CPUID#EAX=0Dh: XSAVE features and state-components
{{Short description|Instruction for x86 microprocessors}}
{{technical|date=January 2025}}
In the x86 architecture, the CPUID instruction (identified by a CPUID
opcode) is a processor supplementary instruction (its name derived from "CPU Identification") allowing software to discover details of the processor. It was introduced by Intel in 1993 with the launch of the Pentium and SL-enhanced 486 processors.{{cite web|url=http://www.intel.com/design/processor/manuals/253668.pdf |title=Intel 64 and IA-32 Architectures Software Developer's Manual |publisher=Intel.com |access-date=2013-04-11}}
A program can use the CPUID
to determine processor type and whether features such as MMX/SSE are implemented.
History
Prior to the general availability of the CPUID
instruction, programmers would write esoteric machine code which exploited minor differences in CPU behavior in order to determine the processor make and model.{{cite web|url=http://www.rcollins.org/ddj/Sep96/Sep96.html |title=Detecting Intel Processors - Knowing the generation of a system CPU |publisher=Rcollins.org |access-date=2013-04-11}}{{cite web |url=http://lxr.linux.no/source/arch/i386/kernel/head.S?v=1.2.13#L92 |archive-url=https://archive.today/20120713012856/http://lxr.linux.no/source/arch/i386/kernel/head.S?v=1.2.13%23L92 |url-status=dead|title=LXR linux-old/arch/i386/kernel/head.S |publisher=Lxr.linux.no |access-date=2013-04-11 |archive-date = 2012-07-13}}B-CoolWare, [https://www.sac.sk/download/utildiag/cpu215.zip TMi0SDGL] x86 CPU/FPU detection library with source code, v2.15, June 2000 - see /SOURCE/REALCODE.ASM for a large collection of pre-CPUID x86 CPU detection routines. [https://web.archive.org/web/20230314185852/https://www.sac.sk/download/utildiag/cpu215.zip Archived] on 14 Mar 2023. With the introduction of the 80386 processor, EDX on reset indicated the revision but this was only readable after reset and there was no standard way for applications to read the value.
Outside the x86 family, developers are mostly still required to use esoteric processes (involving instruction timing or CPU fault triggers) to determine the variations in CPU design that are present.
For example, in the Motorola 68000 series — which never had a CPUID
instruction of any kind — certain specific instructions required elevated privileges. These could be used to tell various CPU family members apart. In the Motorola 68010 the instruction MOVE from SR became privileged. Because the 68000 offered an unprivileged MOVE from SR the two different CPUs could be told apart by a CPU error condition being triggered.
While the CPUID
instruction is specific to the x86 architecture, other architectures (like ARM) often provide on-chip registers which can be read in prescribed ways to obtain the same sorts of information provided by the x86 CPUID
instruction.
Calling CPUID
The CPUID
opcode is 0F A2
.
In assembly language, the CPUID
instruction takes no parameters as CPUID
implicitly uses the EAX register to determine the main category of information returned. In Intel's more recent terminology, this is called the CPUID leaf. CPUID
should be called with EAX = 0
first, as this will store in the EAX register the highest EAX calling parameter (leaf) that the CPU implements.
To obtain extended function information CPUID
should be called with the most significant bit of EAX set. To determine the highest extended function calling parameter, call CPUID
with EAX = 80000000h
.
CPUID leaves greater than 3 but less than 80000000 are accessible only when the model-specific registers have IA32_MISC_ENABLE.BOOT_NT4 [bit 22] = 0 (which is so by default). As the name suggests, Windows NT 4.0 until SP6 did not boot properly unless this bit was set,{{cite web|url=https://software.intel.com/en-us/forums/topic/306523?language=en#comment-1590394 |title=CPUID, EAX=4 - Strange results (Solved) |publisher=Software.intel.com |access-date=2014-07-10}} but later versions of Windows do not need it, so basic leaves greater than 4 can be assumed visible on current Windows systems. {{As of|April 2024}}, basic valid leaves go up to 23h, but the information returned by some leaves are not disclosed in the publicly available documentation, i.e. they are "reserved".
Some of the more recently added leaves also have sub-leaves, which are selected via the ECX register before calling CPUID
.
EAX=0: Highest Function Parameter and Manufacturer ID
This returns the CPU's manufacturer ID string{{snd}}a twelve-character ASCII string stored in EBX, EDX, ECX (in that order). The highest basic calling parameter (the largest value that EAX can be set to before calling CPUID
) is returned in EAX.
Here is a list of processors and the highest function implemented.
class="wikitable"
|+ Highest Function Parameter ! Processors | Basic | Extended |
| Earlier Intel 486 | colspan=2 | CPUID Not Implemented | |
| Later Intel 486 and Pentium | 0x01 | Not Implemented |
| Pentium Pro, Pentium II and Celeron | 0x02 | Not Implemented |
| Pentium III | 0x03 | Not Implemented |
| Pentium 4 | 0x02 | 0x8000 0004 |
| Xeon | 0x02 | 0x8000 0004 |
| Pentium M | 0x02 | 0x8000 0004 |
| Pentium 4 with Hyper-Threading | 0x05 | 0x8000 0008 |
| Pentium D (8xx) | 0x05 | 0x8000 0008 |
| Pentium D (9xx) | 0x06 | 0x8000 0008 |
| Core Duo | 0x0A | 0x8000 0008 |
| Core 2 Duo | 0x0A | 0x8000 0008 |
| Xeon 3000, 5100, 5200, 5300, 5400 (5000 series) | 0x0A | 0x8000 0008 |
| Core 2 Duo 8000 series | 0x0D | 0x8000 0008 |
| Xeon 5200, 5400 series | 0x0A | 0x8000 0008 |
| Atom | 0x0A | 0x8000 0008 |
| Nehalem-based processors | 0x0B | 0x8000 0008 |
Ivy Bridge-based processors
|0x0D |0x8000 0008 | ||
Skylake-based processors (proc base & max freq; Bus ref. freq)
|0x16 |0x8000 0008 | ||
System-On-Chip Vendor Attribute Enumeration Main Leaf
|0x17 |0x8000 0008 | ||
Meteor Lake-based processors
|0x23 |0x8000 0008 |
The following are known processor manufacturer ID strings:
"AuthenticAMD"
{{snd}}AMD"CentaurHauls"
{{snd}}IDT WinChip/Centaur (Including some VIA and Zhaoxin CPUs)"CyrixInstead"
{{snd}}Cyrix/early STMicroelectronics and IBM"GenuineIntel"
{{snd}}Intel"GenuineIotel"
{{snd}}Intel (rare){{Cite tweet |user=InstLatX64 |number=1101230794364862464 |title=First encounter with "GenuineIotel" (o after I, instead of n)}}{{Cite web |website=instlatx64 |title=GenuineIotel CPUID dump for Intel Xeon E3-1231 |url=http://users.atw.hu/instlatx64/GenuineIotel/GenuineIotel00306C3_Haswell_CPUID5.txt}}"TransmetaCPU"
{{snd}}Transmeta"GenuineTMx86"
{{snd}}Transmeta"Geode by NSC"
{{snd}}National Semiconductor"NexGenDriven"
{{snd}}NexGen"RiseRiseRise"
{{snd}}Rise"SiS SiS SiS "
{{snd}}SiS"UMC UMC UMC "
{{snd}}UMC"Vortex86 SoC"
{{snd}}DM&P Vortex86"{{spaces|2}}Shanghai{{spaces|2}}"
{{snd}} Zhaoxin"HygonGenuine"
{{snd}}Hygon"Genuine{{spaces|2}}RDC"
{{snd}}RDC Semiconductor Co. Ltd.instlatx64, [http://users.atw.hu/instlatx64/Genuine__RDC/Genuine%20%20RDC0000586_RDC_CPUID.txt CPUID dump for RDC IAD 100]. Retrieved 22 December 2022."E2K MACHINE"
{{snd}}MCST Elbrussmxi, [https://codeberg.org/smxi/inxi/issues/197 Inxi issue 197: Elbrus CPU support data and implementation]. Retrieved 23 October 2023. [https://web.archive.org/web/20231023190035/https://codeberg.org/smxi/inxi/issues/197 Archived] on 23 October 2023."VIA VIA VIA "
{{snd}}VIA{{cn|date=April 2024|reason=Does not appear to be present in any known VIA-provided code or documentation, nor any known CPUID dumps of VIA CPUs.}}"AMD ISBETTER"
{{snd}}early engineering samples of AMD K5 processorGrzegorz Mazur, [https://web.archive.org/web/19970524043213/http://grafi.ii.pw.edu.pl:80/gbm/x86/cpuid.html Identification of x86 CPUs with CPUID support], 5 May 1997. Archived from the [http://grafi.ii.pw.edu.pl:80/gbm/x86/cpuid.html original] on 24 May 1997.Ingo Böttcher, [https://groups.google.com/g/fido.ger.pascal/c/Hy8JY6JqO_o/m/0Xv22DWi6TAJ CPUDET.PAS v1.61], 23 Oct 1996 - CPU identification program that tests for "AMD ISBETTER" string. [https://web.archive.org/web/20240426153142/https://groups.google.com/g/fido.ger.pascal/c/Hy8JY6JqO_o/m/0Xv22DWi6TAJ Archived] on 26 Apr 2024.{{Bcn|date=April 2024}}
The following are ID strings used by open source soft CPU cores:
"GenuineAO486"
{{snd}}ao486 CPU (old){{cite web |last=sorgelig |date=Aug 3, 2017 |title=ao486 CPUID instruction (in commit 43a2004) |url=https://github.com/MiSTer-devel/ao486_MiSTer/blob/43a20047d5e2e99f1264dadbdab777733ccbb61a/rtl/ao486/commands/CMD_CPUID.txt |url-status=live |archive-url=https://web.archive.org/web/20231204102715/https://github.com/MiSTer-devel/ao486_MiSTer/blob/43a20047d5e2e99f1264dadbdab777733ccbb61a/rtl/ao486/commands/CMD_CPUID.txt |archive-date=2023-12-04 |access-date=2023-12-04 |website=GitHub}}{{Cite web |last=sorgelig |date=Aug 30, 2020 |title=Update cpuid. · MiSTer-devel/ao486_MiSTer@82f5014 |url=https://github.com/MiSTer-devel/ao486_MiSTer/commit/82f5014bb44356e256a9c5454e8810d43a9990f1 |url-status=live |archive-url=https://web.archive.org/web/20231204102456/https://github.com/MiSTer-devel/ao486_MiSTer/commit/82f5014bb44356e256a9c5454e8810d43a9990f1 |archive-date=2023-12-04 |access-date=2023-12-04 |website=GitHub |language=en}}"MiSTer AO486"
{{snd}}ao486 CPU (new){{cite web |last=sorgelig |date=Aug 30, 2020 |title=ao486 CPUID instruction |url=https://github.com/MiSTer-devel/ao486_MiSTer/blob/master/rtl/ao486/commands/CMD_CPUID.txt |url-status=live |archive-url=https://web.archive.org/web/20231023063725/https://github.com/MiSTer-devel/ao486_MiSTer/blob/master/rtl/ao486/commands/CMD_CPUID.txt |archive-date=October 23, 2023 |access-date=4 Dec 2023 |website=GitHub }}"GenuineIntel"
{{snd}}v586 core{{cite web |title=v586: 586 compatible soft core for FPGA |website=GitHub|date=6 December 2021|url=https://github.com/valptek/v586}} (this is identical to the Intel ID string)
The following are known ID strings from virtual machines:
"MicrosoftXTA"
{{snd}}Microsoft x86-to-ARM{{Cite web |title=Steam Hardware & Software Survey |url=https://store.steampowered.com/hwsurvey/processormfg?sort=chg |access-date=2022-07-26 |website=store.steampowered.com}}"GenuineIntel"
{{snd}}Apple Rosetta 2{{cite web| url = https://cpufun.substack.com/p/fun-with-timers-and-cpuid| title = Fun with Timers and cpuid - by Jim Cownie - CPU fun| date = 3 March 2021}}"VirtualApple"
{{snd}}Newer versions of Apple Rosetta 2"PowerVM Lx86"
{{snd}}PowerVM Lx86 (x86 emulator for IBM POWER5/POWER6 processors)virt-what source tree, [http://git.annexia.org/?p=virt-what.git;a=blob;f=tests/lx86/proc/cpuinfo;h=9da5dca2c754ff95c6f3d3ef96da0e6fa24aeb34;hb=82c0e9c469953a36f18db1e329629cecd950134a tests/lx86/proc/cpuinfo] - PowerVM Lx86 cpuinfo dump. [https://web.archive.org/web/20241110183018/http://git.annexia.org/?p=virt-what.git;a=blob;f=tests/lx86/proc/cpuinfo;h=9da5dca2c754ff95c6f3d3ef96da0e6fa24aeb34;hb=82c0e9c469953a36f18db1e329629cecd950134a Archived] on 10 Nov 2024."Neko Project"
{{snd}}Neko Project II (PC-98 emulator) (used when the CPU to emulate is set to "Neko Processor II")Neko Project 21/W, [https://simk98.github.io/np21w/help/cfgdlg.html help/configure] (in Japanese). [https://web.archive.org/web/20240922124350/https://simk98.github.io/np21w/help/cfgdlg.html Archived] on 22 Sep 2024.CPU-World, [https://www.cpu-world.com/cgi-bin/CPUID.pl?CPUID=82924 CPUID for emulated Neko Project CPU] with "Neko Project" string. [https://archive.today/20241221232252/https://www.cpu-world.com/cgi-bin/CPUID.pl?CPUID=82924 Archived] on 21 Dec 2024.
{{vpad}}
For instance, on a GenuineIntel
processor, values returned in EBX is 0x756e6547
, EDX is 0x49656e69
and ECX is 0x6c65746e
. The following example code displays the vendor ID string as well as the highest calling parameter that the CPU implements.
.intel_syntax noprefix
.text
.m0: .string "CPUID: %x\n"
.m1: .string "Largest basic function number implemented: %i\n"
.m2: .string "Vendor ID: %s\n"
.globl main
main:
push r12
mov eax, 1
sub rsp, 16
cpuid
lea rdi, .m0[rip]
mov esi, eax
call printf
mov eax, 0
cpuid
lea rdi, .m1[rip]
mov esi, eax
mov r12d, edx
mov ebp, ecx
call printf
mov 3[rsp], ebx
lea rsi, 3[rsp]
lea rdi, .m2[rip]
mov 7[rsp], r12d
mov 11[rsp], ebp
call printf
add rsp, 16
pop r12
ret
.section .note.GNU-stack,"",@progbits
On some processors, it is possible to modify the Manufacturer ID string reported by CPUID.(EAX=0) by writing a new ID string to particular MSRs (Model-specific registers) using the WRMSR
instruction. This has been used on non-Intel processors to enable features and optimizations that have been disabled in software for CPUs that don't return the GenuineIntel
ID string.iXBT Labs, [http://ixbtlabs.com/articles3/cpu/via-nano-cpuid-fake-p1.html VIA Nano CPUID Tricks], Aug 26, 2010. [https://web.archive.org/web/20100829072405/http://ixbtlabs.com/articles3/cpu/via-nano-cpuid-fake-p1.html Archived] on Aug 29, 2010. Processors that are known to possess such MSRs include:
{{vpad}}
EAX=1: Processor Info and Feature Bits
This returns the CPU's stepping, model, and family information in register EAX (also called the signature of a CPU), feature flags in registers EDX and ECX, and additional feature info in register EBX.{{cite book |author= |chapter-url=https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4 |chapter-format=PDF |title=Intel 64 and IA-32 Architectures Software Developer's Manual |chapter=Chapter 3 Instruction Set Reference, A-L |publisher=Intel Corporation |date=2018-12-20 |access-date=2018-12-20}}
class="wikitable" style="margin-left: auto; margin-right: auto; border: none;"
|+ CPUID EAX=1: Processor Version Information in EAX |
colspan="32" | EAX |
---|
style="width: 75px" | 31
! style="width: 75px" | 30 ! style="width: 75px" | 29 ! style="width: 75px" | 28 ! style="width: 75px" | 27 ! style="width: 75px" | 26 ! style="width: 75px" | 25 ! style="width: 75px" | 24 ! style="width: 75px" | 23 ! style="width: 75px" | 22 ! style="width: 75px" | 21 ! style="width: 75px" | 20 ! style="width: 75px" | 19 ! style="width: 75px" | 18 ! style="width: 75px" | 17 ! style="width: 75px" | 16 ! style="width: 75px" | 15 ! style="width: 75px" | 14 ! style="width: 75px" | 13 ! style="width: 75px" | 12 ! style="width: 75px" | 11 ! style="width: 75px" | 10 ! style="width: 75px" | 9 ! style="width: 75px" | 8 ! style="width: 75px" | 7 ! style="width: 75px" | 6 ! style="width: 75px" | 5 ! style="width: 75px" | 4 ! style="width: 75px" | 3 ! style="width: 75px" | 2 ! style="width: 75px" | 1 ! style="width: 75px" | 0 |
style="text-align: center"
| colspan="4" style="background: lightgrey" | Reserved | colspan="8" | Extended Family ID | colspan="4" | Extended Model ID | colspan="2" style="background: lightgrey" | Reserved | colspan="2" | Processor Type | colspan="4" | Family ID | colspan="4" | Model | colspan="4" | Stepping ID |
- Stepping ID is a product revision number assigned due to fixed errata or other changes.
- The actual processor model is derived from the Model, Extended Model ID and Family ID fields. If the Family ID field is either 6 or 15, the model is equal to the sum of the Extended Model ID field shifted left by 4 bits and the Model field. Otherwise, the model is equal to the value of the Model field.
- The actual processor family is derived from the Family ID and Extended Family ID fields. If the Family ID field is equal to 15, the family is equal to the sum of the Extended Family ID and the Family ID fields. Otherwise, the family is equal to the value of the Family ID field.
- The meaning of the Processor Type field is given in the table below.
class="wikitable"
|+ Processor Type |
Type
! Encoding in Binary |
---|
Original equipment manufacturer (OEM) Processor
| style="text-align: center" | 00 |
Intel Overdrive Processor
| style="text-align: center" | 01 |
Dual processor (applicable to Intel P5 Pentium processors only)Intel, [https://www.ardent-tool.com/CPU/docs/Intel/Pentium/241428-005.pdf Pentium Processor Family Developer's Manual], 1997, order no. 241428-005, sections 3.4.1.2 (page 91), 17.5.1 (page 489) and appendix A (page 522) provide more detail on how the "processor type" field and the "dual processor" designation work.
| style="text-align: center" | 10 |
Reserved value
| style="text-align: center" | 11 |
{{vpad}}
As of October 2023, the following x86 processor family IDs are known:InstLatx64, [http://users.atw.hu/instlatx64/ x86, x64 Instruction Latency, Memory Latency and CPUID dumps], 30 Sep 2023.
{{notelist}}
{{vpad}}
class="wikitable"
|+ CPUID EAX=1: Additional Information in EBX !Bits !EBX !Valid |
7:0
| Brand Index | |
---|
15:8
| | if CPUID.01.EDX.CLFSH [bit 19]= 1 |
23:16
| Maximum number of addressable IDs for logical processors in this physical package; The nearest power-of-2 integer that is not smaller than this value is the number of unique initial APIC IDs reserved for addressing different logical processors in a physical package.{{efn|On CPUs with more than 128 logical processors in a single package (e.g. Intel Xeon Phi 7290InstLatX64, [http://users.atw.hu/instlatx64/GenuineIntel/GenuineIntel0050671_KnightsLanding_CPUID2.txt 72-Core Intel Xeon Phi 7290 CPUID dump] and AMD Threadripper Pro 7995WXInstLatx64, [http://users.atw.hu/instlatx64/AuthenticAMD/AuthenticAMD0A10F81_K19_StormPeak_01_CPUID.txt 96-Core AMD Ryzen Threadripper Pro 7995WX CPUID dump]) the value in bit 23:16 is set to a non-power-of-2 value.}} Former use: Number of logical processors per physical processor; two for the Pentium 4 processor with Hyper-Threading Technology.{{Citation |title=Intel Processor Identification and the CPUID Instruction |date=May 2002 |url=http://bochs.sourceforge.net/techspec/24161821.pdf |archive-url=https://web.archive.org/web/20210417041749/https://bochs.sourceforge.io/techspec/24161821.pdf |archive-date=2021-04-17 |publisher=Intel}} | if Hyper-threading feature flag is set. CPUID.01.EDX.HTT [bit 28]= 1 |
31:24
| Local APIC ID: The initial APIC-ID is used to identify the executing logical processor.{{efn|text=The Local APIC ID can also be identified via the cpuid 0Bh leaf ( CPUID.0Bh.EDX[x2APIC-ID] ). On CPUs with more than 256 logical processors in one package (e.g. Xeon Phi 7290), leaf 0Bh must be used because the APIC ID does not fit into 8 bits. }} | Pentium 4 and subsequent processors. |
{{notelist}}
{{vpad}}
The processor info and feature flags are manufacturer specific but usually, the Intel values are used by other manufacturers for the sake of compatibility.
{{notelist}}
Reserved fields should be masked before using them for processor identification purposes.
{{vpad}}
EAX=2: Cache and TLB Descriptor Information
This returns a list of descriptors indicating cache and TLB capabilities in EAX, EBX, ECX and EDX registers.
On processors that support this leaf, calling CPUID
with EAX=2 will cause the bottom byte of EAX to be set to 01h
{{efn|text=In older Intel documentation, the bottom byte of the value returned in EAX is described as specifying the number of times the CPUID
must be called with EAX=2 to get hold of all the cache/TLB descriptors. However, all known processors that implement this leaf return 01h
in this byte, and newer Intel documentation (SDM rev 053Intel [https://kib.kiev.ua/x86docs/Intel/SDMs/253666-053.pdf SDM vol 2A], order no. 253666-053, Jan 2015, p. 244 and later) specifies this byte as having the value 01h
.}} and the remaining 15 bytes of EAX/EBX/ECX/EDX to be filled with 15 descriptors, one byte each. These descriptors provide information about the processor's caches, TLBs and prefetch. This is typically one cache or TLB per descriptor, but some descriptor-values provide other information as well - in particular, 00h
is used for an empty descriptor, FFh
indicates that the leaf does not contain valid cache information and that leaf 4h should be used instead, and FEh
indicates that the leaf does not contain valid TLB information and that leaf 18h should be used instead. The descriptors may appear in any order.
For each of the four registers (EAX,EBX,ECX,EDX), if bit 31 is set, then the register should not be considered to contain valid descriptors (e.g. on Itanium in IA-32 mode, CPUID(EAX=2) returns 80000000h
in EDX - this should be interpreted to mean that EDX contains no valid information, not that it contains a descriptor for a 512K L2 cache.)
{{vpad}}
The table below provides, for known descriptor values, a condensed description of the cache or TLB indicated by that descriptor value (or other information, where that applies). The suffixes used in the table are:
- K,M,G : binary kilobyte, megabyte, gigabyte (capacity for caches, page-size for TLBs)
- E : entries (for TLBs; e.g. 64E = 64 entries)
- p : page-size (e.g. 4Kp for TLBs where each entry describes one 4 KB page, 4K/2Mp for TLBs where each entry can describe either one 4 KB page or one 2 MB hugepage)
- L : cache-line size (e.g. 32L = 32-byte cache line size)
- S : cache sector size (e.g. 2S means that the cache uses sectors of 2 cache-lines each)
- A : associativity (e.g. 6A = 6-way set-associative, FA = fully-associative)
class="wikitable"
|+ Legend for cache/TLB descriptor byte encodings |
{{shade|color=blue|35|Level-1 instruction or data cache}} | {{shade|color=blue|70|Level-2 | {{shade|color=blue|100|Level-3 | {{shade|color=gold|25|Instruction | {{shade|color=gold|80|Level-2 | {{yes|Other | style="background: #ccc; color: black; vertical-align: middle; text-align: center" | (reserved) |
class="wikitable" style="background:#ccc; color: black; vertical-align: middle; text-align: center"
|+ CPUID EAX=2: Cache/TLB descriptor byte encodings ! !! x0 !! x1 !! x2 !! x3 !! x4 !! x5 !! x6 !! x7 !! !! x8 !! x9 !! xA !! xB !! xC !! xD !! xE !! xF !! | ||||||||||||||||||
0x
| {{yes|null ! 0x | {{shade|color=blue|35|L1I: 16K, ! 0x | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1x
| {{shade|color=blue|35|(L1D: 16K, ! 1x | || || {{shade|color=blue|70|(L2C: 96K, ! 1x | ||||||||||||||||||
2x
| || {{shade|color=blue|70|L2C: 256K, ! 2x | (128-byte ! 2x | ||||||||||||||||||
3x
| {{shade|color=blue|35|L1I: 32K, ! 3x | || {{shade|color=blue|70|L2C: 128K, but have been removed from later Intel documentation even though several of them have been used in Intel CPUs (mostly in Netburst-based Celeron CPUs, e.g. ! 3x | ||||||||||||||||||
4x
| {{yes|no L3 cache ! 4x | {{shade|color=blue|70|L2C: 3M, | style="background: linear-gradient(to top right, #73CEFF 0%, #73CEFF 50%, #AADCFE 50%, #AADCFE); color: black; vertical-align: middle; text-align: center" | L2C/L3C:{{efn|Descriptor | {{shade|color=blue|100|L3C: 6M, ! 4x | ||||||||||||||||||
5x
| {{shade|color=gold|25|{{nowrap|ITLB: 64E,FA,}} ! 5x | || {{shade|color=gold|25|DTLB: 16E, ! 5x | ||||||||||||||||||
6x
| {{shade|color=blue|35|L1D: 16K, | {{shade|color=gold|25|{{nowrap|DTLB: 512E,}} ! 6x | {{shade|color=blue|35|L1D: 32K, ! 6x | ||||||||||||||||||
7x
| {{shade|color=blue|35|Trace cache,
! 7x | {{shade|color=blue|70|L2C: 1M, ! 7x | ||||||||||||||||||
8x
| {{shade|color=blue|70|L2C: 512K, ! 8x | {{shade|color=blue|100|(L3C: 2M, ! 8x | ||||||||||||||||||
9x
| {{shade|color=gold|25|{{nowrap|(ITLB: 64E,FA,}} ! 9x | || || || {{shade|color=gold|25|{{nowrap|(DTLB: 96E,FA,}} ! 9x | ||||||||||||||||||
Ax
| {{shade|color=gold|25|DTLB: 32E, ! Ax | || || || || || || || ! Ax | ||||||||||||||||||
Bx
| {{shade|color=gold|25|ITLB: 128E, ! Bx | || || {{shade|color=gold|25|DTLB: 64E, ! Bx | ||||||||||||||||||
Cx
| {{shade|color=gold|25|DTLB: 8E, | {{shade|color=gold|80|{{nowrap|L2TLB: 1024E,}} | {{shade|color=gold|25|DTLB: 16E, | {{shade|color=gold|80|style=line-height:1.2|{{small|Two L2 STLBs: | {{shade|color=gold|25|DTLB: 32E, ! Cx | || || {{shade|color=gold|80|{{nowrap|L2TLB: 512E,}} ! Cx | ||||||||||||||||||
Dx
| {{shade|color=blue|100|L3C: 512K, ! Dx | {{shade|color=blue|100|L3C: 4M, ! Dx | ||||||||||||||||||
Ex
| || || {{shade|color=blue|100|L3C: 2M, ! Ex | || || {{shade|color=blue|100|L3C: 12M, ! Ex | ||||||||||||||||||
Fx
| {{yes|64-byte ! Fx | || || || || || || {{yes|Leaf 2 has ! Fx | ||||||||||||||||||
x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | xA | xB | xC | xD | xE | xF |
{{notelist}}
{{vpad}}
EAX=3: Processor Serial Number
{{see also|Pentium III#Controversy about privacy issues}}
This returns the processor's serial number. The processor serial number was introduced on Intel Pentium III, but due to privacy concerns, this feature is no longer implemented on later models (the PSN feature bit is always cleared). Transmeta's Efficeon and Crusoe processors also provide this feature. AMD CPUs however, do not implement this feature in any CPU models.
For Intel Pentium III CPUs, the serial number is returned in the EDX:ECX registers. For Transmeta Efficeon CPUs, it is returned in the EBX:EAX registers. And for Transmeta Crusoe CPUs, it is returned in the EBX register only.
Note that the processor serial number feature must be enabled in the BIOS setting in order to function.
EAX=4 and EAX=8000'001Dh: Cache Hierarchy and Topology
These two leaves are used to provide information about the cache hierarchy levels available to the processor core on which the CPUID
instruction is run. Leaf 4
is used on Intel processors and leaf 8000'001Dh
is used on AMD processors - they both return data in EAX, EBX, ECX and EDX, using the same data format except that leaf 4
returns a few additional fields that are considered "reserved" for leaf 8000'001Dh
. They both provide CPU cache information in a series of sub-leaves selected by ECX - to get information about all the cache levels, it is necessary to invoke CPUID
repeatedly, with EAX=4
or 8000'001Dh
and ECX set to increasing values starting from 0 (0,1,2,...) until a sub-leaf not describing any caches (EAX[4:0]=0) is found. The sub-leaves that do return cache information may appear in any order, but all of them will appear before the first sub-leaf not describing any caches.
In the below table, fields that are defined for leaf 4
but not for leaf 8000'001Dh
are highlighted with yellow cell coloring and a (#4) item.
class="wikitable"
|+CPUID EAX=4 and 8000'001Dh: Cache property information in EAX, EBX and EDX ! Bit ! EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="15" | ! EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="15" | ! EDX{{efn|text=Intel AP-485, revisions 31Intel, [https://kib.kiev.ua/x86docs/Intel/AppNote485/241618-031.pdf Processor Identification and the CPUID Instruction], order no. 241618-031, sep 2006, page 32. and 32, list bits 9:0 of EDX as a "Prefetch Stride" field - this was removed in revision 33 and all later Intel documentation, and no processor is known to use EDX in this manner.}} ! Bit |
0
| rowspan=5 | Cache Type:
| rowspan=10 | System coherency line size in bytes, {{nowrap|minus 1}} | ! 0 |
---|
1
| Cache inclusiveness. If 1, then cache is inclusive of lower-level caches. ! 1 |
2
| {{maybe|Complex cache indexing. If 1, then cache uses a complex function for cache indexing, else the cache is direct-mapped. (#4)}} ! 2 |
3
| style="text-align:center; background:lightgrey;" | (reserved) ! 3 |
4
| style="text-align:center; background:lightgrey;" | (reserved) ! 4 |
7:5
| Cache Level (starting from 1) | style="text-align:center; background:lightgrey;" | (reserved) ! 7:5 |
8
| Self initializing cache level (1=doesn't need software initialization after reset) | style="text-align:center; background:lightgrey;" | (reserved) ! 8 |
9
| Fully Associative Cache | style="text-align:center; background:lightgrey;" | (reserved) ! 9 |
10
| {{maybe|( | style="text-align:center; background:lightgrey;" | (reserved) ! 10 |
11
| {{maybe|(Cache Inclusiveness){{efn|name=leaf4_knc}} (#4)}} | style="text-align:center; background:lightgrey;" | (reserved) ! 11 |
13:12
| style="text-align:center; background:lightgrey;" | (reserved) | rowspan=2 | Physical line partitions (number of cache lines that share a cache address tag), {{nowrap|minus 1}} | style="text-align:center; background:lightgrey;" | (reserved) ! 13:12 |
21:14
| rowspan=2 | Maximum number of addressable IDs for logical processors sharing this cache, {{nowrap|minus 1}} | style="text-align:center; background:lightgrey;" | (reserved) ! 21:14 |
25:22
| rowspan=2 | Ways of cache associativity, {{nowrap|minus 1}} | style="text-align:center; background:lightgrey;" | (reserved) ! 25:22 |
31:26
| {{maybe|Maximum number of addressable IDs for processor cores in physical package, {{nowrap|minus 1}} (#4)}} | style="text-align:center; background:lightgrey;" | (reserved) ! 31:26 |
{{notelist}}
{{vpad}}
For any caches that are valid and not fully-associative, the value returned in ECX is the number of sets in the cache minus 1. (For fully-associative caches, ECX should be treated as if it return the value 0.)
For any given cache described by a sub-leaf of CPUID
leaf 4
or 8000'001Dh
, the total cache size in bytes can be computed as:
CacheSize = (EBX[11:0]+1) * (EBX[21:12]+1) * (EBX[31:22]+1) * (ECX+1)
For example, on Intel Crystalwell CPUs, executing CPUID with EAX=4 and ECX=4 will cause the processor to return the following size information for its level-4 cache in EBX and ECX: EBX=03C0F03F
and ECX=00001FFF
- this should be taken to mean that this cache has a cache line size of 64 bytes (EBX[11:0]+1), has 16 cache lines per tag (EBX[21:12]+1), is 16-way set-associative (EBX[31:22]+1) with 8192 sets (ECX+1), for a total size of 64*16*16*8192=134217728 bytes, or 128 binary megabytes.
{{vpad}}
EAX=4 and EAX=Bh: Intel Thread/Core and Cache Topology
These two leaves are used for processor topology (thread, core, package) and cache hierarchy enumeration in Intel multi-core (and hyperthreaded) processors.{{cite web|url=https://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration/|title=Intel 64 Architecture Processor Topology Enumeration|author=Shih Kuo|date=Jan 27, 2012}} {{As of|2013}} AMD does not use these leaves but has alternate ways of doing the core enumeration.{{cite web |url=http://developer.amd.com/resources/documentation-articles/articles-whitepapers/processor-and-core-enumeration-using-cpuid/ |title=Processor and Core Enumeration Using CPUID {{pipe}} AMD |publisher=Developer.amd.com |access-date=2014-07-10 |archive-url=https://web.archive.org/web/20140714221717/http://developer.amd.com/resources/documentation-articles/articles-whitepapers/processor-and-core-enumeration-using-cpuid/ |archive-date=2014-07-14 |url-status=dead }}
Unlike most other CPUID leaves, leaf Bh will return different values in EDX depending on which logical processor the CPUID instruction runs; the value returned in EDX is actually the x2APIC id of the logical processor. The x2APIC id space is not continuously mapped to logical processors, however; there can be gaps in the mapping, meaning that some intermediate x2APIC ids don't necessarily correspond to any logical processor. Additional information for mapping the x2APIC ids to cores is provided in the other registers. Although the leaf Bh has sub-leaves (selected by ECX as described further below), the value returned in EDX is only affected by the logical processor on which the instruction is running but not by the subleaf.
The processor(s) topology exposed by leaf Bh is a hierarchical one, but with the strange caveat that the order of (logical) levels in this hierarchy doesn't necessarily correspond to the order in the physical hierarchy (SMT/core/package). However, every logical level can be queried as an ECX subleaf (of the Bh leaf) for its correspondence to a "level type", which can be either SMT, core, or "invalid". The level id space starts at 0 and is continuous, meaning that if a level id is invalid, all higher level ids will also be invalid. The level type is returned in bits 15:08 of ECX, while the number of logical processors at the level queried is returned in EBX. Finally, the connection between these levels and x2APIC ids is returned in EAX[4:0] as the number of bits that the x2APIC id must be shifted in order to obtain a unique id at the next level.
As an example, a dual-core Westmere processor capable of hyperthreading (thus having two cores and four threads in total) could have x2APIC ids 0, 1, 4 and 5 for its four logical processors. Leaf Bh (=EAX), subleaf 0 (=ECX) of CPUID could for instance return 100h in ECX, meaning that level 0 describes the SMT (hyperthreading) layer, and return 2 in EBX because there are two logical processors (SMT units) per physical core. The value returned in EAX for this 0-subleaf should be 1 in this case, because shifting the aforementioned x2APIC ids to the right by one bit gives a unique core number (at the next level of the level id hierarchy) and erases the SMT id bit inside each core. A simpler way to interpret this information is that the last bit (bit number 0) of the x2APIC id identifies the SMT/hyperthreading unit inside each core in our example. Advancing to subleaf 1 (by making another call to CPUID with EAX=Bh and ECX=1) could for instance return 201h in ECX, meaning that this is a core-type level, and 4 in EBX because there are 4 logical processors in the package; EAX returned could be any value greater than 3, because it so happens that bit number 2 is used to identify the core in the x2APIC id. Note that bit number 1 of the x2APIC id is not used in this example. However, EAX returned at this level could well be 4 (and it happens to be so on a Clarkdale Core i3 5x0) because that also gives a unique id at the package level (=0 obviously) when shifting the x2APIC id by 4 bits. Finally, you may wonder what the EAX=4 leaf can tell us that we didn't find out already. In EAX[31:26] it returns the APIC mask bits reserved for a package; that would be 111b in our example because bits 0 to 2 are used for identifying logical processors inside this package, but bit 1 is also reserved although not used as part of the logical processor identification scheme. In other words, APIC ids 0 to 7 are reserved for the package, even though half of these values don't map to a logical processor.
The cache hierarchy of the processor is explored by looking at the sub-leaves of leaf 4. The APIC ids are also used in this hierarchy to convey information about how the different levels of cache are shared by the SMT units and cores. To continue our example, the L2 cache, which is shared by SMT units of the same core but not between physical cores on the Westmere is indicated by EAX[26:14] being set to 1, while the information that the L3 cache is shared by the whole package is indicated by setting those bits to (at least) 111b. The cache details, including cache type, size, and associativity are communicated via the other registers on leaf 4.
Beware that older versions of the Intel app note 485 contain some misleading information, particularly with respect to identifying and counting cores in a multi-core processor;{{cite web|url=https://software.intel.com/en-us/forums/topic/352709#comment-1719904 |title=Sandybridge processors report incorrect core number? |publisher=Software.intel.com |date=2012-12-29 |access-date=2014-07-10}} errors from misinterpreting this information have even been incorporated in the Microsoft sample code for using CPUID, even for the 2013 edition of Visual Studio,{{cite web|url=http://msdn.microsoft.com/en-us/library/hskdteyh.aspx |title=cpuid, __cpuidex |publisher=Msdn.microsoft.com |date=2014-06-20 |access-date=2014-07-10}} and also in the sandpile.org page for CPUID,{{cite web|url=http://www.sandpile.org/x86/cpuid.htm |title=x86 architecture - CPUID |publisher=sandpile.org |access-date=2014-07-10}} but the Intel code sample for identifying processor topology has the correct interpretation, and the current Intel Software Developer's Manual has a more clear language. The (open source) cross-platform production code{{cite web|url=http://trac.wildfiregames.com/browser/ps/trunk/source/lib/sysdep/arch/x86_x64/topology.cpp |title=topology.cpp in ps/trunk/source/lib/sysdep/arch/x86_x64 – Wildfire Games |publisher=Trac.wildfiregames.com |date=2011-12-27 |access-date=2014-07-10 |archive-url=https://web.archive.org/web/20210309001211/http://trac.wildfiregames.com/browser/ps/trunk/source/lib/sysdep/arch/x86_x64/topology.cpp |archive-date=2021-03-09}} from Wildfire Games also implements the correct interpretation of the Intel documentation.
Topology detection examples involving older (pre-2010) Intel processors that lack x2APIC (thus don't implement the EAX=Bh leaf) are given in a 2010 Intel presentation.[https://software.intel.com/en-us/articles/hyper-threading-technology-and-multi-core-processor-detection Hyper-Threading Technology and Multi-Core Processor Detection] Beware that using that older detection method on 2010 and newer Intel processors may overestimate the number of cores and logical processors because the old detection method assumes there are no gaps in the APIC id space, and this assumption is violated by some newer processors (starting with the Core i3 5x0 series), but these newer processors also come with an x2APIC, so their topology can be correctly determined using the EAX=Bh leaf method.
EAX=5: MONITOR/MWAIT Features
This returns feature information related to the MONITOR
and MWAIT
instructions in the EAX, EBX, ECX and EDX registers.
class="wikitable"
|+CPUID EAX=5: MONITOR/MWAIT feature information in EAX, EBX, EDX ! Bit ! EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="9" | ! EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="9" | ! EDX ! Bit |
3:0
| rowspan="4" | Smallest monitor-line size in bytes | rowspan="4" | Largest monitor-line size in bytes | Number of C0{{efn|1=The C0 to C7 states are processor-specific C-states, which do not necessarily correspond 1:1 to ACPI C-states.}} sub-states supported for ! 3:0 |
---|
7:4
| Number of C1 sub-states supported for ! 7:4 |
11:8
| Number of C2 sub-states supported for ! 11:8 |
15:12
| Number of C3 sub-states supported for ! 15:12 |
19:16
| rowspan="4" style="text-align:center; background:lightgrey;" | (reserved) | rowspan="4" style="text-align:center; background:lightgrey;" | (reserved) | Number of C4 sub-states supported for ! 19:16 |
23:20
| Number of C5 sub-states supported for ! 23:20 |
27:24
| Number of C6 sub-states supported for ! 27:24 |
31:28
| Number of C7 sub-states supported for ! 31:28 |
{{notelist}}
class="wikitable"
|+CPUID EAX=5: MONITOR/MWAIT extension enumeration in ECX ! rowspan="2" | Bit ! colspan="2" | ECX |
Short
! Feature |
---|
0
| EMX || Enumeration of MONITOR/MWAIT extensions in ECX and EDX supported |
1
| IBE || Supports treating interrupts as break-events for |
2
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) |
3
| Monitorless_MWAIT || Allow |
31:4 | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) |
EAX=6: Thermal and Power Management
This returns feature bits in the EAX register and additional information in the EBX, ECX and EDX registers.
class="wikitable"
|+CPUID EAX=6: Thermal/power management feature bits in EAX ! rowspan="2" | Bit ! colspan="2" | EAX |
Short
! Feature |
---|
0
| DTS || Digital Thermal Sensor capability |
1
| || Intel Turbo Boost Technology capability |
2
| ARAT{{efn|text=On Intel Pentium 4 family processors only, bit 2 of EAX is used to indicate OPP (Operating Point Protection)Intel, [https://kib.kiev.ua/x86docs/Intel/AppNote485/241618-030.pdf Intel Processor Identification and the CPUID Instruction (AP-485, rev 30)], order no. 241618-030, Jan 2006, page 19. instead of ARAT.}} || Always Running APIC Timer capability |
3
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) |
4
| PLN || Power Limit Notification capability |
5
| ECMD || Extended Clock Modulation Duty capability |
6
| PTM || Package Thermal Management capability |
7
| HWP || Hardware-controlled Performance States. MSRs added:
|
8
| HWP_Notification || HWP notification of dynamic guaranteed performance change - |
9
| HWP_Activity_Window || HWP Activity Window control - bits 41:32 of |
10
| HWP_Energy_Performance_Preference || HWP Energy/performance preference control - bits 31:24 of |
11
| HWP_Package_Level_Request || HWP Package-level control - |
12
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) |
13
| HDC || Hardware Duty Cycling supported. MSRs added:
|
14
| || Intel Turbo Boost Max Technology 3.0 available |
15
| || Interrupts upon changes to |
16
| || HWP PECI override supported - bits 63:60 of |
17
| || Flexible HWP - bits 63:59 of |
18
| Fast Access Mode || Fast access mode for |
19
| HW_FEEDBACK || Hardware Feedback Interface. Added MSRs:
|
20
| || |
21
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) |
22
| HWP Control MSR || |
23
| || Intel Thread Director supported. Added MSRs:
|
24
| || |
31:25 | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) |
{{notelist}}
class="wikitable"
|+CPUID EAX=6: Thermal/power management feature fields in EBX, ECX and EDX ! Bit ! EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="9" | ! ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="9" | ! EDX ! Bit |
0
| rowspan="4" | Number of Interrupt Thresholds in Digital Thermal Sensor | Effective frequency interface supported - | Hardware Feedback reporting: Performance Capability Reporting supported ! 0 |
---|
1
| (ACNT2 Capability){{efn|text=The "ACNT2 Capability" bit is listed in Intel AP-485 rev 038Intel, [https://kib.kiev.ua/x86docs/Intel/AppNote485/241618-038.pdf Processor Identification and the CPUID Instruction], order no. 241618-038, apr 2012, p.38 and 039, but not listed in any revision of the Intel SDM. The feature is known to exist in only a few Intel CPUs, e.g. Xeon "Harpertown" stepping E0.Intel, [https://web.archive.org/web/20230511191706/https://qdms.intel.com/dm/d.aspx/4E8B0DA3-C0C1-49FF-8592-F3C36E417233/PCN108701-00.pdf Product Change Notification 108701], 1 aug 2008. Archived on May 11, 2023}} | Hardware Feedback reporting: Efficiency Capability Reporting supported ! 1 |
2
| style="text-align:center; background:lightgrey;" | (reserved) | rowspan="3" style="text-align:center; background:lightgrey;" | (reserved) ! 2 |
3
| Performance-Energy Bias capability - ! 3 |
7:4
| rowspan="4" style="text-align:center; background:lightgrey;" | (reserved) | style="text-align:center; background:lightgrey;" | (reserved) ! 7:4 |
11:8
| rowspan="2" | Number of Intel Thread Director classes supported by hardware | Size of Hardware Feedback interface structure (in units of 4 KB) minus 1 ! 11:8 |
15:12
| style="text-align:center; background:lightgrey;" | (reserved) ! 15:12 |
31:16 | style="text-align:center; background:lightgrey;" | (reserved) | Index of this logical processor's row in hardware feedback interface structure ! |
{{notelist}}
{{vpad}}
EAX=7, ECX=0: Extended Features
This returns extended feature flags in EBX, ECX, and EDX. Returns the maximum ECX value for EAX=7 in EAX.
class="wikitable"
|+ CPUID EAX=7,ECX=0: Extended feature bits in EBX, ECX and EDX ! rowspan="2" | Bit ! colspan="2" | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="34" | ! colspan="2" | ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="34" | ! colspan="2" | EDX ! rowspan="2" | Bit |
Short
! Feature ! Short ! Feature ! Short ! Feature |
---|
0
| fsgsbase || Access to base of %fs and %gs | prefetchwt1 || | (sgx-tem){{efn|name=leaf7_0_tdx}} || ? ! 0 |
1
| || IA32_TSC_ADJUST MSR | avx512-vbmi || AVX-512 Vector Bit Manipulation Instructions | sgx-keys || Attestation Services for Intel SGX ! 1 |
2
| sgx || Software Guard Extensions | umip || User-mode Instruction Prevention | avx512-4vnniw || AVX-512 4-register Neural Network Instructions ! 2 |
3
| bmi1 || Bit Manipulation Instruction Set 1 | pku || Memory Protection Keys for User-mode pages | avx512-4fmaps || AVX-512 4-register Multiply Accumulation Single precision ! 3 |
4
| hle || TSX Hardware Lock Elision | ospke || PKU enabled by OS | fsrm || Fast Short {{nowrap| ! 4 |
5
| avx2 || Advanced Vector Extensions 2 | waitpkg || Timed pause and user-level monitor/wait instructions ( | uintr || User Inter-processor Interrupts ! 5 |
6
| fdp-excptn-only || x87 FPU data pointer register updated on exceptions only | avx512-vbmi2 || AVX-512 Vector Bit Manipulation Instructions 2 | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 6 |
7
| smep || Supervisor Mode Execution Prevention | cet_ss/shstk || Control flow enforcement (CET): shadow stack (SHSTK alternative name) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 7 |
8
| bmi2 || Bit Manipulation Instruction Set 2 | gfni || Galois Field instructions | avx512-vp2intersect || AVX-512 vector intersection instructions on 32/64-bit integers ! 8 |
9
| erms || Enhanced {{nowrap| | vaes || Vector AES instruction set (VEX-256/EVEX) | srbds-ctrl || Special Register Buffer Data Sampling Mitigations ! 9 |
10
| invpcid || | vpclmulqdq || CLMUL instruction set (VEX-256/EVEX) | md-clear || ! 10 |
11
| rtm || TSX Restricted Transactional Memory | avx512-vnni || AVX-512 Vector Neural Network Instructions | rtm-always-abort{{Cite web |date=June 2023 |title=Performance Monitoring Impact of Intel Transactional Synchronization Extension Memory Ordering Issue |url=https://cdrdv2.intel.com/v1/dl/getContent/604224 |access-date=8 May 2024 |website=Intel |page=8 |format=PDF}} || All TSX transactions are aborted ! 11 |
12
| rdt-m/pqm || Intel Resource Director (RDT) Monitoring or AMD Platform QOS Monitoring | avx512-bitalg || AVX-512 BITALG instructions | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 12 |
13
| || x87 FPU CS and DS deprecated | tme_en || Total Memory Encryption MSRs available | rtm-force-abort || TSX_FORCE_ABORT (MSR ! 13 |
14
| mpx || Intel MPX (Memory Protection Extensions) | avx512-vpopcntdq || AVX-512 Vector Population Count Double and Quad-word | serialize || ! 14 |
15
| rdt-a/pqe || Intel Resource Director (RDT) Allocation or AMD Platform QOS Enforcement | (fzm){{efn|name=leaf7_0_tdx|text=As of April 2024, the FZM, MPRR and SGX_TEM bits are listed only in Intel TDX documentationIntel, [https://web.archive.org/web/20210729201408/https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf Architecture Specification: Intel Trust Domain Extensions (Intel TDX) Module], order no. 344425-001, sep 2020, pages 120-122. Archived from the [https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1eas.pdf original] on Jul 29, 2021. and are not set in any known processor.}} || ? | hybrid || Mixture of CPU types in processor topology (e.g. Alder Lake) ! 15 |
16
| avx512-f || AVX-512 Foundation | la57 || 5-level paging (57 address bits) | tsxldtrk || TSX load address tracking suspend/resume instructions ( ! 16 |
17
| avx512-dq || AVX-512 Doubleword and Quadword Instructions | rowspan="5" | mawau || rowspan="5" | The value of userspace MPX Address-Width Adjust used by the | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 17 |
18
| rdseed || | pconfig || Platform configuration (Memory Encryption Technologies Instructions) ! 18 |
19
| adx || Intel ADX (Multi-Precision Add-Carry Instruction Extensions) | lbr || Architectural Last Branch Records ! 19 |
20
| smap || Supervisor Mode Access Prevention | cet-ibt || Control flow enforcement (CET): indirect branch tracking ! 20 |
21
| avx512-ifma || AVX-512 Integer Fused Multiply-Add Instructions | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 21 |
22
| (pcommit) || ( | rdpid || | amx-bf16 || AMX tile computation on bfloat16 numbers ! 22 |
23
| clflushopt || | kl || AES Key Locker | avx512-fp16 || AVX-512 half-precision floating-point arithmetic instructionsIntel, [https://cdrdv2-public.intel.com/678970/intel-avx512-fp16.pdf AVX512-FP16 Architecture Specification] (PDF), document number 347407-001, June 2021. [https://web.archive.org/web/20221026062138/https://cdrdv2-public.intel.com/678970/intel-avx512-fp16.pdf Archived] on Oct 26, 2022 ! 23 |
24
| clwb || | bus-lock-detect || Bus lock debug exceptions | amx-tile || AMX tile load/store instructions ! 24 |
25
| pt || Intel Processor Trace | cldemote || | amx-int8 || AMX tile computation on 8-bit integers ! 25 |
26
| avx512-pf || AVX-512 Prefetch Instructions | (mprr){{efn|name=leaf7_0_tdx}} || ? | ibrs / spec_ctrl || Speculation Control, part of Indirect Branch Control (IBC): ! 26 |
27
| avx512-er || AVX-512 Exponential and Reciprocal Instructions | movdiri || | stibp || Single Thread Indirect Branch Predictor, part of IBC ! 27 |
28
| avx512-cd || AVX-512 Conflict Detection Instructions | movdir64b || | L1D_FLUSH || IA32_FLUSH_CMD MSR ! 28 |
29
| sha || SHA-1 and SHA-256 extensions | enqcmd || Enqueue Stores and | || IA32_ARCH_CAPABILITIES MSR (lists speculative side channel mitigations) ! 29 |
30
| avx512-bw || AVX-512 Byte and Word Instructions | sgx-lc || SGX Launch Configuration | || IA32_CORE_CAPABILITIES MSR (lists model-specific core capabilities) ! 30 |
31
| avx512-vl || AVX-512 Vector Length Extensions | pks || Protection keys for supervisor-mode pages | ssbd || Speculative Store Bypass Disable, as mitigation for Speculative Store Bypass (IA32_SPEC_CTRL) ! 31 |
{{notelist}}
{{vpad}}
<span id="IBC"></span><span id="IBPB"></span><span id="IBRS"></span><span id="STIBP"></span><span id="SSBD"></span>EAX=7, ECX=1: Extended Features
This returns extended feature flags in all four registers.
class="wikitable"
|+ CPUID EAX=7,ECX=1: Extended feature bits in EAX, EBX, ECX, and EDX ! rowspan="2" | Bit ! colspan="2" | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="34" | ! colspan="2" | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="34" | ! colspan="2" | ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="34" | ! colspan="2" | EDX ! rowspan="2" | Bit |
Short || Feature
! Short || Feature ! Short || Feature ! Short || Feature |
---|
0
| sha512 || SHA-512 extensions | || Intel PPIN (Protected Processor Inventory Number): IA32_PPIN_CTL ( | || Asymmetric RDT Monitoring capability | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 0 |
1
| sm3 || SM3 hash extensions | pbndkb || Total Storage Encryption: | || Asymmetric RDT Allocation capability | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 1 |
2
| sm4 || SM4 cipher extensions | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | (legacy_reduced_isa) || (X86S,Intel, [https://web.archive.org/web/20241002150150/https://cdrdv2-public.intel.com/776648/x86s-eas-external-1.2.pdf X86S External Architecture Specification] v1.2, June 2024, order no. 351407-002, section 3.5, page 13. Archived from the [https://cdrdv2-public.intel.com/776648/x86s-eas-external-1.2.pdf original] on 2 Oct 2024. cancelledIntel, [https://www.intel.com/content/www/us/en/developer/articles/technical/envisioning-future-simplified-architecture.html Envisioning a Simplified Intel Architecture] - as of 20 Dec 2024, contains a mention that Intel has chosen not to pursue X86S. [https://web.archive.org/web/20241220104422/https://www.intel.com/content/www/us/en/developer/articles/technical/envisioning-future-simplified-architecture.html Archived] on 20 Dec 2024.) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 2 |
3
| rao-int || Remote Atomic Operations on integers: | CPUIDMAXVAL_LIM_RMV || If 1, then bit 22 of | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 3 |
4
| avx-vnni || AVX Vector Neural Network Instructions (VNNI) (VEX encoded) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | (sipi64) || 64-bit SIPI (Startup InterProcessor Interrupt) (part of cancelled X86S) | avx-vnni-int8 || AVX VNNI INT8 instructions ! 4 |
5
| avx512-bf16 || AVX-512 instructions for bfloat16 numbers | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | MSR_IMM || Immediate forms of the | avx-ne-convert || AVX no-exception FP conversion instructions (bfloat16↔FP32 and FP16→FP32) ! 5 |
6
| lass || Linear Address Space Separation (CR4 bit 27) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 6 |
7
| cmpccxadd || | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 7 |
8
| archperfmonext || Architectural Performance Monitoring Extended Leaf (EAX=23h) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | amx-complex || AMX support for "complex" tiles ( ! 8 |
9
| (dedup){{efn|text=As of April 2024, the DEDUP bit is listed only in Intel TDX documentation and is not set in any known processor.}} || ? | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 9 |
10
| fzrm || Fast zero-length {{nowrap| | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | avx-vnni-int16 || AVX VNNI INT16 instructions ! 10 |
11
| fsrs || Fast short {{nowrap| | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 11 |
12
| rsrcs || Fast short {{nowrap| | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 12 |
13
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | utmr || User-timer events: IA32_UINTR_TIMER ( ! 13 |
14
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | prefetchi || Instruction-cache prefetch instructions ( ! 14 |
15
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | user_msr || User-mode MSR access instructions ( ! 15 |
16
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 16 |
17
| fred || Flexible Return and Event DeliveryIntel, [https://cdrdv2-public.intel.com/795033/346446-flexible-return-and-event-delivery.pdf Flexible Return and Event Delivery (FRED) Specification], rev 6.1, December 2023, order no. 346446-007, page 14. [https://web.archive.org/web/20231222195250/https://cdrdv2-public.intel.com/795033/346446-flexible-return-and-event-delivery.pdf Archived] on Dec 22, 2023. | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | uiret-uif-from-rflags || If 1, the ! 17 |
18
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | cet-sss || If 1, then Control-Flow Enforcement (CET) Supervisor Shadow Stacks (SSS) are guaranteed not to become prematurely busy as long as shadow stack switching does not cause page faults on the stack being switched to.Intel, [https://kib.kiev.ua/x86docs/Intel/SDMs/325462-080.pdf Software Developer's Manual], order no. 325462-080, June 2023 - information about prematurely busy shadow stacks provided in Volume 1, section 17.2.3 on page 410; Volume 2A, table 3.8 (CPUID EAX=7,ECX=2) on page 820; Volume 3C, table 25-14 on page 3958 and section 26.4.3 on page 3984.Intel, [https://cdrdv2-public.intel.com/785687/356628-complex-shadow-stack-updates-2.pdf Complex Shadow-Stack Updates (Intel Control-Flow Enforcement Technology)], order no. 356628-001, August 2023. [https://web.archive.org/web/20240402080946/https://cdrdv2-public.intel.com/785687/356628-complex-shadow-stack-updates-2.pdf Archived] on 2 Apr 2024.LKML, [https://lkml.org/lkml/2023/6/16/1194 Re: (PATCH v3 00/21) Enable CET Virtualization], Jun 16, 2023 - provides additional discussion of how the CET-SSS prematurely-busy stack issue interacts with virtualization. [https://web.archive.org/web/20230807130831/https://lkml.org/lkml/2023/6/16/1194 Archived] on 7 Aug 2023. ! 18 |
19
| wrmsrns || | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | avx10 || AVX10 Converged Vector ISA (see also leaf 24h)Intel, [https://cdrdv2-public.intel.com/784267/355989-intel-avx10-spec.pdf Advanced Vector Extensions 10], rev 1.0, July 2023, order no. 355989-001. [https://web.archive.org/web/20230724201235/https://cdrdv2-public.intel.com/784267/355989-intel-avx10-spec.pdf Archived] on Jul 24, 2023. ! 19 |
20
| nmi_src || NMI source reporting | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 20 |
21
| amx-fp16 || AMX instructions for FP16 numbers | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | APX_F || Advanced Performance Extensions, Foundation (adds REX2 and extended EVEX prefix encodings to support 32 GPRs, as well as some new instructions)Intel, [https://cdrdv2-public.intel.com/786223/355828-intel-apx-spec.pdf Advanced Performance Extensions - Architecture Specification], rev 2.0, Aug 2023, order no. 355828-002, page 37. [https://web.archive.org/web/20230910083914/https://cdrdv2-public.intel.com/786223/355828-intel-apx-spec.pdf Archived] on Sep 10, 2023. ! 21 |
22
| hreset || | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 22 |
23
| avx-ifma || AVX IFMA instructions | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | mwait || MWAIT instruction{{efn|1=Support for the ! 23 |
24
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 24 |
25
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 25 |
26
| lam || Linear Address Masking | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 26 |
27
| msrlist || | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 27 |
28
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 28 |
29
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 29 |
30
| invd_disable_post_bios_done || If 1, supports | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 30 |
31
| MOVRS || | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 31 |
{{notelist}}
{{vpad}}
EAX=7, ECX=2: Extended Features
This returns extended feature flags in EDX.
EAX, EBX and ECX are reserved.
{{vpad}}
EAX=0Dh: XSAVE Features and State Components
This leaf is used to enumerate XSAVE features and state components.
The XSAVE instruction set extension is designed to save/restore CPU extended state (typically for the purpose of context switching) in a manner that can be extended to cover new instruction set extensions without the OS context-switching code needing to understand the specifics of the new extensions. This is done by defining a series of state-components, each with a size and offset within a given save area, and each corresponding to a subset of the state needed for one CPU extension or another. The EAX=0Dh
CPUID leaf is used to provide information about which state-components the CPU supports and what their sizes/offsets are, so that the OS can reserve the proper amount of space and set the associated enable-bits.
The state-components can be subdivided into two groups: user-state (state-items that are visible to the application, e.g. AVX-512 vector registers), and supervisor-state (state items that affect the application but are not directly user-visible, e.g. user-mode interrupt configuration). The user-state items are enabled by setting their associated bits in the XCR0
control register, while the supervisor-state items are enabled by setting their associated bits in the IA32_XSS
(0DA0h
) MSR - the indicated state items then become the state-components that can be saved and restored with the XSAVE
/XRSTOR
family of instructions.
{{vpad}}
The XSAVE mechanism can handle up to 63 state-components in this manner. State-components 0 and 1 (x87 and SSE, respectively) have fixed offsets and sizes - for state-components 2 to 62, their sizes, offsets and a few additional flags can be queried by executing CPUID
with EAX=0Dh
and ECX
set to the index of the state-component. This will return the following items in EAX, EBX and ECX (with EDX being reserved):
class="wikitable"
|+ CPUID EAX=0Dh, ECX≥2: XSAVE state-component information ! Bit | EAX | EBX | ECX | Bit |
0
| rowspan="3" | Size in bytes of state-component | rowspan="3" | Offset of state-component from the start of the (This offset is 0 for supervisor state-components, since these can only be saved with the | User/supervisor state-component:
! 0 | ||||
---|---|---|---|---|
1
| 64-byte alignment enable when state save compaction is used. If this bit is set for a state-component, then, when storing state with compaction, padding will be inserted between the preceding state-component and this state-component as needed to provide 64-byte alignment. If this bit is not set, the state-component will be stored directly after the preceding one. ! 1 | ||||
31:2 | style="text-align:center; background:lightgrey;"| (reserved) ! |
Attempting to query an unsupported state-component in this manner results in EAX,EBX,ECX and EDX all being set to 0.
Sub-leaves 0 and 1 of CPUID
leaf 0Dh
are used to provide feature information:
class="wikitable"
|+ CPUID EAX=0Dh,ECX=0: XSAVE features ! EBX | ECX | EDX:EAX |
Maximum size (in bytes) of XSAVE save area for the set of state-components currently set in XCR0 .
| Maximum size (in bytes) of XSAVE save area if all state-components supported by | 64-bit bitmap of state-components supported by |
class="wikitable"
|+ CPUID EAX=0Dh,ECX=1: XSAVE extended features ! EAX | EBX | EDX:ECX |
XSAVE feature flags (see below table)
| Size (in bytes) of XSAVE area containing all the state-components currently set in | 64-bit bitmap of state-components supported by |
class="wikitable"
|+ EAX=0Dh,ECX=1: XSAVE feature flags in EAX !rowspan=2| Bit | colspan=2| EAX |
Short || Feature | |
---|---|
0
| xsaveopt || | |
1
| xsavec || | |
2
| xgetbv_ecx1 || | |
3
| xss || | |
4
| xfd || XFD (Extended Feature Disable) supported | |
31:5 | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
{{vpad}}
As of July 2023, the XSAVE state-components that have been architecturally defined are:
class="wikitable"
|+ XSAVE State-components ! Index | Description | Enabled with |
0
| x87 state || {{yes|XCR0{{efn|Bit 0 of | ||
---|---|---|
1
| SSE state: | ||
2
| AVX state: top halves of | ||
3
| MPX state: | ||
4
| MPX state: | ||
5
| AVX-512 state: opmask registers | ||
6
| AVX-512 "ZMM_Hi256" state: top halves of | ||
7
| AVX-512 "Hi16_ZMM" state: | ||
8
| Processor Trace state || {{no|IA32_XSS}} | ||
9
| PKRU (User Protection Keys) register || {{yes|XCR0}} | ||
10
| PASID (Process Address Space ID) state || rowspan="7" {{no|IA32_XSS}} | ||
11
| CET_U state (Control-flow Enforcement Technology: user-mode functionality MSRs) | ||
12
| CET_S state (CET: shadow stack pointers for rings 0,1,2) | ||
13
| HDC (Hardware Duty Cycling) state | ||
14
| UINTR (User-Mode Interrupts) state | ||
15
| LBR (Last Branch Record) state | ||
16
| HWP (Hardware P-state control) state | ||
17
| AMX tile configuration state: | ||
18
| AMX tile data registers: | ||
19
| APX extended general-purpose registers: | ||
20 to 61 | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | ||
62
| Lightweight Profiling (LWP) (AMD only) || {{yes|XCR0}} | ||
63
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved){{efn|For the |
{{notelist}}
{{vpad}}
EAX=12h: SGX Capabilities
This leaf provides information about the supported capabilities of the Intel Software Guard Extensions (SGX) feature. The leaf provides multiple sub-leaves, selected with ECX.
Sub-leaf 0 provides information about supported SGX leaf functions in EAX and maximum supported SGX enclave sizes in EDX; ECX is reserved. EBX provides a bitmap of bits that can be set in the MISCSELECT field in the SECS (SGX Enclave Control Structure) - this field is used to control information written to the MISC region of the SSA (SGX Save State Area) when an AEX (SGX Asynchronous Enclave Exit) occurs.
class="wikitable"
|+ CPUID EAX=12h,ECX=0: SGX leaf functions, MISCSELECT and maximum-sizes ! rowspan=2 | Bit ! colspan=2 | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="19" | ! colspan=2 | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="19" | ! colspan=2 | EDX ! rowspan=2 | Bit |
Short || Feature
! Short || Feature ! Short || Feature |
---|
0
| sgx1 || SGX1 leaf functions | EXINFO || MISCSELECT: report information about page fault and general protection exception that occurred inside enclave | rowspan=8 | MaxEnclaveSize_Not64|| rowspan=8 | Log2 of maximum enclave size supported in non-64-bit mode ! 0 |
1
| sgx2 || SGX2 leaf functions | CPINFO || MISCSELECT: report information about control protection exception that occurred inside enclave ! 1 |
2
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 2 |
3
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 3 |
4
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 4 |
5
| oss || | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 5 |
6
| || | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 6 |
7
| || | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 7 |
8
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | rowspan=8 | MaxEnclaveSize_64 || rowspan=8 | Log2 of maximum enclave size supported in 64-bit mode ! 8 |
9
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 9 |
10
| || | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 10 |
11
| || | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 11 |
12
| 256BITSGX || | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 12 |
13
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 13 |
14
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 14 |
15
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 15 |
31:16 | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! |
{{vpad}}
Sub-leaf 1 provides a bitmap of which bits can be set in the 128-bit ATTRIBUTES field of SECS in EDX:ECX:EBX:EAX (this applies to the SECS copy used as input to the ENCLS[ECREATE]
leaf function). The top 64 bits (given in EDX:ECX) are a bitmap of which bits can be set in the XFRM (X-feature request mask) - this mask is a bitmask of which CPU state-components (see leaf 0Dh) will be saved to the SSA in case of an AEX; this has the same layout as the XCR0
control register. The other bits are given in EAX and EBX, as follows:
class="wikitable"
|+ CPUID EAX=12h,ECX=1: SGX settable bits in SECS.ATTRIBUTES ! rowspan=2 | Bit ! colspan=2 | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="14" | ! colspan=2 | EBX ! rowspan=2 | Bit |
Short || Feature
! Short || Feature |
---|
0
| style="background:lightgrey" | (INIT) || style="text-align:center; background:lightgrey;" | (must be 0){{efn|text=For the copy of the SECS that exists inside an exclave, bit 0 (INIT) of SECS.ATTRIBUTES is used to indicate that the enclave has been initialized with | rowspan=12 colspan=2 style="text-align:center; background:lightgrey;"| (reserved) ! 0 |
1
| DEBUG || Permit debugger to read and write enclave data using ! 1 |
2
| MODE64BIT || 64-bit-mode enclave ! 2 |
3
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 3 |
4
| PROVISIONKEY || Provisioning key available from ! 4 |
5
| EINITTOKEN_KEY || ! 5 |
6
| CET || CET (Control-Flow Enforcement Technology) attributes enable ! 6 |
7
| KSS || Key Separation and Sharing ! 7 |
8
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 8 |
9
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 9 |
10
| AEXNOTIFY || Threads inside enclave may receive AEX notificationsIntel, [https://cdrdv2-public.intel.com/736463/aex-notify-white-paper-public.pdf Asynchronous Enclave Exit Notify and the EDECCSSA User Leaf Function], 30 Jun 2022. [https://web.archive.org/web/20221121073302/https://cdrdv2-public.intel.com/736463/aex-notify-white-paper-public.pdf Archived] on 21 Nov 2022. ! 10 |
31:11 | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! |
{{notelist}}
{{vpad}}
Sub-leaves 2 and up are used to provide information about which physical memory regions are available for use as EPC (Enclave Page Cache) sections under SGX.
class="wikitable"
|+ CPUID EAX=12h,ECX≥2: SGX Enclave Page Cache section information |
Bits
! EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="5" | ! EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="5" | ! ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="5" | ! EDX ! Bits |
---|
3:0
| Sub-leaf type:
| rowspan=3 | Bits 51:32 of physical base address of EPC section | EPC Section properties:
| rowspan=3 | Bits 51:32 of size of EPC section ! 3:0 |
11:4 | style="text-align:center; background:lightgrey;"| (reserved) | style="text-align:center; background:lightgrey;"| (reserved) ! |
19:12 | rowspan=2 | Bits 31:12 of physical base address of EPC section | rowspan=2 | Bits 31:12 of size of EPC section ! |
31:20 | style="text-align:center; background:lightgrey;"| (reserved) | style="text-align:center; background:lightgrey;"| (reserved) ! |
{{vpad}}
EAX=14h, ECX=0: Processor Trace
This sub-leaf provides feature information for Intel Processor Trace (also known as Real Time Instruction Trace).
The value returned in EAX is the index of the highest sub-leaf supported for CPUID with EAX=14h. EBX and ECX provide feature flags, EDX is reserved.
class="wikitable"
|+ CPUID EAX=14h,ECX=0: Processor Trace feature bits in EBX and ECX ! rowspan=2 | Bit ! colspan=2 | EBX ! rowspan=14 | ! colspan=2 | ECX ! rowspan=2 | Bit |
Short || Feature
! Short || Feature |
---|
0
| || CR3 filtering supported | topaout || ToPA (Table of Physical Addresses) output mechanism for trace packets supported ! 0 |
1
| || Configurable PSB (Packet Stream Boundary) packet rate and Cycle-Accurate Mode (CYC packets) supported | mentry || ToPA tables can contain hold multiple output entries ! 1 |
2
| || IP filtering, TraceStop filtering and preservation of PT MSRs across warm reset supported | snglrngout || Single-Range Output scheme supported ! 2 |
3
| || MTC (Mini Time Counter) timing packets supported, and suppression of COFI (Change of Flow Instructions) packets supported. | || Output to Trace Transport subsystem supported ! 3 |
4
| ptwrite || | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 4 |
5
| || Power Event Trace supported | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 5 |
6
| || Preservation of PSB and PMI (performance monitoring interrupt) supported | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 6 |
7
| || Event Trace packet generation supported | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 7 |
8
| || TNT (Branch Taken-Not-Taken) packet generation disable supported. | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 8 |
9
| || PTTT (Processor Trace Trigger Tracing) supported | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 9 |
30:10 | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! |
31
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | | IP (Instruction Pointer) format for trace packets that contain IP payloads:
! 31 |
{{vpad}}
EAX=15h and EAX=16h: CPU, TSC, Bus and Core Crystal Clock Frequencies
These two leaves provide information about various frequencies in the CPU in EAX, EBX and ECX (EDX is reserved in both leaves).
class="wikitable"
|+ CPUID EAX=15h: TSC and Core Crystal frequency information ! EAX !! EBX !! ECX |
Ratio of TSC frequency to Core Crystal Clock frequency, denominator
| Ratio of TSC frequency to Core Crystal Clock frequency, numerator{{efn|name=unsupp_1516|Field not enumerated if zero.}} | Core Crystal Clock frequency, in units of Hz{{efn|name=unsupp_1516}} |
class="wikitable"
|+ CPUID EAX=16h: Processor and Bus specification frequencies{{efn|The frequency values reported by leaf 16h are the processor's specification frequencies - they are constant for the given processor and do not necessarily reflect the actual CPU clock speed at the time CPUID is called.}} ! Bits !! EAX !! EBX !! ECX !! Bits |
15:0
| Processor Base Frequency (in MHz){{efn|name=unsupp_1516}} | Processor Maximum Frequency (in MHz){{efn|name=unsupp_1516}} | Bus/Reference frequency (in MHz){{efn|name=unsupp_1516}} ! 15:0 |
---|
31:16
| style="text-align:center; background:lightgrey;" | (reserved) | style="text-align:center; background:lightgrey;" | (reserved) | style="text-align:center; background:lightgrey;" | (reserved) ! 31:16 |
{{notelist}}
{{vpad}}
If the returned values in EBX and ECX of leaf 15h are both nonzero, then the TSC (Time Stamp Counter) frequency in Hz is given by TSCFreq = ECX*(EBX/EAX)
.
On some processors (e.g. Intel Skylake), CPUID_15h_ECX is zero but CPUID_16h_EAX is present and not zero. On all known processors where this is the case,Linux kernel git commit 604dc91, [https://github.com/torvalds/linux/commit/604dc9170f2435d27da5039a3efd757dceadc684 x86/tsc: Use CPUID.0x16 to calculate missing crystal frequency], 9 May 2019 - contains notes on computing the Core Crystal Clock frequency on CPUs that don't specify it, and corresponding C code. the TSC frequency is equal to the Processor Base Frequency, and the Core Crystal Clock Frequency in Hz can be computed as CoreCrystalFreq = (CPUID_16h_EAX * 10000000) * (CPUID_15h_EAX/CPUID_15h_EBX)
.
On processors that enumerate the TSC/Core Crystal Clock ratio in CPUID leaf 15h, the APIC timer frequency will be the Core Crystal Clock frequency divided by the divisor specified by the APIC's Divide Configuration Register.Intel, [https://kib.kiev.ua/x86docs/Intel/SDMs/253668-083.pdf SDM Volume 3A], order no 253668-083, March 2024, chapter 11.5.4, page 408
{{vpad}}
EAX=17h: SoC Vendor Attribute Enumeration
This leaf is present in systems where an x86 CPU IP core is implemented in an SoC (System on chip) from another vendor - whereas the other leaves of CPUID
provide information about the x86 CPU core, this leaf provides information about the SoC. This leaf takes a sub-leaf index in ECX.
Sub-leaf 0 returns a maximum sub-leaf index in EAX (at least 3), and SoC identification information in EBX/ECX/EDX:
class="wikitable"
|+ CPUID EAX=17h,ECX=0: SoC identification information ! Bit ! EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="4" | ! ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="4" | ! EDX ! Bit | ||
15:0
| SoC Vendor ID | rowspan=3 | SoC Project ID | rowspan=3 | SoC Stepping ID within an SoC project ! 15:0 | ||
---|---|---|
16
| SoC Vendor ID scheme
{{(!}} class="wikitable sortable" ! ID | Vendor
{{!}}- {{!}} 1 {{ | }} Spreadtruminstlatx64, [http://users.atw.hu/instlatx64/GenuineIntel/GenuineIntel007065A_Spreadtrum_CPUID.txt Spreadtrum SC9853I-IA CPUID dump]
{{!)}}}}
! 16 |
31:17
| style="text-align:center; background:lightgrey;" | (reserved) ! 31:17 |
{{notelist}}
{{vpad}}
Sub-leaves 1 to 3 return a 48-byte SoC vendor brand string in UTF-8 format. Sub-leaf 1 returns the first 16 bytes in EAX,EBX,ECX,EDX (in that order); sub-leaf 2 returns the next 16 bytes and sub-leaf 3 returns the last 16 bytes. The string is allowed but not required to be null-terminated.
{{vpad}}
EAX=19h: Intel Key Locker Features
This leaf provides feature information for Intel Key Locker in EAX, EBX and ECX. EDX is reserved.
class="wikitable"
|+ CPUID EAX=19h: Key Locker feature bits in EAX, EBX and ECX ! rowspan=2 | Bit ! colspan=2 | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="8" | ! colspan=2 | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="8" | ! colspan=2 | ECX ! rowspan=2 | Bit |
Short || Feature
! Short || Feature ! Short || Feature |
---|
0
| || Key Locker restriction of CPL0-only supported | aes_kle || AES "Key Locker" Instructions enabled | || No-backup parameter to ! 0 |
1
| || Key Locker restriction of no-encrypt supported | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | || KeySource encoding of 1 (randomization of internal wrapping key) supported ! 1 |
2
| || Key Locker restriction of no-decrypt supported | aes_wide_kl || AES "Wide Key Locker" Instructions | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 2 |
3
| || (Process Restriction){{efn|text=As of April 2024, the "Process Restriction" bit is listed only in Intel TDX documentation and is not set in any known processor.}} | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 3 |
4
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | kl_msrs || "Key Locker" MSRs | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 4 |
31:5 | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! |
{{notelist}}
{{vpad}}
EAX=1Dh: Tile Information
When ECX=0
, the highest supported "palette" subleaf is enumerated in EAX. When ECX≥1
, information on palette n is returned.
class="wikitable"
|+ CPUID EAX=1Dh,ECX≥1: Tile Palette n Information ! rowspan="2" | Bits ! colspan="2" | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="4" | ! colspan="2" | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="4" | ! colspan="2" | ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="4" | ! colspan="2" | EDX ! rowspan="2" | Bits | ||||
Short | Feature
! Short | Feature
! Short | Feature
! Short | Feature |
---|---|---|---|---|
15:0
| total_tile_bytes || Size of all tile registers, in bytes (8192) | bytes_per_row || (64) | max_rows || (16) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 15:0 | ||||
31:16
| bytes_per_tile || Size of one tile, in bytes (1024) | max_names || Number of tile registers (8) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 31:16 |
{{vpad}}
EAX=1Eh, ECX=0: <code>TMUL</code> Information
This leaf returns information on the TMUL
(tile multiplier) unit.
class="wikitable"
|+ CPUID EAX=1Eh,ECX=0: ! rowspan="2" | Bits ! colspan="2" | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="6" | ! colspan="2" | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="6" | ! colspan="2" | ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="6" | ! colspan="2" | EDX ! rowspan="2" | Bits | ||||
Short | Feature
! Short | Feature
! Short | Feature
! Short | Feature |
---|---|---|---|---|
7:0
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | tmul_maxk || Maximum number of rows or columns (16) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 7:0 | ||||
15:8
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | tmul_maxn || Maximum number of bytes per column (64) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 15:8 | ||||
23:16
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 23:16 | ||||
31:24
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 31:24 |
{{vpad}}
EAX=1Eh, ECX=1: <code>TMUL</code> Information
This leaf returns feature flags on the TMUL
(tile multiplier) unit.
class="wikitable"
|+ CPUID EAX=1Eh,ECX=0: ! rowspan="2" | Bits ! colspan="2" | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="12" | ! colspan="2" | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="12" | ! colspan="2" | ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="12" | ! colspan="2" | EDX ! rowspan="2" | Bits | ||||
Short | Feature
! Short | Feature
! Short | Feature
! Short | Feature |
---|---|---|---|---|
0
| amx-int8 || 8-bit integer support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 0 | ||||
1
| amx-bf16 || bfloat16 support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 1 | ||||
2
| amx-complex || Complex number support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 2 | ||||
3
| amx-fp16 || float16 support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 3 | ||||
4
| amx-fp8 || float8 support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 4 | ||||
5
| amx-transpose || Transposition instruction support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 5 | ||||
6
| amx-tf32 || tf32/fp19 support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 6 | ||||
7
| amx-avx512 || AMX-AVX512 support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 7 | ||||
8
| amx-movrs || AMX-MOVRS support | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 8 | ||||
31:9
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 31:9 |
{{vpad}}
EAX=21h: Reserved for TDX enumeration
When Intel TDX (Trust Domain Extensions) is active, attempts to execute the CPUID
instruction by a TD (Trust Domain) guest will be intercepted by the TDX module.
This module will, when CPUID
is invoked with EAX=21h
and ECX=0
(leaf 21h
, sub-leaf 0), return the index of the highest supported sub-leaf for leaf 21h
in EAX
and a TDX module vendor ID string as a 12-byte ASCII string in EBX,EDX,ECX (in that order). Intel's own module implementation returns the vendor ID string "IntelTDX{{spaces|4}}"
(with four trailing spaces)Intel, [https://cdrdv2-public.intel.com/733568/tdx-module-1.0-public-spec-344425005.pdf Architecture Specification: Intel Trust Domain Extensions (Intel TDX) Module], order no. 344425-005, page 93, Feb 2023. [https://web.archive.org/web/20230720220842/https://cdrdv2-public.intel.com/733568/tdx-module-1.0-public-spec-344425005.pdf Archived] on 20 Jul 2023. - for this module, additional feature information is not available through CPUID
and must instead be obtained through the TDX-specific TDCALL
instruction.
This leaf is reserved in hardware and will (on processors whose highest basic leaf is 21h
or higher) return 0 in EAX/EBX/ECX/EDX when run directly on the CPU.
{{vpad}}
EAX=24h, ECX=0: AVX10 Converged Vector ISA
This returns a maximum supported sub-leaf in EAX and AVX10 feature information in EBX. (ECX and EDX are reserved.)
class="wikitable"
|+ CPUID EAX=24h, ECX=0: AVX10 feature bits in EBX ! rowspan=2 | Bit ! colspan=2 | EBX |
Short
! Feature |
---|
7:0
| || AVX10 Converged Vector ISA version (≥1) |
15:8
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) |
18:16
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved as 111b){{efn|These three bits were originally designed to indicate the "supported vector width", with bit 16 indicating 128-bit vector support, bit 17 for 256-bit, and bit 18 for 512-bit. Shortly after the announcement of AVX10.1, Intel dropped plans for 128-bit vector only support (AVX10/128),Intel, [https://cdrdv2-public.intel.com/828964/355989-intel-avx10.1-spec.pdf Intel Advanced Vector Extensions 10 Architecture Specification], order no. 355989-003US, July 2024, see revision history on page 13. [https://web.archive.org/web/20241008214903/https://cdrdv2-public.intel.com/828964/355989-intel-avx10.1-spec.pdf Archived] on 8 Oct 2024. leaving only 256-bit (AVX10/256) or 512-bit (AVX10/512) maximum vector widths as supported. With AVX10.2, Intel dropped the vector width distinction entirely, instead mandating 512-bit vector support. As the only shipping AVX10.1 CPUs were based on Granite Rapids, which was a P-core design (AVX10/512 supported), no CPUs with AVX10/256 were ever shipped.}} |
31:19
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
{{notelist}}
{{vpad}}
EAX=24h, ECX=1: Discrete AVX10 Features
Subleaf 1 is reserved for AVX10 features not bound to a version.
class="wikitable"
|+ CPUID EAX=24h, ECX=1: Discrete AVX10 features in ECX ! rowspan=2 | Bit ! colspan=2 | ECX |
Short
! Feature |
---|
0
| (VPMM) || (Vector-Extension Packed Matrix Multiplication)Intel, [https://cdrdv2-public.intel.com/853286/intel-tdx-module-base-spec-348549006.pdf Trust Domain Extensions (Intel TDX) Module Base Architecture Specification], order no. 348549-006US, April 2025. [https://web.archive.org/web/20250424190213/https://cdrdv2-public.intel.com/853286/intel-tdx-module-base-spec-348549006.pdf Archived] on 24 Apr 2025. |
31:1
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
{{vpad}}
EAX=2000'0000h: Highest Xeon Phi Function Implemented
The highest function is returned in EAX.
This leaf is only present on Xeon Phi processors.Intel, [https://www.intel.com/content/dam/develop/external/us/en/documents/327364001en.pdf Intel Xeon Phi Coprocessor Instruction Set Architecture Reference Manual], Sep 2012, order no. 327364-001, appendix B.8, pages 677. [https://web.archive.org/web/20210804022347/https://software.intel.com/content/dam/develop/external/us/en/documents/327364001en.pdf Archived] on 4 Aug 2021.
EAX=2000'0001h: Xeon Phi Feature Bits
This function returns feature flags.
class="wikitable"
|+ CPUID EAX=2000'0001h: Xeon Phi feature bits ! rowspan="2" | Bit ! colspan="2" | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="5" | ! colspan="2" | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="5" | ! colspan="2" | ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="5" | ! colspan="2" | EDX ! rowspan="2" | Bit |
Short
! Feature ! Short ! Feature ! Short ! Feature ! Short ! Feature |
---|
3:0
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 3:0 |
4
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 4 |
31:5
| colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 31:5 |
EAX=4000'0000h-4FFFF'FFFh: Reserved for [[Hypervisor]]s
When the CPUID
instruction is executed under Intel VT-x or AMD-v virtualization, it will be intercepted by the hypervisor, enabling the hypervisor to return CPUID
feature flags that differ from those of the underlying hardware. CPUID
leaves 40000000h
to 4FFFFFFFh
are not implemented in hardware, and are reserved for use by hypervisors to provide hypervisor-specific identification and feature information through this interception mechanism.
For leaf 40000000h
, the hypervisor is expected to return the index of the highest supported hypervisor CPUID leaf in EAX, and a 12-character hypervisor ID string in EBX,ECX,EDX (in that order). For leaf 40000001h
, the hypervisor may return an interface identification signature in EAX - e.g. hypervisors that wish to advertise that they are Hyper-V compatible may return 0x31237648
—"Hv#1"
in EAX.Geoff Chappell, [https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/shared/hvgdk_mini/hv_hypervisor_interface.htm HV_HYPERVISOR_INTERFACE], 10 Dec 2022. [https://web.archive.org/web/20230201083111/https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/shared/hvgdk_mini/hv_hypervisor_interface.htm Archived] on 1 Feb 2023. The formats of leaves 40000001h
and up to the highest supported leaf are otherwise hypervisor-specific. Hypervisors that implement these leaves will normally also set bit 31 of ECX for CPUID leaf 1 to indicate their presence.
Hypervisors that expose more than one hypervisor interface may provide additional sets of CPUID leaves for the additional interfaces, at a spacing of 100h
leaves per interface. For example, when QEMU is configured to provide both Hyper-V and KVM interfaces, it will provide Hyper-V information starting from CPUID leaf 40000000h
and KVM information starting from leaf 40000100h
.QEMU documentation, [https://www.qemu.org/docs/master/system/i386/hyperv.html Hyper-V Enlightenments]. [https://web.archive.org/web/20240417230400/https://www.qemu.org/docs/master/system/i386/hyperv.html Archived] on 17 Apr 2024.Linux 6.8.7 kernel source, [https://elixir.bootlin.com/linux/v6.8.7/source/arch/x86/kvm/cpuid.c /source/arch/x86/kvm/cpuid.c], lines 1482-1488
{{vpad}}
Some hypervisors that are known to return a hypervisor ID string in leaf 40000000h
include:
class="wikitable"
|+ CPUID EAX=4000'0x00h: 12-character Hypervisor ID string in EBX,ECX,EDX ! Hypervisor ! ID String (ASCII) ! Notes |
{{nowrap|Microsoft Hyper-V,}} {{nowrap|Windows Virtual PC}} | |
rowspan="2" | Linux KVM
| \0 denotes an ASCII NUL character. |
"Linux KVM Hv" Linux 6.8.7 kernel source, [https://elixir.bootlin.com/linux/v6.8.7/source/arch/x86/kvm/hyperv.c#L2793 /arch/x86/kvm/hyperv.c, line 2793]
|
bhyve
| | ID string changed from mixed-case to lower-case in 2013.FreeBSD [https://github.com/freebsd/freebsd-src/commit/560d5eda2cb0861d11dd055fc63199e21116f6e5 commit 560d5ed], 28 Jun 2013, see file /sys/amd64/vmm/x86.c, line 48. [https://web.archive.org/web/20240422224954/https://github.com/freebsd/freebsd-src/commit/560d5eda2cb0861d11dd055fc63199e21116f6e5 Archived] on 22 Apr 2024. Lower-case string also used in bhyve-derived hypervisors such as xhyve and HyperKit.HyperKit source code, [https://github.com/moby/hyperkit/blob/45c0ba15f100871ba29d0bd227ca58e5426a4a50/src/lib/vmm/x86.c#L42 /src/lib/vmm/x86.c line 42], 8 May 2021. |
Xen
| Only when using HVM (hardware virtual machine) mode. |
QEMU
| Only when the TCG (Tiny Code Generator) is enabled. |
Parallels
| | (it possibly should be "prl hyperv", but it is encoded as " lrpepyh vr" due to an endianness mismatch){{Citation needed|date=July 2021}} |
VMware
| |
Project ACRN
| |
VirtualBox
| Only when configured to use the "hyperv" paravirtualization provider. |
QNX Hypervisor
| | The QNX hypervisor detection method provided in the official QNX documentationQNX, [https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.hypervisor.safety.user/topic/qhs/guest_check.html Hypervisor - Checking the guest's environment], 25 Mar 2022. [https://web.archive.org/web/20240422005549/https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.hypervisor.safety.user/topic/qhs/guest_check.html Archived] on 22 Apr 2024. checks only the first 8 characters of the string, as provided in EBX and ECX (including an endianness swap) - EDX is ignored and may take any value. |
NetBSD NVMM |
OpenBSD VMM
| |
Jailhouse
| \0 denotes an ASCII NUL character. |
Intel HAXM
| Project discontinued. |
Intel KGT (Trusty)
| On "trusty" branch of KGT only, which is used for the [https://www.intel.com/content/www/us/en/developer/topic-technology/open/trusty/overview.html Intel x86 Architecture Distribution of Trusty OS] ([https://web.archive.org/web/20230821024540/https://www.intel.com/content/www/us/en/developer/topic-technology/open/trusty/overview.html archive]) (KGT also returns a signature in |
Unisys s-Par
| |
{{nowrap|Lockheed Martin LMHS}} |
{{vpad}}
EAX=8000'0000h: Highest Extended Function Implemented
The highest calling parameter is returned in EAX.
EBX/ECX/EDX return the manufacturer ID string (same as EAX=0) on AMD but not Intel CPUs.
EAX=8000'0001h: Extended Processor Info and Feature Bits
This returns extended feature flags in EDX and ECX.
Many of the bits in EDX
(bits 0 through 9, 12 through 17, 23, and 24) are duplicates of EDX
from the EAX=1
leaf - these bits are highlighted in light yellow. (These duplicated bits are present on AMD but not Intel CPUs.)
AMD feature flags are as follows:{{Citation |url=http://developer.amd.com/wordpress/media/2012/10/25481.pdf |title=CPUID Specification, publication no.25481, rev 2.34 |publisher=AMD |date=September 2010 |archive-url=https://web.archive.org/web/20220818192714/http://developer.amd.com/wordpress/media/2012/10/25481.pdf |archive-date=18 Aug 2022 |url-status=dead}}[https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/x86/include/asm/cpufeatures.h?id=HEAD Linux kernel source code]
class="wikitable"
|+ CPUID EAX=8000'0001h: Feature bits in EDX and ECX ! rowspan=2 | Bit ! colspan=2 | EDX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="34" | ! colspan=2 | ECX ! rowspan=2 | Bit |
Short
! Feature ! Short ! Feature |
---|
0
| fpu || {{some|align=left|Onboard x87 FPU}} | lahf_lm || ! 0 |
1
| vme || {{some|align=left|Virtual mode extensions (VIF)}} | cmp_legacy || Hyperthreading not valid ! 1 |
2
| de || {{some|align=left|Debugging extensions (CR4 bit 3)}} | svm || Secure Virtual Machine ! 2 |
3
| pse || {{some|align=left|Page Size Extension}} | extapic || Extended APIC space ! 3 |
4
| tsc || {{some|align=left|Time Stamp Counter}} | cr8_legacy || CR8 in 32-bit mode ! 4 |
5
| msr || {{some|align=left|Model-specific registers}} | abm/lzcnt || Advanced bit manipulation ! 5 |
6
| pae || {{some|align=left|Physical Address Extension}} | sse4a || SSE4a ! 6 |
7
| mce || {{some|align=left|Machine Check Exception}} | misalignsse || Misaligned SSE mode ! 7 |
8
| cx8 || {{some|align=left| | 3dnowprefetch || ! 8 |
9
| apic || {{some|align=left|Onboard Advanced Programmable Interrupt Controller}} | osvw || OS Visible Workaround ! 9 |
10
| (syscall){{efn|text=The use of EDX bit 10 to indicate support for These instructions were first introduced on Model 7AMD, [https://www.ardent-tool.com/CPU/docs/AMD/K6/20695.pdf AMD-K6 Processor Data Sheet], order no. 20695H/0, march 1998, section 24.2, page 283 - the CPUID bit to indicate their support was movedAMD, [https://www.ardent-tool.com/CPU/docs/AMD/K6/revs/21846h.pdf AMD-K6 Processor Revision Guide], order no. 21846H/0, June 1999, section 3.2.1, page 17 to EDX bit 11 from Model 8 (AMD K6-2) onwards. }}| ( | ibs || Instruction Based Sampling ! 10 |
11
| syscall{{efn|On Intel CPUs, the CPUID bit for | xop || XOP instruction set ! 11 |
12
| mtrr || {{some|align=left|Memory Type Range Registers}} | skinit || ! 12 |
13
| pge || {{some|align=left|Page Global Enable bit in CR4}} | wdt || Watchdog timer ! 13 |
14
| mca || {{some|align=left|Machine check architecture}} | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 14 |
15
| cmov || {{some|align=left|Conditional move and | lwp || Light Weight Profiling{{Citation |url=http://support.amd.com/us/Processor_TechDocs/43724.pdf |title=Lightweight Profiling Specification |publisher=AMD |date=August 2010 |access-date=2013-04-03 |url-status=dead |archive-url=https://web.archive.org/web/20121127061327/http://support.amd.com/us/Processor_TechDocs/43724.pdf | archive-date=2012-11-27 }} ! 15 |
16
| pat{{efn|name=ext1_edx_16_24|text=On some processors - Cyrix MediaGXm,Cyrix, [http://datasheets.chipdb.org/Cyrix/detect.pdf Cyrix CPU Detection Guide], rev 1.01, oct 2, 1997, page 12 several Geodes (NatSemi Geode GXm, GXLV, GX1; AMD Geode GX1AMD, [https://www.amd.com/system/files/TechDocs/goede_gx1_databook-rev5.pdf Geode GX1 Processor Data Book], rev 5.0, december 2003, pages 202 and 226. [https://web.archive.org/web/20200420011559/https://www.amd.com/system/files/TechDocs/goede_gx1_databook-rev5.pdf Archived] on 20 Apr 2020.) and Transmeta CrusoeTransmeta, [http://datasheets.chipdb.org/Transmeta/Crusoe/Crusoe_CPUID_5-7-02.pdf Processor Recognition], 2002-05-07, page 5 - EDX bits 16 and 24 have a different meaning:
}} | {{some|align=left|Page Attribute Table}} | fma4 || 4-operand fused multiply-add instructions ! 16 |
17
| pse36 || {{some|align=left|36-bit page size extension}} | tce || Translation Cache Extension ! 17 |
18
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 18 |
19
| ecc || "Athlon MP" / "Sempron" CPU brand identification{{efn|text=EDX bit 19 is used for CPU brand identification on | nodeid_msr || NodeID MSR ( ! 19 |
20
| nx || NX bit | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 20 |
21
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | tbm || Trailing Bit Manipulation ! 21 |
22
| mmxext || Extended MMX | topoext || Topology Extensions ! 22 |
23
| mmx || {{some|align=left|MMX instructions}} | perfctr_core || Core performance counter extensions ! 23 |
24
| fxsr{{efn|name=ext1_edx_16_24}} || {{some|align=left| | perfctr_nb || Northbridge performance counter extensions ! 24 |
25
| fxsr_opt || | (StreamPerfMon) || (Streaming performance monitor architecture){{efn|text=ECX bit 25 is listed as StreamPerfMon in revision 3.20 of AMD APMAMD, [https://kib.kiev.ua/x86docs/AMD/AMD64/24594_APM_v3-r3.20.pdf AMD64 Architecture Programmer's Manual Volume 3], pub. no. 24594, rev 3.20, may 2013, page 579 - lists the StreamPerfMon bit only - it is listed as reserved in later revisions. The bit is set on Excavator and Steamroller CPUs only.}} ! 25 |
26
| pdpe1gb || Gigabyte pages | dbx || Data breakpoint extensions ! 26 |
27
| rdtscp || | perftsc ||Performance timestamp counter (PTSC) ! 27 |
28
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | pcx_l2i || L2I perf counter extensions ! 28 |
29
| lm || Long mode | monitorx || ! 29 |
30
| 3dnowext || Extended 3DNow! | addr_mask_ext || Address mask extension to 32 bits for instruction breakpoints ! 30 |
31
| 3dnow || 3DNow! | colspan="2" style="text-align:center; background:lightgrey;" | (reserved) ! 31 |
{{notelist}}
{{vpad}}
EAX=8000'0002h,8000'0003h,8000'0004h: Processor Brand String
These return the processor brand string in EAX, EBX, ECX and EDX. CPUID
must be issued with each parameter in sequence to get the entire 48-byte ASCII processor brand string.{{cite web|url=http://download.intel.com/design/processor/applnots/24161832.pdf |title=Intel Processor Identification and the CPUID Instruction |publisher=Download.intel.com |date=2012-03-06 |access-date=2013-04-11}} It is necessary to check whether the feature is present in the CPU by issuing CPUID
with EAX = 80000000h
first and checking if the returned value is not less than 80000004h
.
The string is specified in Intel/AMD documentation to be null-terminated, however this is not always the case (e.g. DM&P Vortex86DX3 and AMD Ryzen 7 6800HS are known to return non-null-terminated brand strings in leaves 80000002h
-80000004h
InstLatx64, [http://users.atw.hu/instlatx64/Vortex86_SoC/Vortex86%20SoC0000611_Vortex86DX3_CPUID.txt Vortex86DX3 CPUID dump], 27 Sep 2021. [https://web.archive.org/web/20211021212842/http://users.atw.hu/instlatx64/Vortex86_SoC/Vortex86%20SoC0000611_Vortex86DX3_CPUID.txt Archived] on 21 Oct 2021.InstLatx64, [http://users.atw.hu/instlatx64/AuthenticAMD/AuthenticAMD0A40F41_K19_Rembrandt_01_CPUID.txt AMD Ryzen 7 6800HS CPUID dump], 21 Feb 2022. [https://web.archive.org/web/20230324010348/http://users.atw.hu/instlatx64/AuthenticAMD/AuthenticAMD0A40F41_K19_Rembrandt_01_CPUID.txt Archived] on 24 Mar 2023.), and software should not rely on it.
- include
- include
- include
int main()
{
unsigned int regs[12];
char str[sizeof(regs)+1];
__cpuid(0x80000000, regs[0], regs[1], regs[2], regs[3]);
if (regs[0] < 0x80000004)
return 1;
__cpuid(0x80000002, regs[0], regs[1], regs[2], regs[3]);
__cpuid(0x80000003, regs[4], regs[5], regs[6], regs[7]);
__cpuid(0x80000004, regs[8], regs[9], regs[10], regs[11]);
memcpy(str, regs, sizeof(regs));
str[sizeof(regs)] = '\0';
printf("%s\n", str);
return 0;
}
On AMD processors, from 180nm Athlon onwards (AuthenticAMD
Family 6 Model 2 and later), it is possible to modify the processor brand string returned by CPUID leaves 80000002h
-80000004h
by using the WRMSR
instruction to write a 48-byte replacement string to MSRs C0010030h
-C0010035h
.Chips and Cheese, [https://chipsandcheese.com/2022/10/27/why-you-cant-trust-cpuid/ Why you can't trust CPUID], 27 Oct 2022. [https://web.archive.org/web/20221103061909/https://chipsandcheese.com/2022/10/27/why-you-cant-trust-cpuid/ Archived] on 3 Nov 2022. This can also be done on AMD Geode GX/LX, albeit using MSRs 300Ah
-300Fh
.AMD, [https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/datasheets/33234H_LX_databook.pdf Geode LX Databook], pub.id. 33234H, Feb 2009, page 207.
{{vpad}}
In some cases, determining the CPU vendor requires examining not just the Vendor ID in CPUID leaf 0 and the CPU signature in leaf 1, but also the Processor Brand String in leaves 80000002h
-80000004h
. Known cases include:
- Montage Jintide CPUs can be distinguished from the Intel Xeon CPU models they're based on by the presence of the substring
Montage
in the brand string of the Montage CPUs (e.g. Montage Jintide C2460InstLatx64, [http://users.atw.hu/instlatx64/GenuineIntel/GenuineIntel0050654_SkylakeXeon_Jintide_CPUID1.txt 2x 24-core Montage Jintide C2460] CPUID dump and Intel Xeon Platinum 8160InstLatx64, [http://users.atw.hu/instlatx64/GenuineIntel/GenuineIntel0050654_SkylakeXeon_20_CPUID.txt 2x 24-core Intel Xeon Platinum 8160] CPUID dump - both of which identify themselves asGenuineIntel
Family 6 Model 55h Stepping 4 - can be distinguished in this manner.) CentaurHauls
Family 6 CPUs may be either VIA or Zhaoxin CPUs - these can be distinguished by the presence of the substringZHAOXIN
in the brand string of the Zhaoxin CPUs (e.g. Zhaoxin KaiXian ZX-C+ C4580InstLatx64, [http://users.atw.hu/instlatx64/CentaurHauls/CentaurHauls00006FE_CNR_Isaiah_CPUID3.txt Zhaoxin KaiXian ZX-C+ C4580] CPUID dump and VIA Eden X4 C4250InstLatx64, [http://users.atw.hu/instlatx64/CentaurHauls/CentaurHauls00006FE_CNR_Isaiah_CPUID.txt VIA Eden X4 C4250] CPUID dump - both of which identify themselves asCentaurHauls
Family 6 Model 0Fh Stepping 0Eh - can be distinguished in this manner.)
{{vpad}}
EAX=8000'0005h: L1 Cache and TLB Identifiers
This provides information about the processor's level-1 cache and TLB characteristics in EAX, EBX, ECX and EDX as follows:{{efn|text=On some older Cyrix and Geode CPUs (specifically, CyrixInstead
/{{nowrap|Geode by NSC
}} Family 5 Model 4 CPUs only), leaf 80000005h
exists but has a completely different format, similar to that of leaf 2.Cyrix, [https://www.ardent-tool.com/CPU/docs/Cyrix/112.pdf Application Note 112: Cyrix CPU Detection Guide], page 17, 21 July 1998.}}
- EAX: information about L1 hugepage TLBs (TLBs that hold entries corresponding to 2M/4M pages){{efn|text=On processors that can only handle small-pages in their TLBs, this leaf will return 0 in EAX. (On such processors, which include e.g. AMD K6 and Transmeta Crusoe, hugepage entries in the page-tables are broken up into 4K pages as needed upon entry into the TLB.)
On some processors, e.g. VIA Cyrix III "Samuel",Instlatx64, [http://users.atw.hu/instlatx64/CentaurHauls/CentaurHauls0000663_C5A_Samuel_CPUID.txt VIA Cyrix III "Samuel" CPUID dump] this leaf returns0x80000005
in EAX. This has the same meaning as EAX=0, i.e. no hugepage TLBs.}} - EBX: information about L1 small-page TLBs (TLBs that hold entries corresponding to 4K pages)
- ECX: information about L1 data cache
- EDX: information about L1 instruction cache
class="wikitable"
|+ CPUID EAX=8000'0005h: L1 Cache/TLB information in EAX,EBX,ECX,EDX ! Bits ! EAX !! EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="5" | ! ECX !! EDX ! Bits | |||||
7:0
| colspan=2 | Number of instruction TLB entries{{efn|name=tmta_tlbsize|On Transmeta CPUs, the value | colspan=2 | Cache line size in bytes ! 7:0 | |||||
---|---|---|---|---|---|
15:8
| colspan=2 | instruction TLB associativity{{efn|name=ex2_assoc|text=For the associativity fields of leaf {{(!}} class="wikitable sortable" ! Value | Meaning
{{!}}- {{!}} 0 {{ | }} (reserved)
{{!}}- {{!}} 1 {{ | }} Direct-mapped
{{!}}- {{!}} 2 to | }} N-way set-associative (field encodes N)
{{!}}- {{!}} | }} Fully-associative
{{!)}} }} | colspan=2 | Number of cache lines per tag ! 15:8 |
23:16
| colspan=2 | Number of data TLB entries{{efn|name=tmta_tlbsize}} | colspan=2 | Cache associativity{{efn|name=ex2_assoc}} ! 23:16 | |||||
31:24
| colspan=2 | Data TLB associativity{{efn|name=ex2_assoc}} | colspan=2 | Cache size in kilobytes ! 31:24 |
{{notelist}}
{{vpad}}
EAX=8000'0006h: Extended L2 Cache Features
Returns details of the L2 cache in ECX, including the line size in bytes (Bits 07 - 00), type of associativity (encoded by a 4 bits field; Bits 15 - 12) and the cache size in KB (Bits 31 - 16).
- include
- include
int main()
{
unsigned int eax, ebx, ecx, edx;
unsigned int lsize, assoc, cache;
__cpuid(0x80000006, eax, ebx, ecx, edx);
lsize = ecx & 0xff;
assoc = (ecx >> 12) & 0x07;
cache = (ecx >> 16) & 0xffff;
printf("Line size: %d B, Assoc. type: %d, Cache size: %d KB.\n", lsize, assoc, cache);
return 0;
}
{{vpad}}
EAX=8000'0007h: Processor Power Management Information and RAS Capabilities
This function provides information about power management, power reporting and RAS (Reliability, availability and serviceability) capabilities of the CPU.
class="wikitable"
|+ CPUID EAX=8000'0007h: RAS features in EBX and power management features in EDX ! rowspan=2 | Bit ! colspan=2 | EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="19" | ! colspan=2 | EDX ! rowspan=2 | Bit |
Short || Feature
! Short || Feature |
---|
0
| MCAOverflowRecov || MCA (Machine Check Architecture) overflow recovery support | TS || Temperature Sensor ! 0 |
1
| SUCCOR || Software uncorrectable error containment and recovery capability | FID || Frequency ID Control ! 1 |
2
| HWA || Hardware assert support (MSRs | VID || Voltage ID Control ! 2 |
3
| ScalableMca || Scalable MCA supported | TTP || THERMTRIP ! 3 |
4
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | TM || Hardware thermal control (HTC) supported ! 4 |
5
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | STC || Software thermal control (STC) supportedAMD, [https://www.amd.com/system/files/TechDocs/31116.pdf BKDG for AMD Family 10h Processors], pub.no. 31116, rev 3.62, jan 11, 2013, page 392. [https://web.archive.org/web/20190116230101/https://www.amd.com/system/files/TechDocs/31116.pdf Archived] on 16 Jan 2019. ! 5 |
6
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | 100MHzSteps || 100 MHz multiplier control ! 6 |
7
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | HwPstate || Hardware P-state control (MSRs ! 7 |
8
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | TscInvariant || Invariant TSC - TSC (Time Stamp Counter) rate is guaranteed to be invariant across all P-states, C-states and sop grant transitions. ! 8 |
9
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | CPB || Core Performance Boost ! 9 |
10
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | EffFreqRO || Read-only effective frequency interface (MSRs ! 10 |
11
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | ProcFeedbackInterface || Processor Feedback Interface supported ! 11 |
12
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | ProcPowerReporting || Processor power reporting interface supported ! 12 |
13
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | ConnectedStandby || Connected StandbyAMD, [https://www.amd.com/system/files/TechDocs/56713-B1_3.05.zip PPR For AMD Family 19h Model 61h rev B1 procesors], pub.no. 56713, rev 3.05, Mar 8, 2023, pages 99-100. [https://web.archive.org/web/20230425231817/https://www.amd.com/system/files/TechDocs/56713-B1_3.05.zip Archived] on 25 Apr 2023. ! 13 |
14
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | RAPL || Running Average Power Limit ! 14 |
15
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | FastCPPC || Fast CPPC (Collaborative Processor Performance Control) supported ! 15 |
31:16 | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) | colspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! |
class="wikitable"
|+ CPUID EAX=8000'0007h: Processor Feedback info in EAX and power monitoring interface info in ECX ! rowspan=2 | Bits ! colspan=2 | EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="5" | ! colspan=2 | ECX ! rowspan=2 | Bits |
Short || Feature
! Short || Feature |
---|
7:0
| NumberOfMonitors || Number of Processor Feedback MSR pairs available, starting from MSR | rowspan=3 | CpuPwrSampleTimeRatio | rowspan=3 | Ratio of compute unit power accumulator sample period to TSC counter period. ! 7:0 |
15:8
| Version || Processor Feedback Capabilities version ! 15:8 |
31:16
| MaxWrapTime || Maximum time between reads (in milliseconds) that software should use to avoid two wraps. ! 31:16 |
{{vpad}}
EAX=8000'0008h: Virtual and Physical Address Sizes
class="wikitable"
|+ CPUID EAX=8000'0008h: Feature bits in EBX ! rowspan=2 | Bit ! colspan=2 | EBX |
Short || Feature |
---|
0
| clzero || |
1
| retired_instr || Retired instruction count MSR ( |
2
| xrstor_fp_err || |
3
| invlpgb || |
4
| rdpru || |
5
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
6
| mbe || Memory Bandwidth Enforcement |
7
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
8
| mcommit || |
9
| wbnoinvd || |
10
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
11
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
12
| IBPB || Indirect Branch Prediction Barrier (performed by writing 1 to bit 0 of |
13
| wbinvd_int || |
14
| IBRS || Indirect Branch Restricted Speculation |
15
| STIBP || Single Thread Indirect Branch Prediction mode |
16
| IbrsAlwaysOn || IBRS mode has enhanced performance and should be left always on |
17
| StibpAlwaysOn || STIBP mode has enhanced performance and should be left always on |
18
| ibrs_preferred || IBRS preferred over software |
19
| ibrs_same_mode_protection || IBRS provides Same Mode Protection |
20
| no_efer_lmsle || (90nm Athlon64/Opteron) CPUs and is present in all later AMD CPUs - except the ones with the 'no_efer_lmsle' flag set.}} |
21
| invlpgb_nested || |
22
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
23
| ppin || Protected Processor Inventory Number - |
24
| ssbd || Speculative Store Bypass Disable |
25
| ssbd_legacy || Speculative Store Bypass Disable Legacy |
26
| ssbd_no || Speculative Store Bypass Disable Not Required |
27
| cppc || Collaborative Processor Performance Control |
28
| psfd || Predictive Store Forward Disable |
29
| btc_no || Branch Type Confusion: Processor not affected |
30
| IBPB_RET || IBPB (see bit 12) also clears return address predictor |
31
| branch_sampling || Branch Sampling SupportAMD, [https://www.amd.com/system/files/TechDocs/55898_B1_pub_0.50.zip PPR for AMD Family 19h Model 01h, Revision B1 Processors, Volume 1 of 2], document no. 55898, rev 0.50, may 27, 2021, page 98 - lists branch-sampling bit. [https://web.archive.org/web/20220724144832/https://www.amd.com/system/files/TechDocs/55898_B1_pub_0.50.zip Archived] on Jul 24, 2022 |
class="wikitable"
|+ CPUID EAX=8000'0008h: Size and range fields in EAX, ECX, EDX |
Bits
! EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="7" | ! ECX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="7" | ! EDX ! Bits |
---|
style="padding-top:1em; padding-bottom:1em" | 7:0
| Number of Physical Address Bits | Number of Physical Threads in processor (minus 1) | rowspan="3" style="max-width:18em" | Maximum page count for ! style="padding-top:1em; padding-bottom:1em" | 7:0 |
11:8
| rowspan="2" | Number of Linear Address Bits | style="text-align:center; background:lightgrey;"| (reserved) ! 11:8 |
15:12
| APIC ID Size ! 15:12 |
17:16
| rowspan="2" | Guest Physical Address Size{{efn|text=A value of 0 indicates that the "Guest Physical Address Size" is the same as the "Number Of Physical Address Bits", specified in EAX[7:0].}} | Performance Timestamp Counter size | rowspan="3" style="max-width:18em" | Maximum ECX value recognized by ! 17:16 |
23:18
| rowspan="2" style="text-align:center; background:lightgrey;"| (reserved) ! 23:18 |
style="padding-top:1em; padding-bottom:1em" | 31:24
| style="text-align:center; background:lightgrey;"| (reserved) ! style="padding-top:1em; padding-bottom:1em" | 31:24 |
{{notelist}}
{{vpad}}
EAX=8000'000Ah: SVM features
This leaf returns information about AMD SVM (Secure Virtual Machine) features in EAX, EBX and EDX.
class="wikitable"
|+ CPUID EAX=8000'000Ah: SVM information in EAX, EBX and ECX |
Bits
! EAX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="4" | ! EBX ! scope="col" style="width: 0.5em; border-spacing:0; padding:0px" rowspan="4" | ! ECX ! Bits |
---|
7:0
| SVM Revision Number | rowspan="3" | Number of available ASIDs | rowspan="3" style="text-align:center; background:lightgrey;" | (reserved) ! 7:0 |
8
| style="text-align:center; background:lightgrey;" | (hypervisor){{efn|text=Early revisions of AMD's "Pacifica" documentation listed EAX bit 8 as an always-zero bit reserved for hypervisor use.AMD, [https://web.archive.org/web/20110613111809/http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf AMD64 Virtualization Codenamed "Pacifica" Technology], publication no. 33047, rev 3.01, May 2005, appendix B, page 81. Archived on Jun 13, 2011. Later AMD documentation, such as #25481 "CPUID specification" rev 2.18AMD, [https://kib.kiev.ua/x86docs/AMD/AMD-CPUID-Spec/25481-r2.18.pdf CPUID specification], publication #25481, revision 2.18, jan 2006, page 18. and later, only lists the bit as reserved. In rev 2.30AMD, [https://kib.kiev.ua/x86docs/AMD/AMD-CPUID-Spec/25481-r2.34.pdf CPUID specification], publication #25481, revision 2.34, sep 2010, pages 5 and 11. and later, a different bit is listed as reserved for hypervisor use: {{nowrap|1=CPUID.(EAX=1):ECX[bit 31].}} }}! 8 |
31:9
| style="text-align:center; background:lightgrey;" | (reserved) ! 31:9 |
{{vpad}}
class="wikitable"
|+ CPUID EAX=8000'000Ah: SVM feature flags in EDX ! rowspan=2 | Bit ! colspan=2 | EDX |
Short || Feature |
---|
0
| NP || Rapid Virtualization Indexing (Nested Paging) |
1
| LbrVirt || LBR (Last Branch Records) virtualization |
2
| SVML || SVM-Lock |
3
| NRIPS || nRIP (next sequential instruction pointer) save on #VMEXIT supported |
4
| TscRateMsr || MSR-based TSC rate control (MSR |
5
| VmcbClean || VMCB (Virtual Machine Control Block) clean bits supported |
6
| FlushByAsid || TLB flush events (e.g. CR3 writes, CR4.PGE toggles) only flush the TLB entries of the current ASID (address space ID) |
7
| DecodeAssist || Decode assists supported |
8
| PmcVirt || PMC (Performance Monitoring Counters) virtualization |
9
| style="background:lightgrey;"| (SseIsa10Compat){{efn|text=EDX bit 9 is briefly listed in some older revisions of AMD's document #25481 "CPUID Specification", and is set only in some AMD Bobcat CPUs.Instlatx64, [http://users.atw.hu/instlatx64/AuthenticAMD/AuthenticAMD0500F10_K14_Bobcat_CPUID.txt AMD E-350 CPUID dump] - has CPUID.(EAX=8000000A):EDX[9] set. Rev 2.28 of #25481 lists the bit as "Ssse3Sse5Dis"AMD, [https://kib.kiev.ua/x86docs/AMD/AMD-CPUID-Spec/25481-r2.28.pdf CPUID specification], publication #25481, revision 2.28, apr 2008, page 21. - in rev 2.34, it is listed as having been removed from the spec at rev 2.32 under the name "SseIsa10Compat".AMD, [https://kib.kiev.ua/x86docs/AMD/AMD-CPUID-Spec/25481-r2.34.pdf CPUID specification], publication #25481, revision 2.34, sep 2010, page 5 - lists "SseIsa10Compat" as having been dropped in November 2009. }}| style="text-align:center; background:lightgrey;"| (reserved) |
10
| PauseFilter || |
11
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
12
| PauseFilterThreshold || |
13
| AVIC || AMD Advanced Virtualized Interrupt Controller supported |
14
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
15
| VMSAVEvirt || |
16
| VGIF || Global Interrupt Flag (GIF) virtualization |
17
| GMET || Guest Mode Execution Trap |
18
| x2AVIC || x2APIC mode supported for AVIC |
19
| SSSCheck || SVM Supervisor shadow stack restrictions |
20
| SpecCtrl || |
21
| ROGPT || Read-Only Guest Page Table supported |
22
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
23
| HOST_MCE_OVERRIDE || Guest mode Machine-check exceptions when host |
24
| TlbiCtl || |
25
| VNMI || NMI (Non-Maskable interrupt) virtualization |
26
| IbsVirt || IBS (Instruction-Based Sampling) virtualization |
27
| ExtLvtOffsetFaultChg || Read/Write fault behavior for extended LVT offsets (APIC addresses |
28 |
29
| BusLockThreshold || Bus Lock Threshold |
30
| IdleHltIntercept || Idle HLT ( |
31
| EnhancedShutdownIntercept || Support for EXITINFO1 on shutdown intercept, and nested shutdown intercepts will result in a non-interceptible shutdown. |
{{notelist}}
{{vpad}}
EAX=8000'001Fh: Encrypted Memory Capabilities
class="wikitable"
|+ CPUID EAX=8000'001Fh: Encrypted Memory feature bits in EAX ! rowspan=2 | Bit ! colspan=2 | EAX |
Short || Feature |
---|
0
| SME || Secure Memory Encryption |
1
| SEV || Secure Encrypted Virtualization |
2
| PageFlushMSR || Page flush MSR ( |
3
| SEV-ES || SEV Encrypted State |
4
| SEV-SNP || SEV Secure Nested Paging |
5
| VMPL || VM Privilege Levels |
6
| RMPQUERY || |
7
| VmplSSS || VMPL Supervisor shadow stack supported |
8
| SecureTSC || Secure TSC supported |
9
| TscAuxVirtualization || Virtualization of |
10
| HwEnfCacheCoh || Hardware cache coherency across encryption domains enforced |
11
| 64BitHost || SEV Guest execution only allowed from 64-bit host |
12
| RestrictedInjection || SEV-ES guests can refuse all event-injections except #HV (Hypervisor Injection Exception) |
13
| AlternateInjection || SEV-ES guests can use an encrypted VMCB field for event-injection |
14
| DebugVirt || Full debug state virtualization supported for SEV-ES and SEV-SNP guests |
15
| PreventHostIBS || Prevent host IBS for a SEV-ES guest |
16
| VTE || Virtual Transparent Encryption for SEV |
17
| VmgexitParameter || |
18
| VirtualTomMsr || Virtual TOM (top-of-memory) MSR ( |
19
| IbsVirtGuestCtl || IBS virtualization is supported for SEV-ES and SEV-SNP guests |
20
| PmcVirtGuestCtl || PMC virtualization is supported for SEV-ES and SEV-SNP guests |
21
| RMPREAD || |
22
| GuestInterceptControl || Guest Intercept control supported for SEV-ES guests |
23
| SegmentedRmp || Segmented RMP (Reverse-Map Table) supported |
24
| VmsaRegProt || VMSA (VM Save Area) register protection supported |
25
| SmtProtection || SMT Protection supported |
26
| SecureAvic || Secure AVIC supported |
27
| AllowedSEVfeatures || ALLOWED_SEV_FEATURES_MASK field in VMCB (offset |
28
| SVSMCommPageMSR || SVSM (Secure VM Service ModuleAMD, [https://www.amd.com/system/files/TechDocs/58019_1.00.pdf Secure VM Service Module for SEV-SNP Guests], pub.no #58019, rev 1.00, Jul 2023, page 13. [https://web.archive.org/web/20230805094438/https://www.amd.com/system/files/TechDocs/58019_1.00.pdf Archived] on 5 Aug 2023.) communication page MSR ( |
29
| NestedVirtSnpMsr || |
30
| HvInUseWrAllowed || Writes to Hypervisor-owned paged allowed when marked in-use |
31
| IbpbOnEntry || IBPB on entry to virtual machine supported |
class="wikitable"
|+ CPUID EAX=8000'001Fh: Encrypted Memory feature information in EBX, ECX and EDX ! Bits ! EBX ! ECX ! EDX ! Bits |
5:0
| C-bit (encryption enable bit) location in page table entry | rowspan="4" style="max-width:18em" | Maximum ASID value that can be used for a SEV-enabled guest (maximum number of encrypted guests that can be supported simultaneously) | rowspan="4" style="max-width:18em" | Minimum ASID value for a guest that is SEV-enabled but not SEV-ES-enabled ! 5:0 |
---|
11:6
| Physical address width reduction when memory encryption is enabled ! 11:6 |
15:12
| Number of VMPLs (VM Privilege Levels) supported ! 15:12 |
31:16
| style="text-align:center; background:lightgrey;"| (reserved) ! 31:16 |
{{vpad}}
EAX=8000'0021h: Extended Feature Identification
class="wikitable"
|+ CPUID EAX=8000'0021h: Extended feature bits in EAX ! rowspan=2 | Bit ! colspan=2 | EAX |
Short
! Feature |
---|
0
| NoNestedDataBp || Processor ignores nested data breakpoints |
1
| FsGsKernelGsBaseNonSerializing || |
2
| LFenceAlwaysSerializing || |
3
| SmmPgCfgLock || SMM paging configuration lock supported |
4
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
5
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
6
| NullSelectClearsBase || Null segment selector loads also clear the destination segment register base and limit |
7
| UpperAddressIgnore || Upper Address Ignore is supported |
8
| AutomaticIBRS || Automatic IBRS |
9
| NoSmmCtlMSR || |
10
| FSRS || Fast short {{nowrap| |
11
| FSRC || Fast short {{nowrap| |
12
| PMC2PreciseRetire || PreciseRetire performance counter control bit (MSR |
13
| PrefetchCtlMsr || PrefetchControl MSR ( |
14
| L2TlbSIzeX32 || If set, L2 TLB sizes (leaf |
15
| AMD_ERMSB || Processor supports AMD implementation of Enhanced {{nowrap| |
16
| OPCODE_0F017_RECLAIM || Reserves opcode |
17
| CpuidUserDis || |
18 |
19
| FAST_REP_SCASB || Fast Short |
20
| PREFETCHI || Instruction Cache prefetch instructions supported |
21
| FP512_DOWNGRADE || Downgrade of 512-bit datapath to 256-bit supported.{{efn|text=If the downgrade from 512-bit to 256-bit datapath is enabled, then AVX-512 instructions that work on 512-bit data items will be split into two 256-bit parts that will be issued over two consecutive cycles. This datapath downgrade can help improve power efficiency for some workloads.AMD, [https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/5th-gen-amd-epyc-processor-architecture-white-paper.pdf 5th Gen AMD EPYC Processor Architecture], First Edition, October 2024, page 9.}} |
22
| WL_CLASS_SUPPORT || Support for workload-based heuristic feedback to OS for scheduling decisions |
23
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
24
| ERAPS || Enhanced Return Address Predictor Security (see also EBX[23:16] "RapSize") |
25
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
26
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
27
| SBPB || Selective Branch Predictor Barrier supportedAMD, [https://www.amd.com/content/dam/amd/en/documents/corporate/cr/speculative-return-stack-overflow-whitepaper.pdf Technical Update Regarding Speculative Return Stack Overflow], rev 2.0, feb 2024. [https://web.archive.org/web/20240412225347/https://www.amd.com/content/dam/amd/en/documents/corporate/cr/speculative-return-stack-overflow-whitepaper.pdf Archived] on Apr 12, 2024. |
28 |
29
| SRSO_NO || CPU is not subject to SRSO (Speculative Return Stack Overflow) vulnerability |
30
| SRSO_USER_KERNEL_NO || CPU is not subject to SRSO vulnerability across user/kernel boundary |
31
| SRSO_MSR_FIX || SRSO can be mitigated by setting bit 4 of BP_CFG ( |
{{notelist}}
class="wikitable"
|+ CPUID EAX=8000'0021h: Extended feature information in EBX !rowspan=2| Bit | colspan=2| EBX |
Short || Feature | |
---|---|
15:0
| MicrocodePatchSize || The size of the Microcode patch in 16-byte multiples. If 0, the size of the patch is at most 5568 (15C0h) bytes | |
23:16
| RapSize || Return Address Predictor Size. | |
31:24
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
{{vpad}}
EAX=8FFF'FFFFh: AMD Easter Egg
Several AMD CPU models will, for CPUID with EAX=8FFFFFFFh
, return an Easter Egg string in EAX, EBX, ECX and EDX.{{cite web|last1=Ferrie|first1=Peter|title=Attacks on Virtual Machine Emulators|url=http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf|website=Symantec|publisher=Symantec Advanced Threat Research|access-date=15 March 2017|archive-url=https://web.archive.org/web/20070207103157/http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf|archive-date=2007-02-07}}Sandpile, [https://sandpile.org/x86/cpuid.htm x86 architecture CPUID]. Retrieved 22 December 2022. Known Easter Egg strings include:
EAX=C000'0000h: Highest [[Centaur Technology|Centaur]] Extended Function
Returns index of highest Centaur leaf in EAX. If the returned value in EAX is less than C0000001h
, then Centaur extended leaves are not supported.
Present in CPUs from VIA and Zhaoxin.
On IDT WinChip CPUs (CentaurHauls
Family 5), the extended leaves C0000001h-C0000005h
do not encode any Centaur-specific functionality but are instead aliases of leaves 80000001h-80000005h
.IDT, [https://www.ardent-tool.com/CPU/docs/IDT_Centaur/WinChip2/w2b_datasheet.pdf WinChip 2B Processor Data Sheet], v0.9, April 1999, chapter 3.3.3, page 31.
EAX=C000'0001h: Centaur Feature Information
This leaf returns Centaur feature information (mainly VIA/Zhaoxin PadLock) in EDX.VIA, [https://web.archive.org/web/20100526054140/http://linux.via.com.tw/support/beginDownload.action?eleid=181&fid=261 PadLock Programming Guide] rev. 1.66, aug 4, 2005, page 5. Archived from the [http://linux.via.com.tw/support/beginDownload.action?eleid=181&fid=261 original] on May 26, 2010OpenEuler 1.0 LTS kernel sources, [https://gitee.com/openeuler/kernel/blob/openEuler-1.0-LTS/arch/x86/include/asm/cpufeatures.h#L147 /arch/x86/include/asm/cpufeatures.h] lines 147-178. [https://web.archive.org/web/20230730113626/https://gitee.com/openeuler/kernel/blob/openEuler-1.0-LTS/arch/x86/include/asm/cpufeatures.h Archived] on Jul 30, 2023.Zhaoxin, [https://web.archive.org/web/20250315101352/https://www.zhaoxin.com/Admin/Others/DownloadsPage.aspx?nid=31&id=3202&tag=0&ref=kfzzc&t=b3f041e6f23d9f48 Padlock instruction set reference], 26 Dec 2024. Archived from the [https://www.zhaoxin.com/Admin/Others/DownloadsPage.aspx?nid=31&id=3202&tag=0&ref=kfzzc&t=b3f041e6f23d9f48 original] on 15 Mar 2025.Zhaoxin, [https://web.archive.org/web/20250315101213/https://www.zhaoxin.com/Admin/Others/DownloadsPage.aspx?nid=31&id=3152&tag=0&ref=kfzzc&t=32531cd65e657254 GMI reference], 26 Dec 2024. Archived from the [https://www.zhaoxin.com/Admin/Others/DownloadsPage.aspx?nid=31&id=3152&tag=0&ref=kfzzc&t=32531cd65e657254 original] on 15 Mar 2025. (EAX, EBX and ECX are reserved.)
class="wikitable"
|+ CPUID EAX=C000'0001h: Centaur feature bits in EDX ! rowspan=2 | Bit ! colspan=2 | EDX |
Short
! Feature |
---|
0
| sm2{{efn|name=nehemiah_special|text=On VIA Nehemiah and Antaur CPUs (
}} || GMI |
1
| sm2_en{{efn|name=nehemiah_special}} || SM2 enabled |
2
| rng || PadLock RNG present: |
3
| rng_en || RNG enabled |
4
| ccs{{efn|name=nehemiah_special}} || GMI SM3/SM4 instructions present: |
5
| ccs_en{{efn|name=nehemiah_special}} || SM3/SM4 instructions enabled |
6
| xcrypt || PadLock Advanced Cryptographic Engine (ACE, using AES cipher) present: {{nowrap| |
7
| xcrypt_en || ACE enabled |
8
| ace2 || ACE v2 present: {{nowrap| |
9
| ace2_en || ACE v2 enabled |
10
| phe || PadLock Hash Engine (PHE): {{nowrap| |
11
| phe_en || PHE enabled |
12
| pmm || PadLock Montgomery Multiplier (PMM): {{nowrap| |
13
| pmm_en || PMM enabled |
14
| colspan="2" style="text-align:center; background:lightgrey;"| (reserved) |
15
| zx_fma || FMA supported |
16
| parallax || Adaptive P-state control present |
17
| parallax_en || Adaptive P-state control enabled |
18
| overstress || Overstress feature for auto overclock present |
19
| overstress_en || Overstress feature for auto overclock enabled |
20
| tm3 || Thermal Monitor 3 present |
21
| tm3_en || Thermal Monitor 3 enabled |
22
| rng2 || RNG v2 - second generation RNG present: |
23
| rng2_en || RNG v2 enabled |
24
| sem || SME feature present |
25
| phe2 || PHE v2: SHA384 and SHA512 present |
26
| phe2_en || PHE v2 enabled |
27
| xmodx || RSA instructions present: |
28
| xmodx_en || RSA instructions enabled |
29
| vex || VEX instructions present |
30
| vex_en || VEX instructions enabled |
31
| stk || STK is present |
{{notelist}}
CPUID usage from high-level languages
= Inline assembly =
This information is easy to access from other languages as well. For instance, the C code for gcc below prints the first five values, returned by the cpuid:
- include
- include
int main()
{
unsigned int i, eax, ebx, ecx, edx;
for (i = 0; i < 5; i++) {
__cpuid(i, eax, ebx, ecx, edx);
printf ("InfoType %x\nEAX: %x\nEBX: %x\nECX: %x\nEDX: %x\n", i, eax, ebx, ecx, edx);
}
return 0;
}
In MSVC and Borland/Embarcadero C compilers (bcc32) flavored inline assembly, the clobbering information is implicit in the instructions:
- include
int main()
{
unsigned int a, b, c, d, i = 0;
__asm {
/* Do the call. */
mov EAX, i;
cpuid;
/* Save results. */
mov a, EAX;
mov b, EBX;
mov c, ECX;
mov d, EDX;
}
printf ("InfoType %x\nEAX: %x\nEBX: %x\nECX: %x\nEDX: %x\n", i, a, b, c, d);
return 0;
}
If either version was written in plain assembly language, the programmer must manually save the results of EAX, EBX, ECX, and EDX elsewhere if they want to keep using the values.
= Wrapper functions =
GCC also provides a header called <cpuid.h>
on systems that have CPUID. The __cpuid
is a macro expanding to inline assembly. Typical usage would be:
- include
- include
int main()
{
unsigned int eax, ebx, ecx, edx;
__cpuid(0 /* vendor string */, eax, ebx, ecx, edx);
printf("EAX: %x\nEBX: %x\nECX: %x\nEDX: %x\n", eax, ebx, ecx, edx);
return 0;
}
But if one requested an extended feature not present on this CPU, they would not notice and might get random, unexpected results. Safer version is also provided in <cpuid.h>
. It checks for extended features and does some more safety checks. The output values are not passed using reference-like macro parameters, but more conventional pointers.
- include
- include
int main()
{
unsigned int eax, ebx, ecx, edx;
/* 0x81234567 is nonexistent, but assume it exists */
if (!__get_cpuid (0x81234567, &eax, &ebx, &ecx, &edx)) {
printf("Warning: CPUID request 0x81234567 not valid!\n");
return 1;
}
printf("EAX: %x\nEBX: %x\nECX: %x\nEDX: %x\n", eax, ebx, ecx, edx);
return 0;
}
Notice the ampersands in &a, &b, &c, &d
and the conditional statement. If the __get_cpuid
call receives a correct request, it will return a non-zero value, if it fails, zero.{{Cite web|url=https://github.com/gcc-mirror/gcc/blob/master/gcc/config/i386/cpuid.h|title=GCC-mirror/GCC|website=GitHub|date=13 March 2022}}
Microsoft Visual C compiler has builtin function __cpuid()
so the cpuid instruction may be embedded without using inline assembly, which is handy since the x86-64 version of MSVC does not allow inline assembly at all. The same program for MSVC would be:
- include
- ifdef _MSC_VER
#include
- endif
int main()
{
unsigned int regs[4];
int i;
for (i = 0; i < 4; i++) {
__cpuid(regs, i);
printf("The code %d gives %d, %d, %d, %d", regs[0], regs[1], regs[2], regs[3]);
}
return 0;
}
Many interpreted or compiled scripting languages are capable of using CPUID via an FFI library. [https://web.archive.org/web/20150429190703/http://www.cstrahan.com/posts/pure-ruby-cpuid-via-ffi.html One such implementation] shows usage of the Ruby FFI module to execute assembly language that includes the CPUID opcode.
.NET 5 and later versions provide the System.Runtime.Intrinsics.X86.X86base.CpuId
method. For instance, the C# code below prints the processor brand if it supports CPUID instruction:
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics.X86;
using System.Text;
namespace X86CPUID {
class CPUBrandString {
public static void Main(string[] args) {
if (!X86Base.IsSupported) {
Console.WriteLine("Your CPU does not support CPUID instruction.");
} else {
Span
(raw[0], raw[1], raw[2], raw[3]) = X86Base.CpuId(unchecked((int)0x80000002), 0);
(raw[4], raw[5], raw[6], raw[7]) = X86Base.CpuId(unchecked((int)0x80000003), 0);
(raw[8], raw[9], raw[10], raw[11]) = X86Base.CpuId(unchecked((int)0x80000004), 0);
Span
string brand = Encoding.UTF8.GetString(bytes).Trim();
Console.WriteLine(brand);
}
}
}
}
CPU-specific information outside x86
Some of the non-x86 CPU architectures also provide certain forms of structured information about the processor's abilities, commonly as a set of special registers:
- ARM architectures have a
CPUID
coprocessor register which requires exception level EL1 or above to access.{{cite web|url=http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0395b/CIHCAGHH.html |title=ARM Information Center |publisher=Infocenter.arm.com |access-date=2013-04-11}} - The IBM System z mainframe processors have a Store CPU ID (
STIDP
) instruction since the 1983 IBM 4381{{cite web |url=https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/srmindex#Toc1 |title=Processor version codes and SRM constants |access-date=2014-09-08 |archive-url=https://web.archive.org/web/20140908232904/https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/srmindex#Toc1 |archive-date=2014-09-08 |url-status=dead }} for querying the processor ID.{{cite web|url=http://www.redbooks.ibm.com/redbooks/pdfs/sg247516.pdf | title=IBM System z10 Enterprise Class Technical Guide}} - The IBM System z mainframe processors also have a Store Facilities List Extended (
STFLE
) instruction which lists the installed hardware features. - The MIPS32/64 architecture defines a mandatory Processor Identification (
PrId
) and a series of daisy-chained Configuration Registers.{{cite web|url=http://www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol3.pdf | title=MIPS32 Architecture For Programmers, Volume III: The MIPS32 Privileged Resource Architecture|date=2001-03-12|publisher=MIPS Technologies, Inc.}} - The PowerPC processor has the 32-bit read-only Processor Version Register (
PVR
) identifying the processor model in use. The instruction requires supervisor access level.{{cite web|url=http://moss.csc.ncsu.edu/~mueller/cluster/ps3/SDK3.0/docs/arch/PPC_Vers202_Book3_public.pdf | title=PowerPC Operating Environment Architecture, book III}}
DSP and transputer-like chip families have not taken up the instruction in any noticeable way, in spite of having (in relative terms) as many variations in design. Alternate ways of silicon identification might be present; for example, DSPs from Texas Instruments contain a memory-based register set for each functional unit that starts with identifiers determining the unit type and model, its ASIC design revision and features selected at the design phase, and continues with unit-specific control and data registers. Access to these areas is performed by simply using the existing load and store instructions; thus, for such devices, there is no need for extending the register set for device identification purposes.{{Citation needed|date=September 2015}}
See also
- [https://x86-cpuid.org/ x86-cpuid.org], a complete x86 architecture CPUID database plus related code generation tools, to be used by both the Linux Kernel and the Xen hypervisor. {{cite web |last1=S. Darwish |first1=Ahmed |title=[ANNOUNCE] x86-cpuid.org: A machine-readable CPUID repository |url=https://lore.kernel.org/lkml/ZpkckA2SHa1r3Bor@lx-t490 |website=Linux Kernel Mailing List archive |access-date=20 July 2024}}
- CPU-Z, a Windows utility that uses
CPUID
to identify various system settings - [https://thetumultuousunicornofdarkness.github.io/CPU-X/ CPU-X], an alternative of CPU-Z for Linux and FreeBSD
- Spectre (security vulnerability)
- Speculative Store Bypass (SSB)
- Cpuinfo, a text file generated by certain systems containing some of the CPUID information
References
{{Reflist}}
Further reading
- {{cite web |title=AMD64 Technology Indirect Branch Control Extension |version=Revision 4.10.18 |date=2018 |type=White paper |publisher=Advanced Micro Devices, Inc. (AMD) |url=https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf |access-date=2018-05-09 |url-status=live |archive-url=https://web.archive.org/web/20180509093400/https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf |archive-date=2018-05-09}}
External links
- Intel [https://web.archive.org/web/20120625025623/http://www.intel.com/Assets/PDF/appnote/241618.pdf Processor Identification and the CPUID Instruction] (Application Note 485), last published version. Said to be incorporated into the [http://www.intel.com/Assets/PDF/appnote/241618.pdf Intel 64 and IA-32 Architectures Software Developer's Manual] [https://web.archive.org/web/20130626034554/http://www.intel.com/content/dam/www/public/us/en/documents/application-notes/processor-identification-cpuid-instruction-note.pdf in 2013], but {{As of|July 2014|lc=1}} the manual still directs the reader to note 485.
- Contains some information that can be and was easily misinterpreted though, particularly with respect to processor topology identification.
- The big Intel manuals tend to lag behind the Intel ISA document, available at the top of [https://software.intel.com/en-us/intel-isa-extensions this page], which is updated even for processors not yet publicly available, and thus usually contains more CPUID bits. For example, as of this writing, the ISA book (at revision 19, dated May 2014) documents the CLFLUSHOPT bit in leaf 7, but the big manuals although apparently more up-to-date (at revision 51, dated June 2014) don't mention it.
- [https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf AMD64 Architecture Programmer's Manual Volume 3: General-Purpose and System Instructions]
- [https://www.etallen.com/cpuid.html cpuid] command-line program for Linux
- [https://skanthak.homepage.t-online.de/cpuid.html cpuprint.com, cpuprint.exe, cpuprint.raw] command-line programs for Windows
- [http://users.atw.hu/instlatx64/ instlatx64] - collection of x86/x64 Instruction Latency, Memory Latency and CPUID dumps
{{Multimedia extensions}}
{{DEFAULTSORT:Cpuid}}