship between Silurian plant evolution and climate changes linked with perturbations of the global carbon cycle, is published by Pšenička et al. (2021).{{Cite journal|last1=Pšenička |first1=J. |last2=Bek |first2=J. |last3=Frýda |first3=J. |last4=Žárský |first4=V. |last5=Uhlířová |first5=M. |last6=Štorch |first6=P. |year=2021 |title=Dynamics of Silurian Plants as Response to Climate Changes |journal=Life |volume=11 |issue=9 |pages=Article 906 |doi=10.3390/life11090906 |pmid=34575055 |pmc=8470493 |bibcode=2021Life...11..906P |doi-access=free }}
- Reconstruction of the structure and development of the rooting system of Asteroxylon mackiei is presented by Hetherington et al. (2021).{{Cite journal|last1=Hetherington |first1=A. J. |last2=Bridson |first2=S. L. |last3=Jones |first3=A. L. |last4=Hass |first4=H. |last5=Kerp |first5=H. |last6=Dolan |first6=L. |year=2021 |title=An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert |journal=eLife |volume=10 |pages=e69447 |doi=10.7554/eLife.69447 |pmid=34425940 |pmc=8384418 |doi-access=free }}
- A study on factors influencing the extent of arboreal vegetation during the Late Paleozoic icehouse is published by Matthaeus et al. (2021), who interpret their findings as indicating that Pangaea could have supported widespread arboreal plant growth and forest cover based on leaf water constraints, but the forest extent was restricted because of impact of freezing on plants, and estimate that contracting forest cover increased net global surface runoff by up to 6.1%.{{Cite journal|last1=Matthaeus |first1=W. J. |last2=Macarewich |first2=S. I. |last3=Richey |first3=J. D. |last4=Wilson |first4=J. P. |last5=McElwain |first5=J. C. |last6=Montañez |first6=I. P. |last7=DiMichele |first7=W. A. |last8=Hren |first8=M. T. |last9=Poulsen |first9=C. J. |last10=White |first10=J. D. |year=2021 |title=Freeze tolerance influenced forest cover and hydrology during the Pennsylvanian |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=118 |issue=42 |pages=e2025227118 |doi=10.1073/pnas.2025227118 |pmid=34635589 |pmc=8594576 |bibcode=2021PNAS..11825227M |doi-access=free }}
- Description of the reproductive organs of the lycopsids from the Upper Devonian Wutong Formation (China), and a study on the ability of the sporophyll units for wind dispersal, is published by Zhou et al. (2021), who name new form species Lepidophylloides longshanensis and Lepidophylloides changxingensis.{{Cite journal|last1=Zhou |first1=Y. |last2=Wang |first2=D.-M. |last3=Liu |first3=L. |last4=Huang |first4=P. |year=2021 |title=The morphometric of lycopsid sporophylls and the evaluation of their dispersal potential: an example from the Upper Devonian of Zhejiang Province, China |journal=BMC Ecology and Evolution |volume=21 |issue=1 |pages=Article number 198 |doi=10.1186/s12862-021-01933-3 |pmid=34732141 |pmc=8565055 |doi-access=free }}
- An exceptionally well preserved Brasilodendron-like lycopsid forest containing over 150 upright stumps is described from an early Permian postglacial landscape of western Gondwana (Paraná Basin, Brazil) by Mottin et al. (2021).{{Cite journal|last1=Mottin |first1=T. E. |last2=Iannuzzi |first2=R. |last3=Vesely |first3=F. F. |last4=Montañez |first4=I. P. |last5=Griffis |first5=N. |last6=Canata |first6=R. E. |last7=Barão |first7=L. M. |last8=da Silveira |first8=D. M. |last9=Garcia |first9=A. M. |year=2021 |title=A glimpse of a Gondwanan postglacial fossil forest |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=588 |pages=Article 110814 |doi=10.1016/j.palaeo.2021.110814 |s2cid=245582665 }}
- A study on the anatomy of Stigmaria asiatica is published by Chen et al. (2021).{{Cite journal|last1=Chen |first1=B.-Y. |last2=Wan |first2=M.-L. |last3=Zhou |first3=W.-M. |last4=Wang |first4=S.-J. |last5=Wang |first5=J. |year=2021 |title=Anatomy of Stigmaria asiatica Jongmans et Gothan from the Asselian (lowermost Permian) of Wuda Coalfield, Inner Mongolia, North China |journal=Palaeoworld |volume=31 |issue=2 |pages=311–323 |doi=10.1016/j.palwor.2021.05.001| issn=1871-174X |s2cid=236366665 }}
- Stump casts of Sigillaria, preserving traces of internal anatomy, are described from the earliest Permian Wuda Tuff (China) by D'Antonio et al. (2021).{{Cite journal|last1=D'Antonio |first1=M. P. |last2=Boyce |first2=C. K. |last3=Zhou |first3=W.-M. |last4=Pfefferkorn |first4=H. W. |last5=Wang |first5=J. |title=Primary tissues dominated ground-level trunk diameter in Sigillaria: evidence from the Wuda Tuff, Inner Mongolia |year=2021 |journal=Journal of the Geological Society |volume=179 |issue=2 |doi=10.1144/jgs2021-021 |s2cid=238701484 }}
- A study aiming to determine probable causes of the world-wide proliferation of members of Isoetales, particularly Pleuromeia, during and in the aftermath of the Permian–Triassic extinction event, and evaluating the implications of this proliferation for the knowledge of environmental stresses during and in the aftermath of this extinction event, is published by Looy, van Konijnenburg-van Cittert & Duijnstee (2021).{{Cite journal|last1=Looy |first1=C. V. |last2=van Konijnenburg-van Cittert |first2=J. H. A. |last3=Duijnstee |first3=I. A. P. |year=2021 |title=Proliferation of Isoëtalean Lycophytes During the Permo-Triassic Biotic Crises: A Proxy for the State of the Terrestrial Biosphere |journal=Frontiers in Earth Science |volume=9 |pages=Article 615370 |doi=10.3389/feart.2021.615370 |bibcode=2021FrEaS...9...55L |doi-access=free }}
- New fossil material of Saportaea salisburioides, providing new information on leaf morphology and growth of this plant, is described from the Permian Umm Irna Formation (Jordan) by Kerp et al. (2021), who interpret their findings as indicating that Saportaea grandifolia and Baiera virginiana were synonyms of S. salisburioides, and possibly indicating that the fructification belonging to the genus Nystroemia is a part of Saportaea.{{Cite journal|last1=Kerp |first1=H. |last2=Blomenkemper |first2=P. |last3=Hamad |first3=A. A. |last4=Bomfleur |first4=B. |year=2021 |title=Saportaea Fontaine et White 1880 – An enigmatic, long-ranging, widely distributed but rare type of late Palaeozoic and early Mesozoic foliage |journal=Review of Palaeobotany and Palynology |volume=296 |pages=Article 104542 |doi=10.1016/j.revpalbo.2021.104542 |s2cid=244595344 }}
- Description of Geinitzia reichenbachii from its gross morphology to the cellular scale, and a study on the likely ecology of this conifer, is published by Moreau et al. (2021).{{Cite journal|last1=Moreau |first1=J.-D. |last2=Philippe |first2=M. |last3=Néraudeau |first3=D. |last4=Dépré |first4=E. |last5=Le Couls |first5=M. |last6=Fernandez |first6=V. |last7=Beurel |first7=S. |year=2021 |title=Paleohistology of the Cretaceous resin-producing conifer Geinitzia reichenbachii using X-ray synchrotron microtomography |journal=American Journal of Botany |volume=108 |issue=9 |pages=1745–1760 |doi=10.1002/ajb2.1722 |pmid=34495546 |s2cid=237441544 |doi-access=free }}
- A study on the evolutionary history of the family Cycadaceae, based on genomic data and fossil record, is published by Liu et al. (2021).{{Cite journal|last1=Liu |first1=J. |last2=Lindstrom |first2=A. J. |last3=Marler |first3=T. E. |last4=Gong |first4=X. |year=2021 |title=Not that young: combining plastid phylogenomic, plate tectonic and fossil evidence indicates a Palaeogene diversification of Cycadaceae |journal=Annals of Botany |volume=129 |issue=2 |pages=217–230 |doi=10.1093/aob/mcab118 |pmid=34520529 |pmc=8796677 |doi-access=free }}
- Well-preserved recurved cupules of seed plants are described from the Lower Cretaceous of China by Shi et al. (2021), who interpret the structure of these cupules as consistent with the recurved form and development of the second integument in the bitegmic anatropous ovules of flowering plants, and evaluate the implications of these fossils for the knowledge of the origin of the flowering plants.{{Cite journal|last1=Shi |first1=G. |last2=Herrera |first2=F. |last3=Herendeen |first3=P. S. |last4=Clark |first4=E. G. |last5=Crane |first5=P. R. |year=2021 |title=Mesozoic cupules and the origin of the angiosperm second integument |journal=Nature |volume=594 |issue=7862 |pages=223–226 |doi=10.1038/s41586-021-03598-w |pmid=34040260 |bibcode=2021Natur.594..223S |s2cid=235217720 }}
- Taxonomically diverse flora from the Seafood Salad locality, found ~65 m below the Cretaceous-Paleogene boundary in the Hell Creek Formation (Montana, United States), is described by Wilson, Wilson Mantilla & Strӧmberg (2021), who study the affinities of plants of this locality and compare them with other Late Cretaceous floras of the Western Interior.{{Cite journal|last1=Wilson |first1=P. K. |last2=Wilson Mantilla |first2=G. P. |last3=Strӧmberg |first3=C. A. E. |year=2021 |title=Seafood Salad: A diverse latest Cretaceous flora from eastern Montana |journal=Cretaceous Research |volume=121 |pages=Article 104734 |doi=10.1016/j.cretres.2020.104734 |bibcode=2021CrRes.12104734W |s2cid=233543523 }}
- A study on the timing of the origin of the flowering plants, based on data from fossil record and from the diversity of extant members of this group, is published by Silvestro et al. (2021), who interpret their findings as indicating that several flowering plant families originated in the Jurassic.{{Cite journal|last1=Silvestro |first1=D. |last2=Bacon |first2=C. D. |last3=Dong |first3=W. |last4=Zhang |first4=Q. |last5=Donoghue |first5=P. C. J. |last6=Antonelli |first6=A. |last7=Xing |first7=Y. |year=2021 |title=Fossil data support a pre-Cretaceous origin of flowering plants |journal=Nature Ecology & Evolution |volume=5 |issue=4 |pages=449–457 |doi=10.1038/s41559-020-01387-8 |pmid=33510432 |hdl=1983/11314812-19f6-4cbc-84a2-28791cb16d53 |s2cid=231763334 |url=https://research-information.bris.ac.uk/ws/files/264149147/Silvestro_et_al_AF.pdf }}
- A study on the diversity of insect damage types in fossil plants from the Cretaceous (Albian to Cenomanian) Dakota Formation (United States), evaluating their implications for the knowledge of the early evolution of angiosperm florivory and associated pollination, is published by Xiao et al. (2021).{{cite journal |last1=Xiao |first1=L. |last2=Labandeira |first2=C. |last3=Dilcher |first3=D. |last4=Ren |first4=D. |year=2021 |title=Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination |journal=Proceedings of the Royal Society B: Biological Sciences |volume=288 |issue=1953 |pages=Article ID 20210320 |doi=10.1098/rspb.2021.0320 |pmid=34132112 |pmc=8207559 }}
- New fossil material of Callianthus dilae is described from the Lower Cretaceous Yixian Formation (China) by Wang et al. (2021), who reconstruct the whole plant of Callianthus, interpreting it as an aquatic flowering plant.{{Cite journal|last1=Wang |first1=X. |last2=Shih |first2=C. |last3=Liu |first3=Z.-J. |last4=Lin |first4=L. |last5=Singh |first5=K. J. |year=2021 |title=Reconstructing the Callianthus plant – an early aquatic angiosperm from the Lower Cretaceous of China |journal=Cretaceous Research |volume=128 |pages=Article 104983 |doi=10.1016/j.cretres.2021.104983|bibcode=2021CrRes.12804983W |issn=0195-6671 |doi-access=free }}
- A study on the anatomy of the epidermal features of the floating leaves of Quereuxia angulata from the Upper Cretaceous Yong'ancun Formation (China) is published by Liang et al. (2021).{{Cite journal|last1=Liang |first1=F. |last2=Tian |first2=N. |last3=Sun |first3=W. |last4=Wu |first4=Q. |last5=Liu |first5=B. |last6=Wang |first6=H. |year=2021 |title=Epidermal features of the floating leaves of Quereuxia angulata (Newberry) Krištofovič, an aquatic angiosperm from the Upper Cretaceous of Northeast China |journal=Cretaceous Research |volume=125 |pages=Article 104835 |doi=10.1016/j.cretres.2021.104835 |bibcode=2021CrRes.12504835L }}
- A study on plant extinction and ecological change in tropical forests resulting from the Cretaceous–Paleogene extinction event, based on data from fossil pollen and leaves from Colombia, is published by Carvalho et al. (2021), who report evidence indicative of a long interval of low plant diversity in the Neotropics after the end-Cretaceous extinction, and the emergence of forests with a structure resembling modern Neotropical rainforests, with a closed canopy and multistratal structure dominated by flowering plants, during the Paleocene.{{Cite journal|last1=Carvalho |first1=M. R |last2=Jaramillo |first2=C. |last3=de la Parra |first3=F. |last4=Caballero-Rodríguez |first4=D. |last5=Herrera |first5=F. |last6=Wing |first6=S. |last7=Turner |first7=B. L. |last8=D'Apolito |first8=C. |last9=Romero-Báez |first9=M. |last10=Narváez |first10=P. |last11=Martínez |first11=C. |last12=Gutierrez |first12=M. |last13=Labandeira |first13=C. |last14=Bayona |first14=G. |last15=Rueda |first15=M. |last16=Paez-Reyes |first16=M. |last17=Cárdenas |first17=D. |last18=Duque |first18=Á. |last19=Crowley |first19=J. L. |last20=Santos |first20=C. |last21=Silvestro |first21=D. |year=2021 |title=Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests |journal=Science |volume=372 |issue=6537 |pages=63–68 |doi=10.1126/science.abf1969 |pmid=33795451 |bibcode=2021Sci...372...63C |s2cid=232484243 }}
- A study on the impact of the mid-Eocene greenhouse warming event on floras from southernmost South America is published by Fernández et al. (2021).{{Cite journal|last1=Fernández |first1=D. A. |last2=Palazzesi |first2=L. |last3=González Estebenet |first3=M. S. |last4=Tellería |first4=M. C. |last5=Barreda |first5=V. D. |title=Impact of mid Eocene greenhouse warming on America's southernmost floras |year=2021 |journal=Communications Biology |volume=4 |issue=1 |pages=Article number 176 |doi=10.1038/s42003-021-01701-5 |pmid=33564110 |pmc=7873257 }}
- Evidence from middle Eocene-middle Miocene tuffaceous deposits of central and northern Patagonia, indicating that soils, vegetation, insects and mammal herbivores began to record diverse traits related to the presence of grasslands with mosaic vegetation since middle Eocene, is presented by Bellosi et al. (2021).{{Cite journal|last1=Bellosi |first1=E. |last2=Genise |first2=J. F. |last3=Zucol |first3=A. |last4=Bond |first4=M. |last5=Kramarz |first5=A. |last6=Sánchez |first6=M. V. |last7=Krause |first7=J. M. |title=Diverse evidence for grasslands since the Eocene in Patagonia |year=2021 |journal=Journal of South American Earth Sciences |volume=108 |pages=Article 103357 |doi=10.1016/j.jsames.2021.103357 |bibcode=2021JSAES.10803357B |s2cid=235567426 }}
- A study on Middle Miocene microfloral assemblages from ten localities in the Madrid Basin (Spain), providing evidence of prevalence of open habitats with grass-dominated, savannah-like vegetation under a warm and semi-arid climatic regime in the Iberian Peninsula in the Middle Miocene, is published by Casas-Gallego et al. (2021).{{Cite journal|last1=Casas-Gallego |first1=M. |last2=Postigo-Mijarra |first2=J. M. |last3=Rivas-Carballo |first3=M. R. |last4=Valle-Hernández |first4=M. F. |last5=Morín-de Pablos |first5=J. |last6=Barrón |first6=E. |title=Early evidence of continental aridity and open-habitat grasslands in Europe as revealed by the Middle Miocene microflora of the Madrid Basin |year=2021 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=581 |pages=Article 110603 |doi=10.1016/j.palaeo.2021.110603 |bibcode=2021PPP...58110603C |s2cid=238847370 }}
- Crump et al. (2021) present a record of vegetation from the Last Interglacial based on ancient DNA from lake sediment from the Baffin Island (Canada), and report evidence of major ecosystem changes in the Arctic in response to warmth, including a ~400 km northward range shift of dwarf birch relative to today.{{Cite journal|last1=Crump |first1=S. E. |last2=Fréchette |first2=B. |last3=Power |first3=M. |last4=Cutler |first4=S. |last5=de Wet |first5=G. |last6=Raynolds |first6=M. K. |last7=Raberg |first7=J. H. |last8=Briner |first8=J. P. |last9=Thomas |first9=E. K. |last10=Sepúlveda |first10=J. |last11=Shapiro |first11=B. |last12=Bunce |first12=M. |last13=Miller |first13=G. H. |year=2021 |title=Ancient plant DNA reveals High Arctic greening during the Last Interglacial |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=118 |issue=13 |pages=e2019069118 |doi=10.1073/pnas.2019069118 |pmid=33723011 |pmc=8020792 |bibcode=2021PNAS..11819069C |doi-access=free }}
Deaths
- Alan Graham (1934–2021), passed away on 8 July 2021. Graham earned his PhD in 1962 under the guidance of Chester A. Arnold, and was noted for a career studying the Cenozoic paleobotany of the Caribbean and Central America. {{cite journal |last1=Jaramillo |first1=C. |last2=Jarzen |first2=D. M. |title=Alan Keith Graham (1934–2021) |journal=Palynology |date=2022 |volume=46 |issue=1 |pages=1–4 |doi=10.1080/01916122.2021.1971121 |bibcode=2022Paly...4671121J |s2cid=238700678 |doi-access=free }}