Orobanchaceae 

{{Short description|Family of flowering plants known as broomrapes}}

{{more citations needed |date=September 2014}}

{{Automatic taxobox

|image = OrobancheMinorIreland (2).jpg

|image_caption = Lesser broomrape (Orobanche minor)

|taxon = Orobanchaceae

|authority = Vent.{{Cite journal |last=Angiosperm Phylogeny Group |year=2009 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III |journal=Botanical Journal of the Linnean Society |volume=161 |issue=2 |pages=105–121 |url=http://onlinelibrary.wiley.com/doi/10.1046/j.1095-8339.2003.t01-1-00158.x/pdf |format=PDF |access-date=2013-07-06 |doi=10.1111/j.1095-8339.2009.00996.x |doi-access=free |hdl=10654/18083 |hdl-access=free |archive-date=2013-06-30 |archive-url=https://web.archive.org/web/20130630172915/http://onlinelibrary.wiley.com/doi/10.1046/j.1095-8339.2003.t01-1-00158.x/pdf |url-status=live |url-access=subscription }}

|subdivision_ranks = Tribes

|subdivision_ref = {{Cite web|first=Peter|last=Stevens|title=Angiosperm Phylogeny Website, version 13. Lamiales: Orobanchaceae|url=http://www.mobot.org/MOBOT/Research/APWeb/orders/lamialesweb.htm#Orobanchaceae|website=www.mobot.org|access-date=20 December 2016|archive-date=7 December 2010|archive-url=https://web.archive.org/web/20101207111750/http://www.mobot.org/MOBOT/research/APweb/orders/lamialesweb.htm#Orobanchaceae|url-status=live}}

|subdivision =

|synonyms =

  • Cyclocheilaceae {{small|Marais (1981)}}
  • Nesogenaceae {{small|Marais (1981)}}

|synonyms_ref =

}}

Orobanchaceae, the broomrapes, is a family of mostly parasitic plants of the order Lamiales, with about 90 genera and more than 2000 species. Many of these genera (e.g., Pedicularis, Rhinanthus, Striga) were formerly included in the family Scrophulariaceae sensu lato. With its new circumscription, Orobanchaceae forms a distinct, monophyletic family. From a phylogenetic perspective, it is defined as the largest crown clade containing Orobanche major and relatives, but neither Paulownia tomentosa nor Phryma leptostachya nor Mazus japonicus.

The Orobanchaceae are annual herbs or perennial herbs or shrubs, and most (all except Lindenbergia, Rehmannia and Triaenophora) are parasitic on the roots of other plants—either holoparasitic or hemiparasitic (fully or partly parasitic). The holoparasitic species lack chlorophyll and therefore cannot perform photosynthesis.

File:Striga bilabiata MS4167.jpg]]

Image:Broomrape (Cistanche tubulosa) Negev.jpg]]

File:Castilleja purpurea.jpg]]

File:Pedicularis zeylanica-Silent Valley-2016-08-13-001.jpg]]

Description

Orobanchaceae is the largest of the 20–28 dicot families that express parasitism.{{cite book |editor-first1=Daniel M. |editor-last1=Joel |editor-first2=Jonathan |editor-last2=Gressel |editor-first3=Lytton J. |editor-last3=Musselman |last1=Kebab|first1=E. |title=Parasitic orobanchaceae parasitic mechanisms and control strategies |date=2013 |publisher=Springer |location=Berlin|isbn=978-3-642-38146-1}} Apart from a few non-parasitic taxa, the family displays all types of plant parasitism: facultative parasite, obligate parasite, hemiparasites, and holoparasites.

= Roots and stems =

Parasitic plants are attached to their host by means of haustoria, which transfer nutrients from the host to the parasite. Only the hemiparasitic species possess an additional extensive root system referred to as the lateral or side haustoria. In most holoparasitic species there is a swollen mass of short, bulky roots or one big swollen haustorial organ, which may be simple or composite, commonly called the terminal or primary haustorium.{{cite journal|last1=Westwood|first1=James H.|last2=Yoder|first2=John I.|last3=Timko|first3=Michael P.|last4=dePamphilis|first4=Claude W.|title=The evolution of parasitism in plants|journal=Trends in Plant Science|date=1 April 2010|volume=15|issue=4|pages=227–235|doi=10.1016/j.tplants.2010.01.004|pmid=20153240|bibcode=2010TPS....15..227W |issn=1878-4372}}

Plants are reduced to short vegetative stems, their alternate leaves are reduced to fleshy, tooth-like scales, and have multicellular hairs interspersed with glandular hairs.{{cite journal|last1=Young|first1=N.D.|last2=Steiner|first2=K.E.|last3=Claude|first3=W.|title=The Evolution of Parasitism in Schrophulariaceae/Orobanchaceae: Plastid gene sequences refute an evolutionary transition series|journal=Annals of the Missouri Botanical Garden|date=1999|volume=86|issue=4|pages=876–893|doi=10.2307/2666173|jstor=2666173|bibcode=1999AnMBG..86..876Y |url=http://www.biodiversitylibrary.org/pdf3/007556000014018.pdf}}

The hemiparasitic species (transferred from Scrophulariaceae) with green leaves are capable of photosynthesis, and may be either facultative or obligate parasites.

= Flowers =

The hermaphroditic flowers are bilaterally symmetrical and grow either in racemes or spikes or singly at the apex of the slender stem. The tubular calyx is formed by 2–5 united sepals. There are five united, bilabiate petals forming the corolla and they may be yellowish, brownish, purplish, or white. The upper lip is two-lobed, the lower lip is three-lobed. There are two long and two short stamens on slender filaments, inserted below the middle, or at the base of the corolla tube, alternating with the lobes of the tube. A fifth stamen is either sterile or lacking completely. The anthers dehisce via longitudinal slits. The pistil is one-celled. The ovary is superior. The flowers are pollinated by insects or birds (e.g., hummingbirds, as in Castilleja).

= Fruits =

The fruit is a dehiscent, non-fleshy, 1-locular capsule with many very minute endospermic seeds. Fruits of Orobanchaceae are small and abundant and can produce between 10,000–1,000,000 seeds per plant.{{cite book|last1=Molau|first1=U.|title=Parasitic Plants: Reproductive ecology and biology|date=1995|publisher=Chapman and Hall|location=London|pages=141–176}} These are dispersed by the wind over long distances, which increases their chances of finding a new host.

Taxonomy

The taxon was first described in 1799 by Étienne Pierre Ventenat as Orobanchoideae. The family name Orobanchaceae is a conserved name.{{IPNI|taxon=Orobanchaceae |authority=Vent..|id=30003446-2|access-date=2025-02-28|mode=cs1}}{{cite book |last=Ventenat |first=É. P. |date=1799 |contribution=Les Orobanchoïdes, Orobanchoideae |title=Tableau du règne végétal, selon la méthode de Jussieu |volume=2 |publisher=de l'Imprimerie de J. Drisonnier |location=Paris |pages=292–295 |contribution-url=https://www.biodiversitylibrary.org/page/55239044 |access-date=2025-02-28}} Despite the similar morphological traits found in both Scrophulariaceae and Orobanchaceae, the latter is now considered a separate monophyletic taxon, on both molecular and mophological grounds. The 2016 APG IV system expanded Orobanchaceae to include genera previously placed in Scrophulariaceae, so that the family absorbed the former Lindenbergiaceae and Rehmanniaceae.{{Cite journal |last=Angiosperm Phylogeny Group |year=2016 |title=An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV |journal=Botanical Journal of the Linnean Society |volume=181 |issue=1 |pages=1–20 |doi=10.1111/boj.12385 |doi-access=free }} These two former families may be treated as tribes.Stevens, P.F. (2001 onwards). [http://www.mobot.org/MOBOT/research/APweb/orders/lamialesweb.htm#Orobanchaceae "Orobanchaceae"]. Angiosperm Phylogeny Website. Retrieved 2025-02-28. Molecular phylogenetic studies show that they are sisters to the other Orobanchaceae genera:

{{barlabel

|size=3

|at1=1.5|label1=non-parasitic

|cladogram=

{{clade

|label1 = Orobanchaceae

|1={{clade

|label1 = Rehmannieae

|1={{clade

|1=Triaenophora|barbegin1=black

|2=Rehmannia|bar2=black

}}

|2={{clade

|1=Lindenbergia (Lindenbergieae) |barend1=black

|2=remaining Orobanchaceae

}}

}}

}}

}}

= Evolution =

Development of the haustoria was a significant evolutionary event that allowed for the advancement of parasitic plants. The holoparasitic clade, Orobanche, delineates the first transition from hemiparasitism to holoparasitism within Orobanchaceae.{{citation needed|date=February 2025}}

= Genomics =

The parasitism and its different modes have been suggested to have an impact on genome evolution, with increased DNA substitution rates in parasitic organisms compared to non-parasitic taxa.{{Cite journal |last1=Haraguchi |first1=Yoshihiro |last2=Sasaki |first2=Akira |date=1996-11-21 |title=Host–Parasite Arms Race in Mutation Modifications: Indefinite Escalation Despite a Heavy Load? |journal=Journal of Theoretical Biology |language=en |volume=183 |issue=2 |pages=121–137 |doi=10.1006/jtbi.1996.9999 |pmid=8977873 |bibcode=1996JThBi.183..121H |issn=0022-5193}} For example, holoparasite taxa of Orobanchaceae exhibit faster molecular evolutionary rates than confamilial hemiparasites in three plastid genes.{{Cite journal |last1=Young |first1=Nelson D. |last2=dePamphilis |first2=Claude W. |date=2005-02-15 |title=Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function |journal=BMC Evolutionary Biology |volume=5 |issue=1 |pages=16 |doi=10.1186/1471-2148-5-16 |issn=1471-2148 |pmc=554776 |pmid=15713237 |doi-access=free }}

In a study comparing the rates of molecular evolution of parasitic versus non parasitic taxa for 12 pairs of angiosperm families — including Apodanthaceae, Cytinaceae, Rafflesiaceae, Cynomoriaceae, Krameriaceae, Mitrastemonaceae, Boraginaceae, Orobanchaceae, Convolvulaceae, Lauraceae, Hydnoraceae, and Santalaceae/Olacaceae —, parasitic taxa evolve on average faster than their close relatives for mitochondrial, plastid, and nuclear genome sequences.{{cite journal |last1=Bromham |first1=Lindell |last2=Cowman |first2=Peter F. |last3=Lanfear |first3=Robert |title=Parasitic plants have increased rates of molecular evolution across all three genomes |journal=BMC Evolutionary Biology |date=1 January 2013 |volume=13 |issue=1 |page=126 |doi=10.1186/1471-2148-13-126 |pmid=23782527 |issn=1471-2148 |pmc=3694452 |bibcode=2013BMCEE..13..126B |doi-access=free }} Whereas Orobanchaceae fit to this trend for plastid DNA, they appear to evolve slower than their non parasitic counterpart in comparisons involving nuclear and mitochondrial DNA.

= Genera =

{{As of|2025|February}}, Plants of the World Online accepted 99 genera. Three further genera are accepted by other sources, and are included in the following list.

{{div col|colwidth=20em}}

= Genera by life history trait =

Orobanchaceae genera listed according to their life history trait.{{citation needed|date=March 2022}}

== Non-parasitic ==

== Hemiparasitic ==

== Holoparasitic ==

{{div col|colwidth=15em}}

{{div col end}}

Distribution

The family Orobanchaceae has a cosmopolitan distribution, found mainly in temperate Eurasia, North America, South America, parts of Australia, New Zealand, and tropical Africa. The only exception to its distribution is Antarctica, though some genera may be found in subarctic regions.{{cite journal|last1=Watson|first1=David M.|title=Parasitic plants as facilitators: more Dryad than Dracula?|journal=Journal of Ecology|date=October 13, 2009|volume=97|issue=6|doi=10.1111/j.1365-2745.2009.01576.x|pages=1151–1159|bibcode=2009JEcol..97.1151W |s2cid=84242604|doi-access=free}}

Ecology

This family has tremendous economic importance because of the damage to crops caused by some species in the genera Orobanche and Striga. They often parasitize cereal crops like sugarcane, maize, millet, sorghum, and other major agricultural crops like cowpea, sunflower, hemp, tomatoes, and legumes. Because of the ubiquitous nature of these particular parasites in developing countries, it is estimated to affect the livelihood of over 100 million people, killing 20 to 100 percent of crops depending on infestation.{{Cite journal |last1=Westwood |first1=James H. |last2=dePamphilis |first2=Claude W. |last3=Das |first3=Malay |last4=Fernández-Aparicio |first4=Mónica |last5=Honaas |first5=Loren A. |last6=Timko |first6=Michael P. |last7=Wafula |first7=Eric K. |last8=Wickett |first8=Norman J. |last9=Yoder |first9=John I. |date=April–June 2012 |title=The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga |journal=Weed Science |language=en |volume=60 |issue=2 |pages=295–306 |doi=10.1614/WS-D-11-00113.1 |s2cid=26435162 |issn=0043-1745}}

Some genera, especially Cistanche and Conopholis, are threatened by human activity, including habitat destruction and over-harvesting of both the plants and their hosts.

Research for this plant family can often be difficult due to its permit requirements for collection, travel, and research.

Notes

{{Notelist}}

References

{{Reflist|refs=

{{Cite journal |last1=dePamphilis |first1=Claude W. |last2=Young |first2=Nelson D. |last3=Wolfe |first3=Andrea D. |date=1997-07-08 |title=Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns of rate variation |journal=Proceedings of the National Academy of Sciences |language=en |volume=94 |issue=14 |pages=7367–7372 |doi=10.1073/pnas.94.14.7367 |issn=0027-8424 |pmc=23827 |pmid=9207097|bibcode=1997PNAS...94.7367D |doi-access=free }}

{{Cite book |editor-last=de Queiroz |editor-first=Kevin |editor-last2=Cantino |editor-first2=Philip D. |editor-last3=Gauthier |editor-first3=Jacques A. |title=Phylonyms: A Companion to the PhyloCode |date=2020-04-30 |last1=Tank |first1=David C. |last2=Wolfe |first2=Andrea |last3=Mathews |first3=Sarah |last4=Olmstead |first4=Richard G. |chapter=Orobanchaceae E. P. Ventenant 1799:292 [D. C. Tank, A. D. Wolfe, S. Mathews, and R. G. Olmstead], converted clade name |pages=1749–1751 |publisher=CRC Press |url=https://books.google.com/books?id=McHgDwAAQBAJ&pg=PA1749 |isbn=978-0-429-82120-2 |language=en }}

{{Cite journal |last1=McNeal |first1=J. R. |last2=Bennett |first2=J. R. |last3=Wolfe |first3=A. D. |last4=Mathews |first4=S. |date=2013-05-01 |title=Phylogeny and origins of holoparasitism in Orobanchaceae |journal=American Journal of Botany |language=en |volume=100 |issue=5 |pages=971–983 |doi=10.3732/ajb.1200448 |pmid=23608647 |issn=0002-9122}}

{{Citation |mode=cs1 |last1=Li |first1=Xi |last2=Feng |first2=Tao |last3=Randle |first3=Chris |last4=Schneeweiss |first4=Gerald M. |date=2019 |title=Phylogenetic Relationships in Orobanchaceae Inferred From Low-Copy Nuclear Genes: Consolidation of Major Clades and Identification of a Novel Position of the Non-photosynthetic Orobanche Clade Sister to All Other Parasitic Orobanchaceae |journal=Frontiers in Plant Science |volume=10 |page=902 |doi=10.3389/fpls.2019.00902 |pmid=31379896 |pmc=6646720 |name-list-style=amp |doi-access=free }}

{{Cite journal |last1=Mortimer |first1=Sebastian M. E. |last2=Boyko |first2=James |last3=Beaulieu |first3=Jeremy M. |last4=Tank |first4=David C. |date=2022 |title=Synthesizing Existing Phylogenetic Data to Advance Phylogenetic Research in Orobanchaceae |journal=Systematic Botany |volume=47 |issue=2 |pages=533–544 |url=https://drive.google.com/file/d/1GWJCHsyxBb52Mp6mkv6nwqHkWzgV-g3u/view |doi=10.1600/036364422X16512564801560 |name-list-style=amp }}

{{Cite journal |last1=Olmstead |first1=Richard G. |last2=Pamphilis |first2=Claude W. de |last3=Wolfe |first3=Andrea D. |last4=Young |first4=Nelson D. |last5=Elisons |first5=Wayne J. |last6=Reeves |first6=Patrick A. |year=2001 |title=Disintegration of the Scrophulariaceae |journal=American Journal of Botany |language=en |volume=88 |issue=2 |pages=348–361 |doi=10.2307/2657024 |jstor=2657024 |pmid=11222255 |issn=1537-2197|doi-access=free }}

{{Cite journal |last1=Xia |first1=Zhi |last2=Wang |first2=Yin-Zheng |last3=Smith |first3=James F. |date=2009 |title=Familial placement and relations of Rehmannia and Triaenophora (Scrophulariaceae s.l.) inferred from five gene regions |journal=American Journal of Botany |language=en |volume=96 |issue=2 |pages=519–530 |doi=10.3732/ajb.0800195 |pmid=21628207 |issn=1537-2197}}

{{Cite POWO|title=Orobanchaceae Vent..|id=30003446-2|access-date=2025-02-28|mode=cs1}}

{{Cite journal |last1=Young |first1=Nelson D. |last2=Steiner |first2=Kim E. |last3=dePamphilis |first3=Claude W. |year=1999 |title=The Evolution of Parasitism in Scrophulariaceae/Orobanchaceae: Plastid Gene Sequences Refute an Evolutionary Transition Series |journal=Annals of the Missouri Botanical Garden |volume=86 |issue=4 |pages=876 |doi=10.2307/2666173 |jstor=2666173 |bibcode=1999AnMBG..86..876Y |url=https://www.biodiversitylibrary.org/part/28632 |access-date=2021-09-12 |archive-date=2020-07-18 |archive-url=https://web.archive.org/web/20200718201442/https://www.biodiversitylibrary.org/part/28632 |url-status=live }}

}}