2017 in paleontology#Turtles
{{Short description|none}}
{{Year nav topic20|2017|paleontology|paleobotany|arthropod paleontology|paleoentomology|paleomalacology|paleoichthyology|reptile paleontology|archosaur paleontology|mammal paleontology}}
{{Year in paleontology header}}
Flora
{{Main|2017 in paleobotany}}
Cnidarians
=Research=
- Ou et al. (2017) consider early Cambrian species Galeaplumosus abilus and Chengjiangopenna wangii to be junior synonyms of Xianguangia sinica, interpret fossils attributed to members of these species as parts of the same organism and consider X. sinica to be likely stem-cnidarian.{{Cite journal|author1=Qiang Ou |author2=Jian Han |author3=Zhifei Zhang |author4=Degan Shu |author5=Ge Sun |author6=Georg Mayer |year=2017 |title=Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=33 |pages=8835–8840 |doi=10.1073/pnas.1701650114 |pmid=28760981 |pmc=5565419 |bibcode=2017PNAS..114.8835O |doi-access=free }}
- Pseudooides prima is interpreted as a cnidarian and a senior synonym of Hexaconularia sichuanensis by Duan et al. (2017).{{Cite journal|author1=Baichuan Duan |author2=Xi-Ping Dong |author3=Luis Porras |author4=Kelly Vargas |author5=John A. Cunningham |author6=Philip C. J. Donoghue |year=2017 |title=The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1869 |pages=20172188 |doi=10.1098/rspb.2017.2188 |pmid=29237861 |pmc=5745419 }}
- Fossilized cnidarian medusae are described from the Cambrian Zabriskie Quartzite (California, United States) by Sappenfield, Tarhan & Droser (2017), representing the oldest macrofossil evidence of cnidarian medusae from the Phanerozoic reported so far.{{Cite journal|author1=Aaron D. Sappenfield |author2=Lidya G. Tarhan |author3=Mary L. Droser |s2cid=133404332 |year=2017 |title=Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach? |journal=Geological Magazine |volume=154 |issue=4 |pages=859–874 |doi=10.1017/S0016756816000443|bibcode=2017GeoM..154..859S |doi-access=free }}
- A study on the morphology of phosphatic tubes of Sphenothallus from the Early Ordovician Fenxiang Formation (China), as well as the Silurian and Early Devonian of Podolia (Ukraine), and its implications for the evolution of symmetry in the body plan of cnidarians is published by Dzik, Baliński & Sun (2017).{{Cite journal|author1=Jerzy Dzik |author2=Andrzej Baliński |author3=Yuanlin Sun |year=2017 |title=The origin of tetraradial symmetry in cnidarians |journal=Lethaia |volume=50 |issue=2 |pages=306–321 |doi=10.1111/let.12199 |bibcode=2017Letha..50..306D |url=https://www.researchgate.net/publication/312928355}}
- A study on the succession of coral assemblages through the Ordovician–Silurian transition in South China is published by Wang et al. (2017).{{Cite journal|author1=Guangxu Wang |author2=Renbin Zhan |author3=Bing Huang |author4=Ian G. Percival |year=2017 |title=Coral faunal turnover through the Ordovician–Silurian transition in South China and its global implications for carbonate stratigraphy and macroevolution |journal=Geological Magazine |volume=154 |issue=4 |pages=829–836 |doi=10.1017/S0016756816000406|bibcode=2017GeoM..154..829W |s2cid=132435154 }}
- A study on the extant and fossil stony corals, intending to determine whether fossil corals lived in symbiosis with photosynthesizing dinoflagellates, is published by Tornabene et al. (2017).{{Cite journal|author1=Chiara Tornabene |author2=Rowan C. Martindale |author3=Xingchen T. Wang |author4=Morgan F. Schaller |year=2017 |title=Detecting Photosymbiosis in Fossil Scleractinian Corals |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 9465 |doi=10.1038/s41598-017-09008-4 |pmid=28842582 |pmc=5572714 |bibcode=2017NatSR...7.9465T }}
=New taxa=
Arthropods
{{Main|2017 in arthropod paleontology}}
Bryozoans
=Research=
- Epizoic bryozoans are reported on fossil crabs from the Miocene Mishan Formation (Iran) by Key et al. (2017).{{cite journal |author1=Marcus M. Key, Jr. |author2=Matúš Hyžný |author3=Erfan Khosravi |author4=Natália Hudáčková |author5=Ninon Robin |author6=Majid Mirzaie Ataabadi |year=2017 |title=Bryozoan epibiosis on fossil crabs: a rare occurrence from the Miocene of Iran |journal=PALAIOS |volume=32 |issue=8 |pages=491–505 |doi=10.2110/palo.2017.040 |bibcode=2017Palai..32..491K |s2cid=134042609 }}
=New taxa=
Brachiopods
=Research=
- A study on the selectivity of brachiopod extinctions during the Ordovician–Silurian extinction events is published by Finnegan, Rasmussen & Harper (2017).{{cite journal|author1=Seth Finnegan |author2=Christian M. Ø. Rasmussen |author3=David A. T. Harper |year=2017 |title=Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods |journal=Biology Letters |volume=13 |issue=9 |pages=20170400 |doi=10.1098/rsbl.2017.0400 |pmid=28954854 |pmc=5627174 }}
- A study on the patterns of biomineralization of Late Permian brachiopod shells and on their implications for inferring the environmental disruptions associated with the Permian–Triassic extinction event is published by Garbelli, Angiolini & Shen (2017).{{Cite journal|author1=Claudio Garbelli |author2=Lucia Angiolini |author3=Shu-zhong Shen |year=2017 |title=Biomineralization and global change: A new perspective for understanding the end-Permian extinction |journal=Geology |volume=45 |issue=1 |pages=19–22 |doi=10.1130/G38430.1 |bibcode=2017Geo....45...19G }}
=New taxa=
Molluscs
{{Main|2017 in paleomalacology}}
Echinoderms
=Research=
- Systematic revision of the North American members of the diploporitan family Holocystitidae is published by Sheffield & Sumrall (2017).{{cite journal |author1=Sarah L. Sheffield |author2=Colin D. Sumrall |year=2017 |title=Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology |journal=Journal of Paleontology |volume=91 |issue=4 |pages=755–766 |doi=10.1017/jpa.2016.159 |bibcode=2017JPal...91..755S |s2cid=133298313 |doi-access=free }}
- Triassic members of the otherwise Paleozoic groups of sea urchins (the family Proterocidaridae), brittle stars (the family Eospondylidae) and starfish are reported by Thuy, Hagdorn & Gale (2017).{{cite journal |author1=Ben Thuy |author2=Hans Hagdorn |author3=Andy S. Gale |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic |journal=Geology |volume=45 |issue=6 |pages=531–534 |doi=10.1130/G38909.1 |bibcode=2017Geo....45..531T |doi-access=free }}{{cite journal |author=Daniel B. Blake |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT |journal=Geology |volume=45 |issue=7 |pages=e417 |doi=10.1130/G39163C.1 |bibcode=2017Geo....45E.417B |doi-access=free }}{{cite journal |author1=Ben Thuy |author2=Hans Hagdorn |author3=Andy S. Gale |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY |journal=Geology |volume=45 |issue=7 |pages=e418 |doi=10.1130/G39210Y.1 |bibcode=2017Geo....45E.418T |doi-access=free }}{{cite journal |author1=Mariusz A. Salamon |author2=Przemysław Gorzelak |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT |journal=Geology |volume=45 |issue=7 |pages=e419 |doi=10.1130/G39196C.1 |bibcode=2017Geo....45E.419S |doi-access=free }}{{cite journal |author=Ben Thuy |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY |journal=Geology |volume=45 |issue=7 |pages=e420 |doi=10.1130/G39221Y.1 |bibcode=2017Geo....45E.420T |doi-access=free }}{{cite journal |author1=Aaron W. Hunter |author2=Kenneth J. McNamara |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT |journal=Geology |volume=45 |issue=11 |pages=e431 |doi=10.1130/G39575C.1 |bibcode=2017Geo....45E.431H |doi-access=free }}{{cite journal |author1=Ben Thuy |author2=Hans H. Hagdorn |author3=Andy S. Gale |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY |journal=Geology |volume=45 |issue=11 |pages=e432 |doi=10.1130/G39684Y.1 |bibcode=2017Geo....45E.432T |doi-access=free }}
- Phylogenetic analysis and systematic revision of early to middle Paleozoic non-camerate crinoids published by Wright (2017).{{cite journal |author=David F. Wright | year=2017 |title= Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata) |journal=Journal of Paleontology |volume=91 |issue=4 |pages=799–814 |doi=10.1017/jpa.2016.141| bibcode=2017JPal...91..799W | s2cid=5018503 |doi-access=free }}
- Systematic revision of Ordovician camerate crinoids published by Cole (2017).{{cite journal |author=Selina R. Cole | year=2017 |title= Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata) |journal=Journal of Paleontology |volume=91 |issue=4 |pages=815–828 |doi=10.1017/jpa.2016.137| bibcode=2017JPal...91..815C | s2cid=90459044 |doi-access=free }}
- Major revision to the classification of fossil and extant Crinoidea by Wright et al. (2017), including the presentation of new phylogeny-based and rank-based classifications.{{cite journal |author1=David F. Wright |author2=William I. Ausich |author3=Selina R. Cole |author4=Mark E. Peter |author5=Elizabeth C. Rhenberg | year=2017 |title= Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata) |journal=Journal of Paleontology |volume=91 |issue=4 |pages=829–846 |doi=10.1017/jpa.2016.142|bibcode=2017JPal...91..829W |s2cid=13806992 |doi-access=free }}
- A study on large-scale patterns of morphologic evolution in the Paleozoic radiation of eucladid crinoids is published by Wright (2017).{{cite journal |author=David F. Wright |year=2017 |title=Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 13745 |doi=10.1038/s41598-017-13979-9 |pmid=29062117 |pmc=5653864 |bibcode=2017NatSR...713745W }}
- A study on the internal morphology of the water vascular system in a specimen of a stem-ophiuroid species Protasterina flexuosa from the Ordovician (Katian) Kope Formation (Kentucky, United States) is published by Clark et al. (2017).{{cite journal |author1=Elizabeth G. Clark |author2=Bhart-Anjan S. Bhullar |author3=Simon A. F. Darroch |author4=Derek E. G. Briggs |year=2017 |title=Water vascular system architecture in an Ordovician ophiuroid |journal=Biology Letters |volume=13 |issue=12 |pages=20170635 |doi=10.1098/rsbl.2017.0635 |pmid=29212753 |pmc=5746540 }}
- A study on the paleoecology of the echinoderm species known from the upper Campanian Pierre Shale (including the crinoid Lakotacrinus brezinai), especially on their adaptations to the cold seep environment, is published by Kato, Oji & Shirai (2017).{{cite journal |author1=Moe Kato |author2=Tatsuo Oji |author3=Kotaro Shirai |year=2017 |title=Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway |journal=PALAIOS |volume=32 |issue=4 |pages=218–230 |doi=10.2110/palo.2016.079 |url=https://www.researchgate.net/publication/315991440 |bibcode=2017Palai..32..218K |s2cid=131975877 }}{{cite journal |author1=Aaron W. Hunter |author2=Neal L. Larson |author3=Jamie Brezina |year=2018 |title=Comment to Kato et al. (2017), "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway" |journal=PALAIOS |volume=33 |issue=6 |pages=282–283 |doi=10.2110/palo.2017.071 |bibcode=2018Palai..33..282H |s2cid=133937083 }}{{cite journal |author1=Moe Kato |author2=Tatsuo Oji |author3=Kotaro Shirai |year=2018 |title=Reply to comment on Kato et al. (2017) "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway" |journal=PALAIOS |volume=33 |issue=6 |pages=284–285 |doi=10.2110/palo.2018.028 |bibcode=2018Palai..33..284K |s2cid=134000894 }}
=New taxa=
Conodonts
=Research=
- A study on the conodont assemblage from the Silurian (Homerian) Rootsiküla Formation (Estonia), interpreted as occurring in the evaporite-bearing strata, and on the conodont diversity in various environments, is published by Jarochowska et al. (2017).{{Cite journal|author1=Emilia Jarochowska |author2=Viive Viira |author3=Rein Einasto |author4=Rafał Nawrot |author5=Oskar Bremer |author6=Peep Männik |author7=Axel Munnecke |s2cid=131974217 |year=2017 |title=Conodonts in Silurian hypersaline environments: Specialized and unexpectedly diverse |journal=Geology |volume=45 |issue=1 |pages=3–6 |doi=10.1130/G38492.1 |bibcode=2017Geo....45....3J }}
- Articulated skeletal remains of Hindeodus parvus, providing direct evidence of the number and arrangement of elements in the apparatus, are described from the Lower Triassic of China by Zhang et al. (2017).{{Cite journal|author1=Muhui Zhang |author2=Haishui Jiang |author3=Mark A. Purnell |author4=Xulong Lai |year=2017 |title=Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus |journal=Palaeontology |volume=60 |issue=4 |pages=595–608 |doi=10.1111/pala.12305 |bibcode=2017Palgy..60..595Z |doi-access=free |hdl=2381/40480 |hdl-access=free }}{{Cite journal|author1=Sachiko Agematsu |author2=Martyn L. Golding |author3=Michael J. Orchard |year=2018 |title=Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhang et al.) |journal=Palaeontology |volume=61 |issue=5 |pages=785–792 |doi=10.1111/pala.12372 |bibcode=2018Palgy..61..785A |doi-access=free }}{{Cite journal|author1=Mark A. Purnell |author2=Muhui Zhang |author3=Haishui Jiang |author4=Xulong Lai |year=2018 |title=Reconstruction, composition and homology of conodont skeletons: a response to Agematsu et al. |journal=Palaeontology |volume=61 |issue=5 |pages=793–796 |doi=10.1111/pala.12387 |bibcode=2018Palgy..61..793P |doi-access=free |hdl=2381/42406 |hdl-access=free }}
=New taxa=
Fishes
{{Main|2017 in paleoichthyology}}
Amphibians
=Research=
- A study on the evolution of eye size in early tetrapods and in fish belonging to the lineage that gave rise to tetrapods, as well as on the impact of the eye size on the eye performance while viewing objects through water and through air is published by MacIver et al. (2017).{{Cite journal|author1=Malcolm A. MacIver |author2=Lars Schmitz |author3=Ugurcan Mugan |author4=Todd D. Murphey |author5=Curtis D. Mobley |year=2017 |title=Massive increase in visual range preceded the origin of terrestrial vertebrates |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=12 |pages=E2375–E2384 |doi=10.1073/pnas.1615563114 |pmid=28270619 |bibcode=2017PNAS..114E2375M |pmc=5373340 |doi-access=free }}
- A study on the evolution of forelimb musculature from the lobe-finned fish to early tetrapods is published online by Molnar et al. (2017).{{Cite journal|author1=Julia L. Molnar|author2=Rui Diogo|author3=John R. Hutchinson|author4=Stephanie E. Pierce|year=2017|title=Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition|url=https://www.researchgate.net/publication/320988769|journal=Biological Reviews|volume=93|issue=2|pages=1077–1107|doi=10.1111/brv.12386|pmid=29125205|s2cid=4704712|doi-access=free}}
- A study on the influence of habitat traits on the persistence length of living and fossil amphibian species is published by Tietje & Rödel (2017).{{Cite journal|author1=Melanie Tietje |author2=Mark-Oliver Rödel |year=2017 |title=Contradicting habitat type-extinction risk relationships between living and fossil amphibians |journal=Royal Society Open Science |volume=4 |issue=5 |pages=170051 |doi=10.1098/rsos.170051 |pmid=28573010 |pmc=5451811 |bibcode=2017RSOS....470051T }}
- A study on the development of the vertebral intercentrum and pleurocentrum in fossil amphibians is published by Danto et al. (2017).{{Cite journal|author1=Marylène Danto |author2=Florian Witzmann |author3=Stephanie E. Pierce |author4=Nadia B. Fröbisch |year=2017 |title=Intercentrum versus pleurocentrum growth in early tetrapods: A paleohistological approach |journal=Journal of Morphology |volume=278 |issue=9 |pages=1262–1283 |doi=10.1002/jmor.20709 |pmid=28517044 |s2cid=38390403 }}
- A study on the probable function of the interpterygoid vacuities (holes in the palate) in temnospondyls as the site of muscle attachment is published by Witzmann & Werneburg (2017).{{Cite journal|author1=Florian Witzmann |author2=Ingmar Werneburg |year=2017 |title=The Palatal Interpterygoid Vacuities of Temnospondyls and the Implications for the Associated Eye- and Jaw Musculature |journal=The Anatomical Record |volume=300 |issue=7 |pages=1240–1269 |doi=10.1002/ar.23582 |pmid=28220619 |s2cid=4417795 |doi-access=free }}
- A study on the earliest larval development in temnospondyls, as indicated by specimens from the Permian (Sakmarian) lake sediments near Obermoschel (Saar–Nahe Basin, Germany), is published by Werneburg (2017).{{cite journal |author1=Ralf Werneburg |year=2017 |title=Earliest 'nursery ground' of temnospondyl amphibians in the Permian |journal=Semana. Naturwissenschaftliche Veröffentlichungen des Naturhistorischen Museums Schloss Bertholdsburg Schleusingen |volume=32 |pages=3–42 |url=https://www.researchgate.net/publication/323642345 }}
- A study on the histology of the small palatal plates and their denticles in a Permian dissorophoid temnospondyl from the Dolese Brothers Limestone Quarry near Richards Spur (Oklahoma, United States) is published by Gee, Haridy & Reisz (2017).{{Cite journal|author1=Bryan M. Gee |author2=Yara Haridy |author3=Robert R. Reisz |year=2017 |title=Histological characterization of denticulate palatal plates in an Early Permian dissorophoid |journal=PeerJ |volume=5 |pages=e3727 |doi=10.7717/peerj.3727 |pmid=28848692 |pmc=5571816 |doi-access=free }}
- Taxonomic revision of all described rhinesuchids and a study on the phylogenetic relationships of members of Rhinesuchidae is published by Marsicano et al. (2017), who transfer the species "Rhinesuchus" capensis Haughton (1925) to the genus Rhinesuchoides.{{Cite journal|author1=Claudia A. Marsicano |author2=Elizabeth Latimer |author3=Bruce Rubidge |author4=Roger M.H Smith |year=2017 |title=The Rhinesuchidae and early history of the Stereospondyli (Amphibia: Temnospondyli) at the end of the Palaeozoic |journal=Zoological Journal of the Linnean Society |volume=181 |issue=2 |pages=357–384 |doi=10.1093/zoolinnean/zlw032 |hdl=11336/105150 |hdl-access=free }}
- New specimen of the rhinesuchid Australerpeton cosgriffi (a skull and mandible) is described from the Permian Rio do Rasto Formation (Brazil) by Azevedo, Vega & Soares (2017).{{Cite journal|author1=Karine Lohmann Azevedo |author2=Cristina Silveira Vega |author3=Marina Bento Soares |year=2017 |title=A new specimen of Australerpeton cosgriffi Barberena, 1998 (Stereospondyli: Rhinesuchidae) from the Middle/Upper Permian Rio do Rasto Formation, Paraná Basin, Brazil |journal=Revista Brasileira de Paleontologia |volume=20 |issue=3 |pages=333–344 |doi=10.4072/rbp.2017.3.05 |doi-access=free }}
- A description of the anatomy of the braincase and middle ear regions of an exceptionally well-preserved skull of Stanocephalosaurus amenasensis from the Triassic of Algeria is published by Arbez, Dahoumane & Steyer (2017).{{Cite journal|author1=Thomas Arbez |author2=Anissa Dahoumane |author3=J.-Sébastien Steyer |year=2017 |title=Exceptional endocranium and middle ear of Stanocephalosaurus (Temnospondyli: Capitosauria) from the Triassic of Algeria revealed by micro-CT scan, with new functional interpretations of the hearing system |journal=Zoological Journal of the Linnean Society |volume=180 |issue=4 |pages=910–929 |doi=10.1093/zoolinnean/zlw007 |url=https://hal.sorbonne-universite.fr/hal-01643473/file/ARBEZ_Thomas.pdf }}
- A study on the anatomy of the skulls of metoposaurid species Metoposaurus krasiejowensis and Apachesaurus gregorii, as well as its implications for establishing whether metoposaurids were active or ambush predators is published by Fortuny, Marcé-Nogué & Konietzko-Meier (2017).{{Cite journal|author1=Josep Fortuny |author2=Jordi Marcé-Nogué |author3=Dorota Konietzko-Meier |year=2017 |title=Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach |journal=Journal of Anatomy |volume=230 |issue=6 |pages=752–765 |doi=10.1111/joa.12605 |pmid=28369819 |pmc=5442151 }}
- An analysis of the microanatomy and histology of metoposaurid vertebra from the Petrified Forest National Park is published by Gee, Parker & Marsh (2017), who interpret Apachesaurus gregorii as more likely to be an early ontogenetic stage of a large metoposaurid, such as Koskinonodon perfectus rather than a distinct species.{{Cite journal|author1=Bryan M. Gee |author2=William G. Parker |author3=Adam D. Marsh |year=2017 |title=Microanatomy and paleohistology of the intercentra of North American metoposaurids from the Upper Triassic of Petrified Forest National Park (Arizona, USA) with implications for the taxonomy and ontogeny of the group |journal=PeerJ |volume=5 |pages=e3183 |doi=10.7717/peerj.3183 |pmid=28439462 |pmc=5398283 |doi-access=free }}
- A juvenile specimen of Koskinonodon perfectus is described from the Norian Petrified Forest Member of the Late Triassic Chinle Formation (Arizona, United States) by Gee & Parker (2017).{{Cite journal|author1=Bryan M. Gee |author2=William G. Parker |year=2017 |title=A juvenile Koskinonodon perfectus (Temnospondyli, Metoposauridae) from the Upper Triassic of Arizona and its implications for the taxonomy of North American metoposaurids |journal=Journal of Paleontology |volume=91 |issue=5 |pages=1047–1059 |doi=10.1017/jpa.2017.18 |bibcode=2017JPal...91.1047G |s2cid=134611838 |doi-access=free }}
- A study on the physiology (especially metabolic rate, body temperature, breathing, feeding, digestion, osmoregulation and excretion) of Archegosaurus decheni is published by Witzmann & Brainerd (2017).{{Cite journal|author1=Florian Witzmann |author2=Elizabeth Brainerd |year=2017 |title=Modeling the physiology of the aquatic temnospondyl Archegosaurus decheni from the early Permian of Germany |journal=Fossil Record |volume=20 |issue=2 |pages=105–127 |doi=10.5194/fr-20-105-2017 |doi-access=free |bibcode=2017FossR..20..105W }}
- A study on the histology of the dermal skull roof bones in Kokartus honorarius is published by Skutschas & Boitsova (2017).{{Cite journal|author1=Pavel P. Skutschas |author2=Elizaveta A. Boitsova |year=2017 |title=Histology of sculptured cranial dermal bones of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan |journal= Historical Biology: An International Journal of Paleobiology |volume=29 |issue=3 |pages=423–429 |doi=10.1080/08912963.2016.1171859 |bibcode=2017HBio...29..423S |s2cid=87609117 }}
- Fossilized soft tissues preserved with the type specimen of the salamander Phosphotriton sigei are described by Tissier, Rage & Laurin (2017).{{Cite journal|author1=Jérémy Tissier |author2=Jean-Claude Rage |author3=Michel Laurin |year=2017 |title=Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander |journal=PeerJ |volume=5 |pages=e3861 |doi=10.7717/peerj.3861 |pmc=5629955 |pmid=29018606 |doi-access=free }}
- A study on the bite force in extant Cranwell's horned frog (Ceratophrys cranwelli) and its implications for estimating the bite force in the Late Cretaceous species Beelzebufo ampinga is published by Lappin et al. (2017).{{Cite journal|author1=A. Kristopher Lappin |author2=Sean C. Wilcox |author3=David J. Moriarty |author4=Stephanie A. R. Stoeppler |author5=Susan E. Evans |author6=Marc E. H. Jones |year=2017 |title=Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 11963 |doi=10.1038/s41598-017-11968-6 |pmid=28931936 |pmc=5607344 |bibcode=2017NatSR...711963L }}
- Frog fossils, including the first known fossils of shovelnose frogs, are described from the early Pliocene of Kanapoi (Kenya) by Delfino (2017).{{Cite journal|author=Massimo Delfino |year=2017 |title=Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae) |journal=Journal of Human Evolution |volume=140 |pages=Article 102353 |doi=10.1016/j.jhevol.2017.06.008 |pmid=28712471 |s2cid=22517710 }}
- A study on the morphology of the skull of Lethiscus stocki and on the phylogenetic relationships of early tetrapods, recovering lepospondyls as a polyphyletic group, is published by Pardo et al. (2017).{{Cite journal|author1=Jason D. Pardo |author2=Matt Szostakiwskyj |author3=Per E. Ahlberg |author4=Jason S. Anderson |year=2017 |title=Hidden morphological diversity among early tetrapods |journal=Nature |volume=546 |issue=7660 |pages=642–645 |doi=10.1038/nature22966 |pmid=28636600 |bibcode=2017Natur.546..642P |hdl=1880/113382 |s2cid=2478132 |hdl-access=free }}
=New taxa=
==Temnospondyls==
==Lissamphibians==
==Other amphibians==
Reptiles
{{Main|2017 in reptile paleontology|2017 in archosaur paleontology}}
Synapsids
=Non-mammalian synapsids=
==Research==
- Phreatophasma aenigmaticum is argued to be a member of Caseidae by Brocklehurst & Fröbisch (2017).{{cite journal |author1=Neil Brocklehurst |author2=Jörg Fröbisch |year=2017 |title=A re-examination of the enigmatic Russian tetrapod Phreatophasma aenigmaticum and its evolutionary implications |journal=Fossil Record |volume=20 |issue=1 |pages=87–93 |doi=10.5194/fr-20-87-2017 |doi-access=free |bibcode=2017FossR..20...87B }}
- New fossil material of the caseid Alierasaurus ronchii is described from the Permian deposits of Cala del Vino Formation (Sardinia, Italy) by Romano et al. (2017).{{cite journal |author1=Marco Romano |author2=Ausonio Ronchi |author3=Simone Maganuco |author4=Umberto Nicosia |year=2017 |title=New material of Alierasaurus ronchii (Synapsida, Caseidae) from the Permian of Sardinia (Italy), and its phylogenetic affinities |journal=Palaeontologia Electronica |volume=20 |issue=2 |pages=Article number 20.2.26A |doi=10.26879/684 |doi-access=free |hdl=11573/1045550 |hdl-access=free }}
- A study on the histology of the humeri of Ophiacodon, revealing the existence of fibrolamellar bone in the postcranial bones of this taxon, is published by Shelton & Sander (2017).{{cite journal |author1=Christen D. Shelton |author2=Paul Martin Sander |year=2017 |title=Long bone histology of Ophiacodon reveals the geologically earliest occurrence of fibrolamellar bone in the mammalian stem lineage |journal=Comptes Rendus Palevol |volume=16 |issue=4 |pages=397–424 |doi=10.1016/j.crpv.2017.02.002 |bibcode=2017CRPal..16..397S |doi-access=free }}
- A study on the body size evolution of edaphosaurids and sphenacodontids is published by Brocklehurst & Brink (2017).{{cite journal |author1=Neil Brocklehurst |author2=Kirstin S. Brink |year=2017 |title=Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous |journal=FACETS |volume=2 |pages=68–84 |doi=10.1139/facets-2016-0046 |doi-access=free }}
- A study on the evolution of the endothermy in non-mammalian therapsids as indicated by oxygen isotope composition of bone and tooth phosphate in Permian and Triassic therapsids is published by Rey et al. (2017).{{cite journal |author1=Kévin Rey |author2=Romain Amiot |author3=François Fourel |author4=Fernando Abdala |author5=Frédéric Fluteau |author6=Nour-Eddine Jalil |author7=Jun Liu |author8=Bruce S. Rubidge |author9=Roger M.H. Smith |author10=J. Sébastien Steyer |author11=Pia A. Viglietti |author12=Xu Wang |author13=Christophe Lécuyer |year=2017 |title=Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades |journal=eLife |volume=6 |pages=e28589 |doi=10.7554/eLife.28589 |pmid=28716184 |pmc=5515572 |doi-access=free }}
- A study on the brain morphology of non-mammaliaform therapsids based on skull endocasts of Moschops capensis and a number of biarmosuchians (including Herpetoskylax hopsoni and members of the genera Hipposaurus and Lemurosaurus) is published by Benoit et al. (2017).{{cite journal |author1=J. Benoit |author2=V. Fernandez |author3=P.R. Manger |author4=B.S. Rubidge |year=2017 |title=Endocranial casts of pre-mammalian therapsids reveal an unexpected neurological diversity at the deep evolutionary root of mammals |journal=Brain, Behavior and Evolution |volume=90 |issue=4 |pages=311–333 |doi=10.1159/000481525 |pmid=29130981 |s2cid=12062696 }}
- A study on the morphology of the bony labyrinth of five biarmosuchian specimens is published by Benoit et al. (2017).{{cite journal |author1=Julien Benoit |author2=Paul R. Manger |author3=Vincent Fernandez |author4=Bruce S. Rubidge |year=2017 |title=The bony labyrinth of late Permian Biarmosuchia: palaeobiology and diversity in non-mammalian Therapsida |journal=Palaeontologia Africana |volume=52 |pages=58–77 |hdl=10539/23023 }}
- A study on the anatomy of the skull of Moschops capensis, revealing adaptations of the central nervous system related to head-to-head fighting, is published by Benoit et al. (2017).{{cite journal |author1=Julien Benoit |author2=Paul R. Manger |author3=Luke Norton |author4=Vincent Fernandez |author5=Bruce S. Rubidge |year=2017 |title=Synchrotron scanning reveals the palaeoneurology of the head-butting Moschops capensis (Therapsida, Dinocephalia) |journal=PeerJ |volume=5 |pages=e3496 |doi=10.7717/peerj.3496 |pmid=28828230 |pmc=5554600 |doi-access=free }}
- A study on the resting metabolic rate in Moghreberia nmachouensis is published by Olivier et al. (2017).{{cite journal |author1=Chloe Olivier |author2=Alexandra Houssaye |author3=Nour-Eddine Jalil |author4=Jorge Cubo |year=2017 |title=First palaeohistological inference of resting metabolic rate in an extinct synapsid, Moghreberia nmachouensis (Therapsida: Anomodontia) |journal=Biological Journal of the Linnean Society |volume=121 |issue=2 |pages=409–419 |doi=10.1093/biolinnean/blw044 |doi-access=free }}
- A study on the contents of the depression known as the "unossified zone" in the brain cavity of Diictodon feliceps is published by Laaß, Schillinger & Kaestner (2017).{{cite journal |author1=Michael Laaß |author2=Burkhard Schillinger |author3=Anders Kaestner |year=2017 |title=What did the "Unossified zone" of the non-mammalian therapsid braincase house? |journal=Journal of Morphology |volume=278 |issue=8 |pages=1020–1032 |doi=10.1002/jmor.20583 |pmid=28621458 |s2cid=23767779 }}
- A reassessment of the skull morphology and phylogenetic position of Compsodon helmoedi is published by Angielczyk & Kammerer (2017).{{cite journal |author1=Kenneth D. Angielczyk |author2=Christian F. Kammerer |year=2017 |title=The cranial morphology, phylogenetic position and biogeography of the upper Permian dicynodont Compsodon helmoedi van Hoepen (Therapsida, Anomodontia) |journal=Papers in Palaeontology |volume=3 |issue=4 |pages=513–545 |doi=10.1002/spp2.1087 |doi-access=free |bibcode=2017PPal....3..513A }}
- A skeleton of Lystrosaurus curvatus in a fossilized burrow, preserved with taphonomic evidence indicating that this individual was the burrow maker, is described from the Lower Triassic of the South African Karoo Basin by Botha-Brink (2017).{{cite journal |author=Jennifer Botha-Brink |year=2017 |title=Burrowing in Lystrosaurus: preadaptation to a postextinction environment? |journal=Journal of Vertebrate Paleontology |volume=37 |issue=5 |pages=e1365080 |doi=10.1080/02724634.2017.1365080 |bibcode=2017JVPal..37E5080B |s2cid=89742527 |url=https://figshare.com/articles/journal_contribution/5503705 }}
- A structure analogous to the mammalian neocortex is reported in Kawingasaurus fossilis by Laaß & Kaestner (2017).{{cite journal |author1=Michael Laaß |author2=Anders Kaestner |year=2017 |title=Evidence for convergent evolution of a neocortex-like structure in a late Permian therapsid |journal=Journal of Morphology |volume=278 |issue=8 |pages=1033–1057 |doi=10.1002/jmor.20712 |pmid=28621462 |s2cid=25032751 }}
- A gorgonopsian dentary affected by a condition closely resembling compound odontoma is reported from the Upper Permian of Tanzania by Whitney, Mose & Sidor (2017).{{cite journal |author1=Megan R. Whitney |author2=Larry Mose |author3=Christian A. Sidor |year=2017 |title=Odontoma in a 255-million-year-old mammalian forebear |journal=JAMA Oncology |volume=3 |issue=7 |pages=998–1000 |doi=10.1001/jamaoncol.2016.5417 |pmid=27930769 |pmc=5824274 }}
- A detailed description of the braincase of two gorgonopsian specimens (a probable specimen of Aelurosaurus wilmanae from South Africa and a possible specimen of Arctognathus? nasuta from Tanzania) is published by Araújo et al. (2017).{{cite journal |author1=Ricardo Araújo |author2=Vincent Fernandez |author3=Michael J. Polcyn |author4=Jörg Fröbisch |author5=Rui M.S. Martins |year=2017 |title=Aspects of gorgonopsian paleobiology and evolution: insights from the basicranium, occiput, osseous labyrinth, vasculature, and neuroanatomy |journal=PeerJ |volume=5 |pages=e3119 |doi=10.7717/peerj.3119 |pmid=28413721 |pmc=5390774 |doi-access=free }}
- A redescription and revision of the gorgonopsian genus Arctops is published by Kammerer (2017).{{cite journal |author=Christian F. Kammerer |year=2017 |title=Anatomy and relationships of the South African gorgonopsian Arctops (Therapsida, Theriodontia) |journal=Papers in Palaeontology |volume=3 |issue=4 |pages=583–611 |doi=10.1002/spp2.1094 |bibcode=2017PPal....3..583K |s2cid=90784117 }}
- Rediscovered holotype of the gorgonopsian species Clelandina major is described by Kammerer (2017), who considers this species to be a junior synonym of Clelandina rubidgei.{{cite journal |author=Christian F. Kammerer |year=2017 |title=Rediscovery of the holotype of Clelandina major Broom, 1948 (Gorgonopsia: Rubidgeinae) with implications for the identity of this species |journal=Palaeontologia Africana |volume=52 |pages=85–88 |hdl=10539/23480 }}
- A study on the anatomy of the teeth and maxilla of Euchambersia mirabilis and its implications for the hypothesis that venom gland were present in this species is published by Benoit et al. (2017).{{cite journal |author1=Julien Benoit |author2=Luke A. Norton |author3=Paul R. Manger |author4=Bruce S. Rubidge |year=2017 |title=Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques |journal=PLOS ONE |volume=12 |issue=2 |pages=e0172047 |doi=10.1371/journal.pone.0172047 |pmid=28187210 |pmc=5302418 |bibcode=2017PLoSO..1272047B |doi-access=free }}
- A redescription and a study on the phylogenetic relationships of Silphoictidoides ruhuhuensis is published by Maisch (2017), who considers the species to be a basal member of Baurioidea.{{cite journal |author=Michael W. Maisch |year=2017 |title=Re-assessment of Silphoictidoides ruhuhuensis von Huene, 1950 (Therapsida, Therocephalia) from the Late Permian of Tanzania: one of the most basal baurioids known |journal=Palaeodiversity |volume=10 |issue=1 |pages=25–39 |doi=10.18476/pale.v10.a3 |s2cid=90077728 |doi-access=free }}
- A study on the internal morphology of the interorbital region of the skull of basal cynodonts, including rarely fossilized orbitosphenoid elements, is published by Benoit et al. (2017).{{Cite journal|author1=Julien Benoit |author2=Sandra C. Jasinoski |author3=Vincent Fernandez |author4=Fernando Abdala |year=2017 |title=The mystery of a missing bone: revealing the orbitosphenoid in basal Epicynodontia (Cynodontia, Therapsida) through computed tomography |journal=The Science of Nature |volume=104 |issue=7–8 |pages=Article 66 |doi=10.1007/s00114-017-1487-z |pmid=28721557 |bibcode=2017SciNa.104...66B |s2cid=23688904 |hdl=11336/58253 |hdl-access=free }}
- A study on the anatomy of the nasal regions of the non-mammalian cynodonts Massetognathus, Probainognathus and Elliotherium, comparing it to the nasal regions of fossil mammaliaforms and extant mammals, is published by Crompton et al. (2017).{{cite journal |author1=A. W. Crompton |author2=T. Owerkowicz |author3=B.-A. S. Bhullar |author4=C. Musinsky |year=2017 |title=Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy |journal=Journal of Vertebrate Paleontology |volume=37 |issue=1 |pages=e1269116 |doi=10.1080/02724634.2017.1269116 |bibcode=2017JVPal..37E9116C |s2cid=39300694 }}
- A survey of the aggregations of the specimens of Galesaurus planiceps and Thrinaxodon liorhinus, with emphasis on whether the aggregations consist of individuals of similar age or representing a mixture of different age classes, is published by Jasinoski & Abdala (2017).{{cite journal |author1=Sandra C. Jasinoski |author2=Fernando Abdala |year=2017 |title=Aggregations and parental care in the Early Triassic basal cynodonts Galesaurus planiceps and Thrinaxodon liorhinus |journal=PeerJ |volume=5 |pages=e2875 |doi=10.7717/peerj.2875 |pmid=28097072 |pmc=5228509 |doi-access=free }}
- A study on the ontogenetic changes in the skull and mandible of Galesaurus planiceps is published by Jasinoski & Abdala (2017).{{cite journal |author1=Sandra C. Jasinoski |author2=Fernando Abdala |year=2017 |title=Cranial Ontogeny of the Early Triassic Basal Cynodont Galesaurus planiceps |journal=The Anatomical Record |volume=300 |issue=2 |pages=353–381 |doi=10.1002/ar.23473 |pmid=27615281 |s2cid=3629704 |doi-access=free |hdl=11336/66934 |hdl-access=free }}
- A description of the postcranial skeleton of Boreogomphodon from the Triassic Pekin Formation (North Carolina, United States) and a review of the postcranial variation across members of the family Traversodontidae is published by Liu, Schneider & Olsen (2017).{{cite journal |author1=Jun Liu |author2=Vincent P. Schneider |author3=Paul E. Olsen |year=2017 |title=The postcranial skeleton of Boreogomphodon (Cynodontia: Traversodontidae) from the Upper Triassic of North Carolina, USA and the comparison with other traversodontids |journal=PeerJ |volume=5 |pages=e3521 |doi=10.7717/peerj.3521 |pmid=28929007 |pmc=5601084 |doi-access=free }}
- A study on the jaw movement of Exaeretodon argentinus as indicated by its dental microwear is published by Kubo, Yamada & Kubo (2017).{{cite journal |author1=Tai Kubo |author2=Eisuke Yamada |author3=Mugino O. Kubo |year=2017 |title=Masticatory jaw movement of Exaeretodon argentinus (Therapsida: Cynodontia) inferred from its dental microwear |journal=PLOS ONE |volume=12 |issue=11 |pages=e0188023 |doi=10.1371/journal.pone.0188023 |pmid=29186178 |pmc=5706674 |bibcode=2017PLoSO..1288023K |doi-access=free }}
- A study on the morphology of the teeth of the cynodont Candelariodon barberenai, as well as on the phylogenetic relationships of the species, is published by Martinelli et al. (2017).{{cite journal |author1=Agustín G. Martinelli |author2=Marina Bento Soares |author3=Téo Veiga De Oliveira |author4=Pablo G. Rodrigues |author5=Cesar L. Schultz |year=2017 |title=The Triassic eucynodont Candelariodon barberenai revisited and the early diversity of stem prozostrodontians |journal=Acta Palaeontologica Polonica |volume=62 |issue=3 |pages=527–542 |doi=10.4202/app.00344.2017 |doi-access=free }}
- A description of the anatomy of the postcranial skeleton of Tritylodon longaevus is published by Gaetano, Abdala & Govender (2017).{{cite journal |author1=Leandro C. Gaetano |author2=Fernando Abdala |author3=Romala Govender |year=2017 |title=The postcranial skeleton of the Lower Jurassic Tritylodon longaevus from southern Africa |journal=Ameghiniana |volume=54 |issue=1 |pages=1–35 |doi=10.5710/AMGH.11.09.2016.3011 |s2cid=131866292 |hdl=11336/67040 |hdl-access=free }}
- A reassessment of the anatomy of the postcanine teeth of Stereognathus, based upon all available material from the United Kingdom, is published by Panciroli et al. (2017), who consider the species S. hebridicus to be a junior synonym of the species S. ooliticus.{{cite journal |author1=Elsa Panciroli |author2=Stig Walsh |author3=Nicholas C. Fraser |author4=Stephen L. Brusatte |author5=Ian Corfe |year=2017 |title=A reassessment of the postcanine dentition and systematics of the tritylodontid Stereognathus (Cynodontia, Tritylodontidae, Mammaliamorpha), from the Middle Jurassic of the United Kingdom |journal=Journal of Vertebrate Paleontology |volume=37 |issue=5 |pages=e1351448 |doi=10.1080/02724634.2017.1351448 |bibcode=2017JVPal..37E1448P |hdl=10138/230155 |s2cid=90100319 |doi-access=free |hdl-access=free }}
- Cast of a burrow which was probably made by a tritheledontid cynodont is described from the Early Jurassic upper Elliot Formation (South Africa) by Bordy et al. (2017).{{cite journal |author1=E.M. Bordy |author2=L. Sciscio |author3=F. Abdala |author4=B.W. McPhee |author5=J.N. Choiniere |year=2017 |title=First Lower Jurassic vertebrate burrow from southern Africa (upper Elliot Formation, Karoo Basin, South Africa) |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=468 |pages=362–372 |doi=10.1016/j.palaeo.2016.12.024 |bibcode=2017PPP...468..362B |hdl=11336/91165 |hdl-access=free }}
- A study on the evolution of jaw muscles across the cynodont–mammaliaform transition is published by Lautenschlager et al. (2017).{{cite journal |author1=Stephan Lautenschlager |author2=Pamela Gill |author3=Zhe-Xi Luo |author4=Michael J. Fagan |author5=Emily J. Rayfield |year=2017 |title=Morphological evolution of the mammalian jaw adductor complex |journal=Biological Reviews |volume=92 |issue=4 |pages=1910–1940 |doi=10.1111/brv.12314 |pmid=27878942 |pmc=6849872 |url=https://research-information.bristol.ac.uk/ws/files/93471435/Lautenschlager_et_al_2016_Biological_Reviews.pdf }}
==New taxa==
=Mammals=
{{Main|2017 in mammal paleontology}}
Other animals
=Research=
- A study on a succession of Ediacaran to Cambrian fossil assemblages from the eastern Siberian Platform (Russia) is published by Zhu et al. (2017), who argue that so-called Ediacaran and earliest Cambrian skeletal biotas overlap without notable biotic turnover.{{Cite journal|author1=M. Zhu |author2=A. Yu. Zhuravlev |author3=R.A. Wood |author4=F. Zhao |author5=S.S. Sukhov |year=2017 |title=A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform |journal=Geology |volume=45 |issue=5 |pages=459–462 |doi=10.1130/G38865.1 |bibcode=2017Geo....45..459Z |hdl=20.500.11820/319d761a-cd15-4e81-9038-bde69d45046b |s2cid=132968299 |url=https://www.pure.ed.ac.uk/ws/files/30398752/30398726._AAM._Wood..pdf }}
- A study on the Ediacaran taxon Parvancorina minchami, indicating that this animal was capable of performing rheotaxis, is published by Paterson et al. (2017).{{Cite journal|author1=John R. Paterson |author2=James G. Gehling |author3=Mary L. Droser |author4=Russell D. C. Bicknell |year=2017 |title=Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia |journal=Scientific Reports |volume=7 |pages=Article number 45539 |doi=10.1038/srep45539 |pmid=28358056 |pmc=5371987 |bibcode=2017NatSR...745539P }}
- A study on the water flow around the body of the Ediacaran taxon Parvancorina and its implications for the feeding mode and mobility of this animal is published by Darroch et al. (2017).{{Cite journal|author1=Simon A. F. Darroch |author2=Imran A. Rahman |author3=Brandt Gibson |author4=Rachel A. Racicot |author5=Marc Laflamme |year=2017 |title=Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina |journal=Biology Letters |volume=13 |issue=5 |pages=20170033 |doi=10.1098/rsbl.2017.0033 |pmid=28515329 |pmc=5454237 }}
- Fossils of members of the genus Namacalathus (co-occurring with Cloudina and Corumbella) are reported from the Ediacaran Tagatiya Guazú Formation (Itapucumi Group, Paraguay) by Warren et al. (2017), extending known geographic range of the taxon.{{Cite journal|author1=Lucas Veríssimo Warren |author2=Fernanda Quaglio |author3=Marcello Guimarães Simões |author4=Claudio Gaucher |author5=Claudio Riccomini |author6=Daniel G. Poiré |author7=Bernardo Tavares Freitas |author8=Paulo C. Boggiani |author9=Alcides Nobrega Sial |year=2017 |title=Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran |journal=Precambrian Research |volume=298 |pages=79–87 |doi=10.1016/j.precamres.2017.05.003 |bibcode=2017PreR..298...79W |hdl=11449/163140 |url=http://sedici.unlp.edu.ar/handle/10915/146896 |hdl-access=free }}
- A study on the morphology, growth and development of Dickinsonia costata is published by Evans, Droser & Gehling (2017).{{Cite journal|author1=Scott D. Evans |author2=Mary L. Droser |author3=James G. Gehling |year=2017 |title=Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata |journal=PLOS ONE |volume=12 |issue=5 |pages=e0176874 |doi=10.1371/journal.pone.0176874 |pmid=28520741 |pmc=5435172 |bibcode=2017PLoSO..1276874E |doi-access=free }}
- A study on the growth and development of Dickinsonia is published by Hoekzema et al. (2017), who interpret this taxon as an animal.{{Cite journal|author1=Renee S. Hoekzema |author2=Martin D. Brasier |author3=Frances S. Dunn |author4=Alexander G. Liu |year=2017 |title=Quantitative study of developmental biology confirms Dickinsonia as a metazoan |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1862 |pages=20171348 |doi=10.1098/rspb.2017.1348 |pmid=28904140 |pmc=5597836 }}
- A study on the anatomy of Dickinsonia costata and D. tenuis is published by Zakrevskaya & Ivantsov (2017), who interpret D. costata as probably descended from D. tenuis by neoteny.{{Cite journal|author1=M.A. Zakrevskaya |author2=A.Yu. Ivantsov |year=2017 |title=Dickinsonia costata — the first evidence of neoteny in Ediacaran organisms |journal=Invertebrate Zoology |volume=14 |issue=1 |pages=92–98 |doi=10.15298/invertzool.14.1.13 |doi-access=free }}
- Description of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian Carrara Formation (California, United States), tentatively assigned to the genus Discophyllum (an animal of uncertain phylogenetic placement, might be a chondrophore or an eldoniid) is published by Lieberman et al. (2017).{{Cite journal|author1=Bruce S. Lieberman |author2=Richard Kurkewicz |author3=Heather Shinogle |author4=Julien Kimmig |author5=Breandán Anraoi MacGabhann |year=2017 |title=Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA |journal=PeerJ |volume=5 |pages=e3312 |doi=10.7717/peerj.3312 |pmid=28603667 |pmc=5463991 |doi-access=free }}
- Specimens of Cloudina associated with microbial mat textures are reported from the Ediacaran Tamengo Formation (Brazil) by Becker-Kerber et al. (2017).{{Cite journal|author1=Bruno Becker-Kerber |author2=Mírian Liza Alves Forancelli Pacheco |author3=Isaac Daniel Rudnitzki |author4=Douglas Galante |author5=Fabio Rodrigues |author6=Juliana de Moraes Leme |year=2017 |title=Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 5482 |doi=10.1038/s41598-017-05753-8 |pmid=28710440 |pmc=5511220 |bibcode=2017NatSR...7.5482B }}
- An assemblage of trace fossils from Ediacaran–Cambrian siltstones in Brazil, probably produced by a nematoid-like organism, is described by Parry et al. (2017).{{Cite journal|author1=Luke A. Parry |author2=Paulo C. Boggiani |author3=Daniel J. Condon |author4=Russell J. Garwood |author5=Juliana de M. Leme |author6=Duncan McIlroy |author7=Martin D. Brasier |author8=Ricardo Trindade |author9=Ginaldo A. C. Campanha |author10=Mírian L. A. F. Pacheco |author11=Cleber Q. C. Diniz |author12=Alexander G. Liu |year=2017 |title=Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil |journal=Nature Ecology & Evolution |volume=1 |issue=10 |pages=1455–1464 |doi=10.1038/s41559-017-0301-9 |pmid=29185521 |bibcode=2017NatEE...1.1455P |s2cid=40497407 |url=http://eprints.esc.cam.ac.uk/4280/1/s41559-017-0301-9.pdf }}
- A diverse fauna dominated by sponges living immediately after the Hirnantian extinction is described from China by Botting et al. (2017).{{Cite journal|author1=Joseph P. Botting |author2=Lucy A. Muir |author3=Yuandong Zhang |author4=Xuan Ma |author5=Junye Ma |author6=Longwu Wang |author7=Jianfang Zhang |author8=Yanyan Song |author9=Xiang Fang |year=2017 |title=Flourishing Sponge-Based Ecosystems after the End-Ordovician Mass Extinction |journal=Current Biology |volume=27 |issue=4 |pages=556–562 |doi=10.1016/j.cub.2016.12.061 |pmid=28190724 |doi-access=free |bibcode=2017CBio...27..556B }}
- A diverse Early Triassic (Olenekian) marine assemblage (Paris biota), including leptomitid protomonaxonid sponges (a group otherwise known only from Cambrian and Ordovician), new forms of the crinoid order Holocrinida displaying advanced characters, a probable basal ophiodermatid and gladius-bearing coleoids (previously unknown in Early Triassic strata) is reported from Paris (Idaho, United States) by Brayard et al. (2017).{{Cite journal|author1=Arnaud Brayard |author2=L. J. Krumenacker |author3=Joseph P. Botting |author4=James F. Jenks |author5=Kevin G. Bylund |author6=Emmanuel Fara |author7=Emmanuelle Vennin |author8=Nicolas Olivier |author9=Nicolas Goudemand |author10=Thomas Saucède |author11=Sylvain Charbonnier |author12=Carlo Romano |author13=Larisa Doguzhaeva |author14=Ben Thuy |author15=Michael Hautmann |author16=Daniel A. Stephen |author17=Christophe Thomazo |author18=Gilles Escarguel |year=2017 |title=Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna |journal=Science Advances |volume=3 |issue=2 |pages=e1602159 |doi=10.1126/sciadv.1602159 |pmid=28246643 |pmc=5310825 |bibcode=2017SciA....3E2159B }}
- A study on the muscle anatomy of Pambdelurion whittingtoni is published by Young & Vinther (2017).{{Cite journal|author1=Fletcher J. Young |author2=Jakob Vinther |year=2017 |title=Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni |journal=Palaeontology |volume=60 |issue=1 |pages=27–54 |doi=10.1111/pala.12269 |bibcode=2017Palgy..60...27Y |hdl=1983/92180ef0-2205-4c65-9a70-90d59cfea2f4 |s2cid=55477207 |url=https://research-information.bristol.ac.uk/en/publications/onychophoranlike-myoanatomy-of-the-cambrian-gilled-lobopodian-pambdelurion-whittingtoni(92180ef0-2205-4c65-9a70-90d59cfea2f4).html |hdl-access=free }}
- Cambrian species Zhenghecaris shankouensis, originally classified as a bivalved arthropod, is reinterpreted as a member of Radiodonta by Zeng et al. (2017).
- The holotype specimen of a putative lobopodian species Aysheaia prolata is reinterpreted as an isolated frontal appendage of a radiodontan belonging to the genus Stanleycaris by Pates, Daley & Ortega-Hernández (2017).{{Cite journal|author1=Stephen Pates |author2=Allison C. Daley |author3=Javier Ortega-Hernández |year=2017 |title=Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris |journal=Acta Palaeontologica Polonica |volume=62 |issue=3 |pages=619–625 |doi=10.4202/app.00361.2017 |doi-access=free }}
- A revision of the radiodontan genus Caryosyntrips is published by Pates & Daley (2017), who interpret the holotype specimen of a putative lobopodian species Mureropodia apae as a partial isolated appendage of a member of the genus Caryosyntrips.{{Cite journal|author1=Stephen Pates |author2=Allison C. Daley |year=2017 |title=Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada |journal=Papers in Palaeontology |volume=3 |issue=3 |pages=461–470 |doi=10.1002/spp2.1084 |bibcode=2017PPal....3..461P |s2cid=135026011 |url=http://osf.io/5avkg/ }}
- Description of the morphology of Amplectobelua symbrachiata, with a focus on its head region, is published by Cong et al. (2017).{{Cite journal|author1=Peiyun Cong |author2=Allison C. Daley |author3=Gregory D. Edgecombe |author4=Xianguang Hou |year=2017 |title=The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata |journal=BMC Evolutionary Biology |volume=17 |issue=1 |pages=208 |doi=10.1186/s12862-017-1049-1 |pmid=28854872 |pmc=5577670 |doi-access=free |bibcode=2017BMCEE..17..208C }}
- A study on the anatomy of the Cambrian hyolith Haplophrentis, as well as on the phylogenetic relationships of the hyoliths, is published by Moysiuk, Smith & Caron (2017).{{Cite journal|author1=Joseph Moysiuk |author2=Martin R. Smith |author3=Jean-Bernard Caron |year=2017 |title=Hyoliths are Palaeozoic lophophorates |journal=Nature |volume=541 |issue=7637 |pages=394–397 |doi=10.1038/nature20804 |pmid=28077871 |bibcode=2017Natur.541..394M |s2cid=4409157 |url=http://dro.dur.ac.uk/20195/1/20195.pdf }}
- A study on the phylogenetic relationships of Tullimonstrum gregarium, challenging its interpretation as a vertebrate, is published by Sallan et al. (2017).{{Cite journal|author1=Lauren Sallan |author2=Sam Giles |author-link2=Sam Giles|author3=Robert S. Sansom |author4=John T. Clarke |author5=Zerina Johanson |author6=Ivan J. Sansom |author7=Philippe Janvier |year=2017 |title=The 'Tully Monster' is not a vertebrate: characters, convergence and taphonomy in Palaeozoic problematic animals |journal=Palaeontology |volume=60 |issue=2 |pages=149–157 |doi=10.1111/pala.12282 |bibcode=2017Palgy..60..149S |s2cid=90132820 |url=http://pure-oai.bham.ac.uk/ws/files/39492257/Tullimonstrum_Palaeo_Revision_FINAL.pdf }}
- New exceptionally preserved fossils of Vetulicola longbaoshanensis are described from the Lower Cambrian Wulongqing Formation (China) by Li, Liu & Ou (2017).{{Cite journal|author1=JinShu Li |author2=JianNi Liu |author3=Qiang Ou |year=2017 |title=New observations on Vetulicola longbaoshanensis from the Lower Cambrian Guanshan Biota (Series 2, Stage 4), South China |journal=Science China Earth Sciences |volume=60 |issue=10 |pages=1795–1804 |doi=10.1007/s11430-017-9088-y |bibcode=2017ScChD..60.1795L |s2cid=135037211 }}
- Putative trematode metacercariae preserved at the base of the femora of an agamid lizard are described from the Cretaceous Burmese amber (Myanmar) by Poinar et al. (2017).{{Cite journal|author1=George Poinar Jr. |author2=Kenneth A. Philbrick |author3=Martin J. Cohn |author4=Russell T. Turner |author5=Urszula T. Iwaniec |author6=Joerg Wunderlich |year=2017 |title=X-ray microcomputed tomography reveals putative trematode metacercaria in a 100 million year-old lizard (Squamata: Agamidae) |journal=Cretaceous Research |volume=80 |pages=27–30 |doi=10.1016/j.cretres.2017.07.017 |bibcode=2017CrRes..80...27P }}
=New taxa=
Other organisms
=Research=
- Eoarchean (over 3,700 million years old) organic residues are reported from Isua, West Greenland by Hassenkam et al. (2017).{{Cite journal|author1=T. Hassenkam |author2=M. P. Andersson |author3=K. N. Dalby |author4=D. M. A. Mackenzie |author5=M. T. Rosing |year=2017 |title=Elements of Eoarchean life trapped in mineral inclusions |journal=Nature |volume=548 |issue=7665 |pages=78–81 |doi=10.1038/nature23261 |pmid=28738409 |bibcode=2017Natur.548...78H |s2cid=205257931 }}
- Putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old are described from the Nuvvuagittuq belt (Quebec, Canada) by Dodd et al. (2017).{{cite journal |author=Dodd, Matthew S. |author2=Papineau, Dominic |author3=Grenne, Tor |author4=slack, John F. |author5=Rittner, Martin |author6=Pirajno, Franco |author7=O'Neil, Jonathan |author8=Little, Crispin T. S. |title=Evidence for early life in Earth's oldest hydrothermal vent precipitates|journal=Nature |volume=543 |issue=7643 |pages=60–64 |date=2 March 2017 | doi=10.1038/nature21377 |pmid=28252057 |bibcode=2017Natur.543...60D |s2cid=2420384 |url=http://eprints.whiterose.ac.uk/112179/1/ppnature21377_Dodd_for%20Symplectic.pdf }}
- Organic carbon contents are reported from the oldest metasedimentary rocks from northern Labrador (Canada) by Tashiro et al. (2017), who interpret the finding as the oldest evidence of organisms greater than 3.95 Ga;{{Cite journal|author1=Takayuki Tashiro |author2=Akizumi Ishida |author3=Masako Hori |author4=Motoko Igisu |author5=Mizuho Koike |author6=Pauline Méjean |author7=Naoto Takahata |author8=Yuji Sano |author9=Tsuyoshi Komiya |year=2017 |title=Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada |journal=Nature |volume=549 |issue=7673 |pages=516–518 |doi=10.1038/nature24019 |pmid=28959955 |bibcode=2017Natur.549..516T |s2cid=4470796 }} the study is subsequently criticized by Whitehouse et al. (2019).{{Cite journal|author1=Martin J. Whitehouse |author2=Daniel J. Dunkley |author3=Monika A. Kusiak |author4=Simon A. Wilde |year=2019 |title=On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador |journal=Precambrian Research |volume=323 |pages=70–81 |doi=10.1016/j.precamres.2019.01.001 |bibcode=2019PreR..323...70W |s2cid=134499370 |url=https://zenodo.org/record/3871628 }}
- Potential biosignatures, including stromatolites, are reported from the newly discovered rocks recovered from ca. 3.48 billion years old Dresser Formation (Pilbara Craton, Australia) by Djokic et al. (2017).{{Cite journal|author1=Tara Djokic |author2=Martin J. Van Kranendonk |author3=Kathleen A. Campbell |author4=Malcolm R. Walter |author5=Colin R. Ward |year=2017 |title=Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits |journal=Nature Communications |volume=8 |pages=Article number 15263 |doi=10.1038/ncomms15263 |pmid=28486437 |pmc=5436104 |bibcode=2017NatCo...815263D }}
- Lenticular structures known from the ~3.4 Ga Kromberg Formation (Kaapvaal craton, South Africa) are interpreted as organic Archean microfossils by Oehler et al. (2017).{{cite journal |author1=Dorothy Z. Oehler |author2=Maud M. Walsh |author3=Kenichiro Sugitani |author4=Ming-Chang Liu |author5=Christopher H. House |year=2017 |title=Large and robust lenticular microorganisms on the young Earth |journal=Precambrian Research |volume=296 |pages=112–119 |doi=10.1016/j.precamres.2017.04.031 |bibcode=2017PreR..296..112O |doi-access=free }}
- Fossils of early eukaryotes Tappania plana, Dictyosphaera macroreticulata and Valeria lophostriata are described from the early Mesoproterozoic Greyson Formation (Belt Supergroup, Montana, United States) by Adam et al. (2017).{{cite journal |author1=Zachary R. Adam |author2=Mark L. Skidmore |author3=David W. Mogk |author4=Nicholas J. Butterfield |year=2017 |title=A Laurentian record of the earliest fossil eukaryotes |journal=Geology |volume=45 |issue=5 |pages=387–390 |doi=10.1130/G38749.1 |bibcode=2017Geo....45..387A |doi-access=free }}
- 2.4-billion-year-old filamentous fossils forming mycelium-like structures, considered to be either the oldest known fungi or members of an unknown branch of fungus-like mycelial organisms, are described from the Ongeluk Formation (South Africa) by Bengtson et al. (2017).{{cite journal |author1=Stefan Bengtson |author2=Birger Rasmussen |author3=Magnus Ivarsson |author4=Janet Muhling |author5=Curt Broman |author6=Federica Marone |author7=Marco Stampanoni |author8=Andrey Bekker |year=2017 |title=Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt |journal=Nature Ecology & Evolution |volume=1 |issue=6 |pages=Article number 0141 |doi=10.1038/s41559-017-0141 |pmid=28812648 |hdl=20.500.11937/67718 |s2cid=25586788 |url=http://www.escholarship.org/uc/item/4883d4qh |hdl-access=free }}
- A study on the anatomy of the fossils of Chuaria circularis recovered from the Tonian Liulaobei Formation (China) is published by Tang et al. (2017), who interpret Chuaria as most likely a simple multicellular organism (a colonial organism without cell differentiation).{{cite journal |author1=Qing Tang |author2=Ke Pang |author3=Xunlai Yuan |author4=Shuhai Xiao |year=2017 |title=Electron microscopy reveals evidence for simple multicellularity in the Proterozoic fossil Chuaria |journal=Geology |volume=45 |issue=1 |pages=75–78 |doi=10.1130/G38680.1 |bibcode=2017Geo....45...75T }}
- A study on the apatitic scale microfossils from the Fifteenmile Group (Yukon, Canada), indicating that the fossils document the existence of eukaryotic biomineralizing organisms approximately 810 million years ago, is published by Cohen et al. (2017).{{cite journal |author1=Phoebe A. Cohen |author2=Justin V. Strauss |author3=Alan D. Rooney |author4=Mukul Sharma |author5=Nicholas Tosca |year=2017 |title=Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote |journal=Science Advances |volume=3 |issue=6 |pages=e1700095 |doi=10.1126/sciadv.1700095 |pmid=28782008 |pmc=5489269 |bibcode=2017SciA....3E0095C }}
- A study on the structure, morphology, and development of the large intracellular structures preserved in embryo-like microfossils from the Ediacaran Weng'an Biota (China) is published by Yin et al. (2017), who interpret these structures as likely cell nuclei.{{Cite journal|author1=Zongjun Yin |author2=John A. Cunningham |author3=Kelly Vargas |author4=Stefan Bengtson |author5=Maoyan Zhu |author6=Philip C.J. Donoghue |year=2017 |title=Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng'an Biota |journal=Precambrian Research |volume=301 |pages=145–151 |doi=10.1016/j.precamres.2017.08.009 |hdl=1983/b9709cfd-7d3b-42c4-a86a-fa8657ac548d |bibcode=2017PreR..301..145Y |url=https://research-information.bristol.ac.uk/en/publications/nuclei-and-nucleoli-in-embryolike-fossils-from-the-ediacaran-wengan-biota(b9709cfd-7d3b-42c4-a86a-fa8657ac548d).html |doi-access=free }}
- A study testing the suggested link between the appearance of large body size in rangeomorphs (organisms of uncertain phylogenetic placement, likely animals) in the Ediacaran and postulated regional increases in environmental nutrient levels is published by Hoyal Cuthill & Conway Morris (2017).{{cite journal |author1=Jennifer F. Hoyal Cuthill |author2=Simon Conway Morris |year=2017 |title=Nutrient-dependent growth underpinned the Ediacaran transition to large body size |journal=Nature Ecology & Evolution |volume=1 |issue=8 |pages=1201–1204 |doi=10.1038/s41559-017-0222-7 |pmid=29046572 |bibcode=2017NatEE...1.1201H |s2cid=3639850 |url=http://repository.essex.ac.uk/25759/1/Hoyal_Cuthill_Conway_Morris_2017_Accepted%2520Version.pdf }}
- A study on the internal morphology of Rangea from the Nama Group (Namibia), based on data obtained using X-ray micro-computed tomography, is published by Sharp et al. (2017).{{cite journal |author1=Alana C. Sharp |author2=Alistair R. Evans |author3=Siobhan A. Wilson |author4=Patricia Vickers-Rich |year=2017 |title=First non-destructive internal imaging of Rangea, an icon of complex Ediacaran life |journal=Precambrian Research |volume=299 |pages=303–308 |doi=10.1016/j.precamres.2017.07.023 |url=http://discovery.ucl.ac.uk/10044253/ |bibcode=2017PreR..299..303S }}
- Smith et al. (2017) report the discovery of fossils of Gaojiashania from the Ediacaran strata of the Nama Group (Namibia) and a new fossil assemblage from the Ediacaran strata of the Wood Canyon Formation (Nevada, United States), including erniettomorphs and a variety of tubular body fossils.{{Cite journal|author1=E. F. Smith |author2=L. L. Nelson |author3=S. M. Tweedt |author4=H. Zeng |author5=J. B. Workman |year=2017 |title=A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1858 |pages=20170934 |doi=10.1098/rspb.2017.0934 |pmid=28701565 |pmc=5524506 }}
- A study on the well-preserved Devonian calcareous nanicellid foraminiferans from the Świętokrzyskie Mountains (Poland) and their implications for the biomineralization style and affinities of Paleozoic fusulinid foraminiferans is published by Dubicka & Gorzelak (2017).{{cite journal |author1=Zofia Dubicka |author2=Przemysław Gorzelak |year=2017 |title=Unlocking the biomineralization style and affinity of Paleozoic fusulinid foraminifera |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 15218 |doi=10.1038/s41598-017-15666-1 |pmid=29123221 |pmc=5680253 |bibcode=2017NatSR...715218D }}
- Four forms of modern-looking gilled mushrooms, including two taxa belonging to the family Marasmiaceae, are described from the Cretaceous Burmese amber by Cai et al. (2017).{{cite journal |author1=Chenyang Cai |author2=Richard A. B. Leschen |author3=David S. Hibbett |author4=Fangyuan Xia |author5=Diying Huang |year=2017 |title=Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous |journal=Nature Communications |volume=8 |pages=Article number 14894 |doi=10.1038/ncomms14894 |pmid=28300055 |pmc=5357310 |bibcode=2017NatCo...814894C }}
=New taxa=
General paleontology
Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.
- A study on the links between changes in the composition of exposed continental crust and oxygenation of the atmosphere in the Precambrian is published by Smit & Mezger (2017).{{Cite journal|author1=Matthijs A. Smit |author2=Klaus Mezger |year=2017 |title=Earth's early O2 cycle suppressed by primitive continents |journal=Nature Geoscience |volume=10 |issue=10 |pages=788–792 |doi=10.1038/ngeo3030 |bibcode=2017NatGe..10..788S }}
- A review of the progress in modeling the Snowball Earth atmosphere, cryosphere, hydrosphere and lithosphere, specifically as it pertains to Cryogenian geology and geobiology, is published by Hoffman et al. (2017).{{Cite journal|author1=Paul F. Hoffman |author2=Dorian S. Abbot |author3=Yosef Ashkenazy |author4=Douglas I. Benn |author5=Jochen J. Brocks |author6=Phoebe A. Cohen |author7=Grant M. Cox |author8=Jessica R. Creveling |author9=Yannick Donnadieu |author10=Douglas H. Erwin |author11=Ian J. Fairchild |author12=David Ferreira |author13=Jason C. Goodman |author14=Galen P. Halverson |author15=Malte F. Jansen |author16=Guillaume Le Hir |author17=Gordon D. Love |author18=Francis A. Macdonald |author19=Adam C. Maloof |author20=Camille A. Partin |author21=Gilles Ramstein |author22=Brian E. J. Rose |author23=Catherine V. Rose |author24=Peter M. Sadler |author25=Eli Tziperman |author26=Aiko Voigt |author27=Stephen G. Warren |year=2017 |title=Snowball Earth climate dynamics and Cryogenian geology-geobiology |journal=Science Advances |volume=3 |issue=11 |pages=e1600983 |doi=10.1126/sciadv.1600983 |pmid=29134193 |pmc=5677351 |bibcode=2017SciA....3E0983H }}
- A revised record of fossil eukaryotic steroids during the Neoproterozoic is presented by Brocks et al. (2017), who argue that bacteria were the only notable primary producers in the oceans before the Cryogenian, and that rapid rise of marine planktonic algae to domination occurred in the narrow time interval between the Sturtian and Marinoan glaciations, 659–645 million years ago, likely driving the subsequent radiation of animals in the Ediacaran period.{{cite journal |author1=Jochen J. Brocks |author2=Amber J. M. Jarrett |author3=Eva Sirantoine |author4=Christian Hallmann |author5=Yosuke Hoshino |author6=Tharika Liyanage |year=2017 |title=The rise of algae in Cryogenian oceans and the emergence of animals |journal=Nature |volume=548 |issue=7669 |pages=578–581 |doi=10.1038/nature23457 |pmid=28813409 |bibcode=2017Natur.548..578B |s2cid=205258987 }}
- A study evaluating whether mass extinction events over the last 500 million year were caused by astronomical phenomena is published by Erlykin et al. (2017).{{Cite journal|author1=Anatoly D. Erlykin |author2=David A. T. Harper |author3=Terry Sloan |author4=Arnold W. Wolfendale |year=2017 |title=Mass extinctions over the last 500 myr: an astronomical cause? |journal=Palaeontology |volume=60 |issue=2 |pages=159–167 |doi=10.1111/pala.12283 |bibcode=2017Palgy..60..159E |s2cid=133407217 |url=http://dro.dur.ac.uk/21275/1/21275.pdf }}
- A study on the water column geochemistry of the Yangtze Sea during the Ediacaran-Cambrian transition and its implications for the relationship between ocean oxygenation and Early Cambrian animal diversification is published by Zhang et al. (2017).{{Cite journal|author1=Junpeng Zhang |author2=Tailiang Fan |author3=Yuandong Zhang |author4=Gary G. Lash |author5=Yifan Li |author6=Yue Wu |year=2017 |title=Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 8550 |doi=10.1038/s41598-017-07904-3 |pmid=28819268 |pmc=5561082 |bibcode=2017NatSR...7.8550Z }}
- A study on the links between the expansion of siliceous sponges and seawater oxygenation during the Ediacaran–Cambrian transition is published by Tatzel et al. (2017).{{Cite journal|author1=Michael Tatzel |author2=Friedhelm von Blanckenburg |author3=Marcus Oelze |author4=Julien Bouchez |author5=Dorothee Hippler |year=2017 |title=Late Neoproterozoic seawater oxygenation by siliceous sponges |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 621 |doi=10.1038/s41467-017-00586-5 |pmid=28931817 |pmc=5606986 |bibcode=2017NatCo...8..621T }}
- A study on the factors influencing marine invertebrate diversity dynamics through the Phanerozoic is published by Cermeño et al. (2017).{{Cite journal|author1=Pedro Cermeño |author2=Michael J. Benton |author3=Óscar Paz |author4=Christian Vérard |year=2017 |title=Trophic and tectonic limits to the global increase of marine invertebrate diversity |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 15969 |doi=10.1038/s41598-017-16257-w |pmid=29162866 |pmc=5698323 |bibcode=2017NatSR...715969C }}
- Edwards et al. (2017) identify a strong temporal link between the rising atmospheric oxygen levels and the Great Ordovician Biodiversification Event.{{Cite journal|author1=Cole T. Edwards |author2=Matthew R. Saltzman |author3=Dana L. Royer |author4=David A. Fike |year=2017 |title=Oxygenation as a driver of the Great Ordovician Biodiversification Event |journal=Nature Geoscience |volume=10 |issue=12 |pages=925–929 |doi=10.1038/s41561-017-0006-3 |bibcode=2017NatGe..10..925E |s2cid=134884032 }}
- A study on the impact of the drawdown of atmospheric carbon dioxide (caused by burial of organic carbon leading to the formation of coal) on the climate around the Carboniferous/Permian boundary is published by Feulner (2017).{{Cite journal|author=Georg Feulner |year=2017 |title=Formation of most of our coal brought Earth close to global glaciation |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=43 |pages=11333–11337 |doi=10.1073/pnas.1712062114 |pmid=29073052 |pmc=5664543 |bibcode=2017PNAS..11411333F |doi-access=free }}
- A comprehensive reconstruction of the Permian (Lopingian) Bletterbach Biota (Italy) and a review of other best-known Lopingian terrestrial associations containing both vertebrate and plant remains is published by Bernardi et al. (2017).{{Cite journal|author1=Massimo Bernardi |author2=Fabio Massimo Petti |author3=Evelyn Kustatscher |author4=Matthias Franz |author5=Christoph Hartkopf-Fröder |author6=Conrad C. Labandeira |author7=Torsten Wappler |author8=Johanna H.A. van Konijnenburg-van Cittert |author9=Brandon R. Peecook |author10=Kenneth D. Angielczyk |year=2017 |title=Late Permian (Lopingian) terrestrial ecosystems: A global comparison with new data from the low-latitude Bletterbach Biota |journal=Earth-Science Reviews |volume=175 |pages=18–43 |doi=10.1016/j.earscirev.2017.10.002 |bibcode=2017ESRv..175...18B |doi-access=free }}
- A study on the causal connection between the Siberian Traps large igneous province magmatism and Permian–Triassic extinction event, identifying the initial emplacement pulse as likely to have triggered mass extinction, is published by Burgess, Muirhead & Bowring (2017).{{Cite journal|author1=S. D. Burgess |author2=J. D. Muirhead |author3=S. A. Bowring |year=2017 |title=Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 164 |doi=10.1038/s41467-017-00083-9 |pmid=28761160 |pmc=5537227 |bibcode=2017NatCo...8..164B }}
- Viglietti, Rubidge & Smith (2017) review the tectonic setting of the Late Permian Karoo Basin (South Africa), provide an updated basin development model, and interpret their findings as indicating that the climatic changes associated with the Permian–Triassic extinction event were occurring much lower in the stratigraphy (and thus earlier) than previously documented.{{Cite journal|author1=Pia A. Viglietti |author2=Bruce S. Rubidge |author3=Roger M. H. Smith |year=2017 |title=New Late Permian tectonic model for South Africa's Karoo Basin: foreland tectonics and climate change before the end-Permian crisis |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 10861 |doi=10.1038/s41598-017-09853-3 |pmid=28883403 |pmc=5589945 |bibcode=2017NatSR...710861V }}
- A summary of knowledge of the impact of Permian-Triassic mass extinction on reef ecosystems, and on their recovery after this extinction, is presented by Martindale, Foster & Velledits (2017).{{Cite journal|author1=Rowan C. Martindale |author2=William J. Foster |author3=Felicitász Velledits |year=2017 |title=The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=513 |pages=100–115 |doi=10.1016/j.palaeo.2017.08.014 |bibcode=2019PPP...513..100M |s2cid=135338869 }}
- A study on benthic invertebrate communities from the Lower Triassic Werfen Formation (Italy), aiming to test whether carbon isotope perturbations during the Early Triassic were associated with biotic crises that impeded benthic recovery after the Permian–Triassic extinction event, is published by Foster et al. (2017).{{Cite journal|author1=William J. Foster |author2=Silvia Danise |author3=Gregory D. Price |author4=Richard J. Twitchett |year=2017 |title=Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy |journal=PLOS ONE |volume=12 |issue=3 |pages=e0172321 |doi=10.1371/journal.pone.0172321 |pmid=28296886 |pmc=5351997 |bibcode=2017PLoSO..1272321F |doi-access=free }}
- A study on the impact of the magmatic activity associated with the Central Atlantic magmatic province on the Triassic–Jurassic extinction event is published by Davies et al. (2017).{{Cite journal|author1=J.H.F.L. Davies |author2=A. Marzoli |author3=H. Bertrand |author4=N. Youbi |author5=M. Ernesto |author6=U. Schaltegger |year=2017 |title=End-Triassic mass extinction started by intrusive CAMP activity |journal=Nature Communications |volume=8 |pages=Article number 15596 |doi=10.1038/ncomms15596 |pmid=28561025 |pmc=5460029 |bibcode=2017NatCo...815596D }}
- A study on the volcanic activity at the end of the Triassic as indicated by mercury concentrations in sediments from around the world is published by Percival et al. (2017).{{Cite journal|author1=Lawrence M. E. Percival |author2=Micha Ruhl |author3=Stephen P. Hesselbo |author4=Hugh C. Jenkyns |author5=Tamsin A. Mather |author6=Jessica H. Whiteside |year=2017 |title=Mercury evidence for pulsed volcanism during the end-Triassic mass extinction |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=30 |pages=7929–7934 |doi=10.1073/pnas.1705378114 |pmid=28630294 |pmc=5544315 |bibcode=2017PNAS..114.7929P |doi-access=free }}
- A study on the oxygen levels in Earth's oceans during and after the Triassic–Jurassic extinction event as indicated by uranium isotopes in shallow-marine limestones in the Lombardy Basin (northern Italy) is published by Jost et al. (2017).{{Cite journal|author1=Adam B. Jost |author2=Aviv Bachan |author3=Bas van de Schootbrugge |author4=Kimberly V. Lau |author5=Karrie L. Weaver |author6=Kate Maher |author7=Jonathan L. Payne |year=2017 |title=Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction |journal=Geochemistry, Geophysics, Geosystems |volume=18 |issue=8 |pages=3093–3108 |doi=10.1002/2017GC006941 |bibcode=2017GGG....18.3093J |hdl=1874/362214 |s2cid=133679444 |hdl-access=free }}
- A high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America and a study on the stratigraphic ranges of North American dinosaurs is published by Fowler (2017).{{Cite journal|author=Denver Warwick Fowler |year=2017 |title=Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America |journal=PLOS ONE |volume=12 |issue=11 |pages=e0188426 |doi=10.1371/journal.pone.0188426 |pmid=29166406 |pmc=5699823 |bibcode=2017PLoSO..1288426F |doi-access=free }}
- A study on the impact that large amounts of soot injected into the atmosphere during the Cretaceous–Paleogene extinction event (probably caused by global wildfires) had on the climate is published by Bardeen et al. (2017).{{Cite journal|author1=Charles G. Bardeen |author2=Rolando R. Garcia |author3=Owen B. Toon |author4=Andrew J. Conley |year=2017 |title=On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=36 |pages=E7415–E7424 |doi=10.1073/pnas.1708980114 |pmid=28827324 |pmc=5594694 |bibcode=2017PNAS..114E7415B |doi-access=free }}
- A study estimating the decrease of the air temperature and the duration of the climate cooling caused by Chicxulub impact at the end of the Cretaceous is published by Brugger, Feulner & Petri (2017).{{Cite journal|author1=Julia Brugger |author2=Georg Feulner |author3=Stefan Petri |year=2017 |title=Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous |journal=Geophysical Research Letters |volume=44 |issue=1 |pages=419–427 |doi=10.1002/2016GL072241 |bibcode=2017GeoRL..44..419B |s2cid=53631053 |url=https://publications.pik-potsdam.de/pubman/item/item_21282_1/component/file_21283/7402oa.pdf }}
- A study on the volume of the climate-active gases released from sedimentary rocks as a result of the Chicxulub impact, as well as on their effect on the global climate, is published by Artemieva, Morgan & Expedition 364 Science Party (2017).{{Cite journal|author1=Natalia Artemieva|author1-link=Natalia Artemieva |author2=Joanna Morgan |author3=Expedition 364 Science Party |year=2017 |title=Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub |journal=Geophysical Research Letters |volume=44 |issue=20 |pages=10,180–10,188 |doi=10.1002/2017GL074879 |bibcode=2017GeoRL..4410180A |hdl=10044/1/51225 |doi-access=free }}
- Kaiho & Oshima (2017) calculate the amounts of stratospheric soot and sulfate formed by a virtual asteroid impact at various global locations, and conclude that the Cretaceous–Paleogene extinction event was caused by the Chicxulub impact happening at the hydrocarbon-rich, sulfate-dominated area on the Earth's surface, and that an impact at a low–medium hydrocarbon area on Earth would be unlikely to cause mass extinction.{{Cite journal|author1=Kunio Kaiho |author2=Naga Oshima |year=2017 |title=Site of asteroid impact changed the history of life on Earth: the low probability of mass extinction |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 14855 |doi=10.1038/s41598-017-14199-x |pmid=29123110 |pmc=5680197 |bibcode=2017NatSR...714855K }}
- A study on the data sets of molluscan fossils from the Cretaceous–Paleogene of the Seymour Island (Antarctica) is published by Tobin (2017), who identifies possible evidence of two separate extinction events, one prior to the Cretaceous–Paleogene boundary, and one simultaneous with the bolide impact at the Cretaceous–Paleogene boundary.{{Cite journal|author=Thomas S. Tobin |year=2017 |title=Recognition of a likely two phased extinction at the K-Pg boundary in Antarctica |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 16317 |doi=10.1038/s41598-017-16515-x |pmid=29176556 |pmc=5701184 |bibcode=2017NatSR...716317T }}
- A study on the behavioral and ecological diversification of animals that colonized land as indicated by trace fossils is published by Minter et al. (2017).{{Cite journal|author1=Nicholas J. Minter |author2=Luis A. Buatois |author3=M. Gabriela Mángano |author4=Neil S. Davies |author5=Martin R. Gibling |author6=Robert B. MacNaughton |author7=Conrad C. Labandeira |year=2017 |title=Early bursts of diversification defined the faunal colonization of land |journal=Nature Ecology & Evolution |volume=1 |issue=7 |pages=Article number 0175 |doi=10.1038/s41559-017-0175 |s2cid=59988716 |url=https://www.repository.cam.ac.uk/handle/1810/266362 }}
- A study on the age of the Cowie Harbour Fish Bed (Scotland, United Kingdom), containing fish and arthropod fossils (including the millipede Pneumodesmus newmani), is published by Suarez et al. (2017).{{Cite journal|author1=Stephanie E. Suarez |author2=Michael E. Brookfield |author3=Elizabeth J. Catlos |author4=Daniel F. Stöckli |year=2017 |title=A U-Pb zircon age constraint on the oldest-recorded air-breathing land animal |journal=PLOS ONE |volume=12 |issue=6 |pages=e0179262 |doi=10.1371/journal.pone.0179262 |pmid=28658320 |pmc=5489152 |bibcode=2017PLoSO..1279262S |doi-access=free }}
- A study on the preservation of skin and keratinous integumentary structures in tetrapod fossils through time is published by Eliason et al. (2017).{{Cite journal|author1=Chad M. Eliason |author2=Leah Hudson |author3=Taylor Watts |author4=Hector Garza |author5=Julia A. Clarke |year=2017 |title=Exceptional preservation and the fossil record of tetrapod integument |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1862 |pages=20170556 |doi=10.1098/rspb.2017.0556 |pmid=28878057 |pmc=5597822 }}
- A study on the differences between the tetrapod faunas at different latitudes during the early and middle Permian, as well as their implications for establishing whether the Olson's Extinction was a genuine event, is published by Brocklehurst et al. (2017).{{Cite journal|author1=Neil Brocklehurst |author2=Michael O. Day |author3=Bruce S. Rubidge |author4=Jörg Fröbisch |year=2017 |title=Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1852 |pages=20170231 |doi=10.1098/rspb.2017.0231 |pmid=28381616 |pmc=5394676 }}
- A study on the non-flying terrestrial tetrapod species richness through the Mesozoic and early Palaeogene is published by Close et al. (2017).{{Cite journal|author1=Roger A. Close |author2=Roger B.J. Benson |author3=Paul Upchurch |author4=Richard J. Butler |year=2017 |title=Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification |journal=Nature Communications |volume=8 |pages=Article number 15381 |doi=10.1038/ncomms15381 |pmid=28530240 |pmc=5458146 |bibcode=2017NatCo...815381C }}
- A study on the evolution of the shape of brain and skull roof during the transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds is published by Fabbri et al. (2017).{{Cite journal|author1=Matteo Fabbri |author2=Nicolás Mongiardino Koch |author3=Adam C. Pritchard |author4=Michael Hanson |author5=Eva Hoffman |author6=Gabriel S. Bever |author7=Amy M. Balanoff |author8=Zachary S. Morris |author9=Daniel J. Field |author10=Jasmin Camacho |author11=Timothy B. Rowe |author12=Mark A. Norell |author13=Roger M. Smith |author14=Arhat Abzhanov |author15=Bhart-Anjan S. Bhullar |year=2017 |title=The skull roof tracks the brain during the evolution and development of reptiles including birds |journal=Nature Ecology & Evolution |volume=1 |issue=10 |pages=1543–1550 |doi=10.1038/s41559-017-0288-2 |pmid=29185519 |bibcode=2017NatEE...1.1543F |s2cid=3326766 |url=http://opus.bath.ac.uk/57283/1/Fabbri_et_al._final_proof.pdf }}
- A study on the structure and vulnerability of the food web in marine vertebrate assemblages prior to the Cretaceous–Paleogene extinction event as indicated by calcium isotope data from plesiosaurs and mosasaurs is published by Martin et al. (2017).{{Cite journal|author1=Jeremy E. Martin |author2=Peggy Vincent |author3=Théo Tacail |author4=Fatima Khaldoune |author5=Essaid Jourani |author6=Nathalie Bardet |author7=Vincent Balter |year=2017 |title=Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction |journal=Current Biology |volume=27 |issue=11 |pages=1641–1644.e2 |doi=10.1016/j.cub.2017.04.043 |pmid=28552352 |s2cid=4161031 |doi-access=free |bibcode=2017CBio...27E1641M }}
- Qvarnström et al. (2017) reconstruct fossil inclusions in two coprolites (produced by an insectivorous animal and a large aquatic predator) from the Late Triassic locality of Krasiejów (Poland) using propagation phase-contrast synchrotron microtomography.{{Cite journal|author1=Martin Qvarnström |author2=Grzegorz Niedźwiedzki |author3=Paul Tafforeau |author4=Živil Žigaitė |author5=Per E. Ahlberg |year=2017 |title=Synchrotron phase-contrast microtomography of coprolites generates novel palaeobiological data |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 2723 |doi=10.1038/s41598-017-02893-9 |pmid=28578409 |pmc=5457397 |bibcode=2017NatSR...7.2723Q }}
- A study on the fossil inclusions in coprolite fragments (produced by medium to large-sized carnivores, possibly therocephalian therapsids or early archosauriforms) recovered from the Late Permian locality of Vyazniki (Russia) is published by Bajdek et al. (2017).{{Cite journal|author1=Piotr Bajdek |author2=Krzysztof Owocki |author3=Andrey G. Sennikov |author4=Valeriy K. Golubev |author5=Grzegorz Niedźwiedzki |year=2017 |title=Residues from the Upper Permian carnivore coprolites from Vyazniki in Russia - key questions in reconstruction of feeding habits |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=482 |pages=70–82 |doi=10.1016/j.palaeo.2017.05.033 |bibcode=2017PPP...482...70B }}
- A new tetrapod assemblage from the lowermost levels of the Triassic Chañares Formation (Argentina), dominated by fossils of Tarjadia ruthae, dicynodonts and cynodonts, and also including fossils of other pseudosuchians and rhynchosaurs, is described by Ezcurra et al. (2017), who also reinterpret Tarjadia ruthae and Archeopelta arborensis as erpetosuchid archosaurs.{{Cite journal|author1=Martín D. Ezcurra |author2=Lucas E. Fiorelli |author3=Agustín G. Martinelli |author4=Sebastián Rocher |author5=M. Belén von Baczko |author6=Miguel Ezpeleta |author7=Jeremías R. A. Taborda |author8=E. Martín Hechenleitner |author9=M. Jimena Trotteyn |author10=Julia B. Desojo |year=2017 |title=Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea |journal=Nature Ecology & Evolution |volume=1 |issue=10 |pages=1477–1483 |doi=10.1038/s41559-017-0305-5 |pmid=29185518 |bibcode=2017NatEE...1.1477E |hdl=11336/41466 |s2cid=10007967 |hdl-access=free }}
- A study on the cosmopolitanism of terrestrial amniote faunas in the aftermath of the Permian–Triassic extinction event and Triassic–Jurassic extinction event is published by Button et al. (2017).{{Cite journal|author1=David J. Button |author2=Graeme T. Lloyd |author3=Martín D. Ezcurra |author4=Richard J. Butler |year=2017 |title=Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 733 |doi=10.1038/s41467-017-00827-7 |pmid=29018290 |pmc=5635108 |bibcode=2017NatCo...8..733B }}
- Frese et al. (2017) determine the mineral and elemental composition of a range of fossils from the Talbragar fossil site (Australia) and their rock matrices using ultraviolet light-induced fluorescence/photoluminescence, X-ray fluorescence and X-ray diffractometry, and use those techniques to reveal anatomical details of animals and plants fossils that weren't discernible otherwise.{{Cite journal|author1=Michael Frese |author2=Gerda Gloy |author3=Rolf G. Oberprieler |author4=Damian B. Gore |year=2017 |title=Imaging of Jurassic fossils from the Talbragar Fish Bed using fluorescence, photoluminescence, and elemental and mineralogical mapping |journal=PLOS ONE |volume=12 |issue=6 |pages=e0179029 |doi=10.1371/journal.pone.0179029 |pmid=28582427 |pmc=5459505 |bibcode=2017PLoSO..1279029F |doi-access=free }}
- A study on changes of the size of fossil marine shells and predatory drill holes in those shells during the Phanerozoic, as well as their implications for changes of predator-prey size ratio throughout the Phanerozoic, is published by Klompmaker et al. (2017).{{Cite journal|author1=Adiël A. Klompmaker |author2=Michał Kowalewski |author3=John Warren Huntley |author4=Seth Finnegan |year=2017 |title=Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems |journal=Science |volume=356 |issue=6343 |pages=1178–1180 |doi=10.1126/science.aam7468 |pmid=28619943 |s2cid=206657244 |doi-access=free }}
- A study evaluating the utility of oxygen-isotope compositions of fossilised foraminifera tests as proxies for surface- and deep-ocean paleotemperatures, and its implications for inferring Late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures, is published by Bernard et al. (2017).{{Cite journal|author1=S. Bernard |author2=D. Daval |author3=P. Ackerer |author4=S. Pont |author5=A. Meibom |year=2017 |title=Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 1134 |doi=10.1038/s41467-017-01225-9 |pmid=29070888 |pmc=5656689 |bibcode=2017NatCo...8.1134B }}{{Cite journal|author1=David Evans |author2=Marcus P. S. Badger |author3=Gavin L. Foster |author4=Michael J. Henehan |author5=Caroline H. Lear |author6=James C. Zachos |year=2018 |title=No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record |journal=Nature Communications |volume=9 |issue=1 |pages=Article number 2875 |doi=10.1038/s41467-018-05303-4 |pmid=30038330 |pmc=6056492 |bibcode=2018NatCo...9.2875E }}{{Cite journal|author1=S. Bernard |author2=D. Daval |author3=P. Ackerer |author4=S. Pont |author5=A. Meibom |year=2018 |title=Reply to 'No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record' |journal=Nature Communications |volume=9 |issue=1 |pages=Article number 2874 |doi=10.1038/s41467-018-05304-3 |pmid=30038223 |pmc=6056461 |bibcode=2018NatCo...9.2874B }}
- A study on the glacial development and environmental changes in the Aurora Subglacial Basin (Antarctica) throughout the Cenozoic based on geophysical and geological evidence is published by Gulick et al. (2017).{{Cite journal|author1=Sean P. S. Gulick |author2=Amelia E. Shevenell |author-link2=Amelia E. Shevenell|author3=Aleksandr Montelli |author4=Rodrigo Fernandez |author5=Catherine Smith |author6=Sophie Warny |author7=Steven M. Bohaty |author8=Charlotte Sjunneskog |author9=Amy Leventer |author10=Bruce Frederick |author11=Donald D. Blankenship |year=2017 |title=Initiation and long-term instability of the East Antarctic Ice Sheet |journal=Nature |volume=552 |issue=7684 |pages=225–229 |doi=10.1038/nature25026 |pmid=29239353 |bibcode=2017Natur.552..225G |s2cid=4404071 |url=https://eprints.soton.ac.uk/417070/1/GulicketalMerged.pdf }}
- A study on the onset duration of the Paleocene–Eocene Thermal Maximum is published by Kirtland Turner et al. (2017).{{Cite journal|author1=Sandra Kirtland Turner |author2=Pincelli M. Hull |author3=Lee R. Kump |author4=Andy Ridgwell |year=2017 |title=A probabilistic assessment of the rapidity of PETM onset |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 353 |doi=10.1038/s41467-017-00292-2 |pmid=28842564 |pmc=5572461 |bibcode=2017NatCo...8..353K }}
- A study on the relationship between volcanic activity in the North Atlantic Igneous Province and the Paleocene–Eocene Thermal Maximum is published by Gutjahr et al. (2017).{{Cite journal|author1=Marcus Gutjahr |author2=Andy Ridgwell |author3=Philip F. Sexton |author4=Eleni Anagnostou |author5=Paul N. Pearson |author6=Heiko Pälike |author7=Richard D. Norris |author8=Ellen Thomas |author9=Gavin L. Foster |year=2017 |title=Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum |journal=Nature |volume=548 |issue=7669 |pages=573–577 |doi=10.1038/nature23646 |pmid=28858305 |pmc=5582631 |bibcode=2017Natur.548..573G }}
- A study on the environment in the area corresponding to the present-day Amazon basin in the Miocene as indicated by data from the shark and ray fossils from the Pirabas Formation (Brazil) is published by Aguilera et al. (2017).{{Cite journal|author1=Orangel Aguilera |author2=Zoneibe Luz |author3=Jorge D. Carrillo-Briceño |author4=László Kocsis |author5=Torsten W. Vennemann |author6=Peter Mann de Toledo |author7=Afonso Nogueira |author8=Kamilla Borges Amorim |author9=Heloísa Moraes-Santos |author10=Marcia Reis Polck |author11=Maria de Lourdes Ruivo |author12=Ana Paula Linhares |author13=Cassiano Monteiro-Neto |year=2017 |title=Neogene sharks and rays from the Brazilian 'Blue Amazon' |journal=PLOS ONE |volume=12 |issue=8 |pages=e0182740 |doi=10.1371/journal.pone.0182740 |pmid=28832664 |pmc=5568136 |bibcode=2017PLoSO..1282740A |doi-access=free }}
- A study on the impact of the Messinian salinity crisis on Mediterranean magmatism is published by Sternai et al. (2017).{{Cite journal|author1=Pietro Sternai |author2=Luca Caricchi |author3=Daniel Garcia-Castellanos |author4=Laurent Jolivet |author5=Tom E. Sheldrake |author6=Sébastien Castelltort |year=2017 |title=Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis |journal=Nature Geoscience |volume=10 |issue=10 |pages=783–787 |doi=10.1038/ngeo3032 |pmid=29081834 |pmc=5654511 |bibcode=2017NatGe..10..783S }}
- A study on the changes of ice sheets volume and sea level during the late Pliocene is published by de Boer et al. (2017).{{Cite journal|author1=Bas de Boer |author2=Alan M. Haywood |author3=Aisling M. Dolan |author4=Stephen J. Hunter |author5=Caroline L. Prescott |year=2017 |title=The transient response of ice volume to orbital forcing during the warm late Pliocene |journal=Geophysical Research Letters |volume=44 |issue=20 |pages=10,486–10,494 |doi=10.1002/2017GL073535 |bibcode=2017GeoRL..4410486D |doi-access=free }}
- Pimiento et al. (2017) identify a previously unrecognized extinction event among marine megafauna at the end of the Pliocene.{{Cite journal|author1=Catalina Pimiento |author2=John N. Griffin |author3=Christopher F. Clements |author4=Daniele Silvestro |author5=Sara Varela |author6=Mark D. Uhen |author7=Carlos Jaramillo |year=2017 |title=The Pliocene marine megafauna extinction and its impact on functional diversity |journal=Nature Ecology & Evolution |volume=1 |issue=8 |pages=1100–1106 |doi=10.1038/s41559-017-0223-6 |pmid=29046566 |bibcode=2017NatEE...1.1100P |s2cid=3639394 |url=https://cronfa.swan.ac.uk/Record/cronfa34515/Download/0034515-28062017151736.pdf }}
- A study on the aridity in eastern Africa over the past 4.4 million years as indicated by oxygen isotope ratios in fossil herbivore tooth enamel, and on its implications for inferring the role of climate in shaping early hominin environments, is published by Blumenthal et al. (2017).{{Cite journal|author1=Scott A. Blumenthal |author2=Naomi E. Levin |author3=Francis H. Brown |author4=Jean-Philip Brugal |author5=Kendra L. Chritz |author6=John M. Harris |author7=Glynis E. Jehle |author8=Thure E. Cerling |year=2017 |title=Aridity and hominin environments |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=28 |pages=7331–7336 |doi=10.1073/pnas.1700597114 |pmid=28652366 |pmc=5514716 |bibcode=2017PNAS..114.7331B |doi-access=free }}
- Tierney, deMenocal & Zander (2017) reconstruct temperature and aridity in the Horn of Africa region spanning the past 200,000 years.{{Cite journal|author1=Jessica E. Tierney |author2=Peter B. deMenocal |author3=Paul D. Zander |year=2017 |title=A climatic context for the out-of-Africa migration |journal=Geology |volume=45 |issue=11 |pages=1023–1026 |doi=10.1130/G39457.1 |bibcode=2017Geo....45.1023T |doi-access=free }}
- A vertebrate fauna from the Pleistocene and Holocene of Sumba (Indonesia) is described by Turvey et al. (2017).{{Cite journal|author1=Samuel T. Turvey |author2=Jennifer J. Crees |author3=James Hansford |author4=Timothy E. Jeffree |author5=Nick Crumpton |author6=Iwan Kurniawan |author7=Erick Setiyabudi |author8=Thomas Guillerme |author9=Umbu Paranggarimu |author10=Anthony Dosseto |author11=Gerrit D. van den Bergh |year=2017 |title=Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1861 |pages=20171278 |doi=10.1098/rspb.2017.1278 |pmid=28855367 |pmc=5577490 }}
- A study on the modified mammalian bones from the Plio–Pleistocene of Ethiopia is published by Sahle, El Zaatari & White (2017), who interpret the marks on some of these bones as more likely to be produced by crocodiles than by hominids using stone tools.{{Cite journal|author1=Yonatan Sahle |author2=Sireen El Zaatari |author3=Tim D. White |year=2017 |title=Hominid butchers and biting crocodiles in the African Plio–Pleistocene |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=50 |pages=13164–13169 |doi=10.1073/pnas.1716317114 |pmid=29109249 |pmc=5740633 |bibcode=2017PNAS..11413164S |doi-access=free }}
- Hagstrum et al. (2017) report impact-related microspherules and elevated platinum concentrations found in fine-grained sediments retained within Late Pleistocene bison and mammoth skull fragments from Alaska and Yukon, and interpret the findings as evidence of repeated airbursts and ground/ice impacts associated with multiple episodes of cosmic impact.{{Cite journal|author1=Jonathan T. Hagstrum |author2=Richard B. Firestone |author3=Allen West |author4=James C. Weaver |author5=Ted E. Bunch |year=2017 |title=Impact-related microspherules in Late Pleistocene Alaskan and Yukon "muck" deposits signify recurrent episodes of catastrophic emplacement |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 16620 |doi=10.1038/s41598-017-16958-2 |pmid=29192242 |pmc=5709379 |bibcode=2017NatSR...716620H }}
- A study on changes in landscape moisture in the rangelands in Europe, Siberia and the Americas during the late Pleistocene as indicated by data from the bones of megaherbivores is published by Rabanus-Wallace et al. (2017).{{Cite journal|author1=M. Timothy Rabanus-Wallace |author2=Matthew J. Wooller |author3=Grant D. Zazula |author4=Elen Shute |author5=A. Hope Jahren |author6=Pavel Kosintsev |author7=James A. Burns |author8=James Breen |author9=Bastien Llamas |author10=Alan Cooper |year=2017 |title=Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions |journal=Nature Ecology & Evolution |volume=1 |issue=5 |pages=Article number 0125 |doi=10.1038/s41559-017-0125 |pmid=28812683 |s2cid=4473573 }}