2017 in paleontology#Turtles

{{Short description|none}}

{{Year nav topic20|2017|paleontology|paleobotany|arthropod paleontology|paleoentomology|paleomalacology|paleoichthyology|reptile paleontology|archosaur paleontology|mammal paleontology}}

{{Year in paleontology header}}

File:2017 in paleontology NT.jpg

Flora

{{Main|2017 in paleobotany}}

Cnidarians

=Research=

  • Ou et al. (2017) consider early Cambrian species Galeaplumosus abilus and Chengjiangopenna wangii to be junior synonyms of Xianguangia sinica, interpret fossils attributed to members of these species as parts of the same organism and consider X. sinica to be likely stem-cnidarian.{{Cite journal|author1=Qiang Ou |author2=Jian Han |author3=Zhifei Zhang |author4=Degan Shu |author5=Ge Sun |author6=Georg Mayer |year=2017 |title=Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=33 |pages=8835–8840 |doi=10.1073/pnas.1701650114 |pmid=28760981 |pmc=5565419 |bibcode=2017PNAS..114.8835O |doi-access=free }}
  • Pseudooides prima is interpreted as a cnidarian and a senior synonym of Hexaconularia sichuanensis by Duan et al. (2017).{{Cite journal|author1=Baichuan Duan |author2=Xi-Ping Dong |author3=Luis Porras |author4=Kelly Vargas |author5=John A. Cunningham |author6=Philip C. J. Donoghue |year=2017 |title=The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1869 |pages=20172188 |doi=10.1098/rspb.2017.2188 |pmid=29237861 |pmc=5745419 }}
  • Fossilized cnidarian medusae are described from the Cambrian Zabriskie Quartzite (California, United States) by Sappenfield, Tarhan & Droser (2017), representing the oldest macrofossil evidence of cnidarian medusae from the Phanerozoic reported so far.{{Cite journal|author1=Aaron D. Sappenfield |author2=Lidya G. Tarhan |author3=Mary L. Droser |s2cid=133404332 |year=2017 |title=Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach? |journal=Geological Magazine |volume=154 |issue=4 |pages=859–874 |doi=10.1017/S0016756816000443|bibcode=2017GeoM..154..859S |doi-access=free }}
  • A study on the morphology of phosphatic tubes of Sphenothallus from the Early Ordovician Fenxiang Formation (China), as well as the Silurian and Early Devonian of Podolia (Ukraine), and its implications for the evolution of symmetry in the body plan of cnidarians is published by Dzik, Baliński & Sun (2017).{{Cite journal|author1=Jerzy Dzik |author2=Andrzej Baliński |author3=Yuanlin Sun |year=2017 |title=The origin of tetraradial symmetry in cnidarians |journal=Lethaia |volume=50 |issue=2 |pages=306–321 |doi=10.1111/let.12199 |bibcode=2017Letha..50..306D |url=https://www.researchgate.net/publication/312928355}}
  • A study on the succession of coral assemblages through the OrdovicianSilurian transition in South China is published by Wang et al. (2017).{{Cite journal|author1=Guangxu Wang |author2=Renbin Zhan |author3=Bing Huang |author4=Ian G. Percival |year=2017 |title=Coral faunal turnover through the Ordovician–Silurian transition in South China and its global implications for carbonate stratigraphy and macroevolution |journal=Geological Magazine |volume=154 |issue=4 |pages=829–836 |doi=10.1017/S0016756816000406|bibcode=2017GeoM..154..829W |s2cid=132435154 }}
  • A study on the extant and fossil stony corals, intending to determine whether fossil corals lived in symbiosis with photosynthesizing dinoflagellates, is published by Tornabene et al. (2017).{{Cite journal|author1=Chiara Tornabene |author2=Rowan C. Martindale |author3=Xingchen T. Wang |author4=Morgan F. Schaller |year=2017 |title=Detecting Photosymbiosis in Fossil Scleractinian Corals |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 9465 |doi=10.1038/s41598-017-09008-4 |pmid=28842582 |pmc=5572714 |bibcode=2017NatSR...7.9465T }}

=New taxa=

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Acanthophyllum filiforme{{Cite journal|author =Marie Coen-Aubert |year=2017 |title=Givetian rugose corals from the Zemmour in Mauritania |journal=Geologica Belgica |volume=20 |issue=3–4 |pages=161–180 |doi=10.20341/gb.2017.009 |doi-access=free }}

|

Sp. nov

|

Valid

|

Coen-Aubert

|

Devonian (Givetian)

|

|

{{Flag|Mauritania}}

|

A rugose coral belonging to the family Ptenophyllidae.

|

Acanthophyllum sougyi

|

Sp. nov

|

Valid

|

Coen-Aubert

|

Devonian (Givetian)

|

|

{{Flag|Mauritania}}

|

A rugose coral belonging to the family Ptenophyllidae.

|

Agetolites angullongensis{{Cite journal|author1=Yong Yi Zhen |author2=Guangxu Wang |author3=Ian G. Percival |year=2017 |title=Conodonts and tabulate corals from the Upper Ordovician Angullong Formation of central New South Wales, Australia |journal=Alcheringa: An Australasian Journal of Palaeontology |volume=41 |issue=2 |pages=141–168 |doi=10.1080/03115518.2016.1185869|bibcode=2017Alch...41..141Z |s2cid=133036752 }}

|

Sp. nov

|

Valid

|

Zhen, Wang & Percival

|

Late Ordovician

|

Angullong Formation

|

{{Flag|Australia}}

|

A tabulate coral.

|

Aulohelia carbonica{{Cite journal|author1=Shuji Niko |author2=Masayuki Fujikawa |year=2017 |title=Visean (Early Carboniferous) tabulate corals from the Akiyoshi Limestone Group, Yamaguchi Prefecture |journal=Bulletin of the Akiyoshi-dai Museum of Natural History |volume=52 |pages=1–4 }}

|

Sp. nov

|

Valid

|

Niko & Fujikawa

|

Carboniferous (Viséan)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A tabulate coral.

|

Bothrophyllum gorbachevensis{{Cite journal|author=Jerzy Fedorowski |year=2017 |title=Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 5. The Family Bothrophyllidae Fomichev, 1953 |journal=Acta Geologica Polonica |volume=67 |issue=2 |pages=249–298 |doi=10.1515/agp-2017-0013|bibcode=2017AcGeP..67..249F |doi-access=free }}

|

Sp. nov

|

Valid

|

Fedorowski

|

Carboniferous (Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Bothrophyllidae.

|

Bothrophyllum kalmyussi

|

Sp. nov

|

Valid

|

Fedorowski

|

Carboniferous (Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Bothrophyllidae.

|

Cambroctoconus koori{{Cite journal|author=John S. Peel |year=2017 |title=A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2–3) of Laurentia |journal=Journal of Paleontology |volume=91 |issue=5 |pages=871–882 |doi=10.1017/jpa.2017.49 |bibcode=2017JPal...91..871P |s2cid=134826884 |doi-access=free }}

|

Sp. nov

|

Valid

|

Peel

|

Cambrian Stage 4 or Stage 5

|

Henson Gletscher Formation

|

{{Flag|Greenland}}

|

A possible member of Octocorallia.

|

Charactophyllum mauritanicum

|

Sp. nov

|

Valid

|

Coen-Aubert

|

Devonian (Givetian)

|

|

{{Flag|Mauritania}}

|

A rugose coral belonging to the family Disphyllidae.

|

Charactophyllum soraufi

|

Sp. nov

|

Valid

|

Coen-Aubert

|

Devonian (Givetian)

|

|

{{Flag|Mauritania}}

|

A rugose coral belonging to the family Disphyllidae.

|

Dianqianophyllum{{Cite journal |author1=Wei-hua Liao |author2=Xue-ping Ma |year=2017 |title=Devonian corals from Zhaotong, NE Yunnan (2)——Givetian rugose corals |journal=Acta Palaeontologica Sinica |volume=56 |issue=1 |pages=68–81 |url=http://eng.oversea.cnki.net/kcms/detail/detail.aspx?dbCode=cjfd&QueryID=13&CurRec=7&filename=GSWX201701007&dbname=CJFDTEMP |access-date=2017-05-25 |archive-date=2020-11-27 |archive-url=https://web.archive.org/web/20201127182938/http://eng.oversea.cnki.net/kcms/detail/detail.aspx?dbCode=cjfd&QueryID=13&CurRec=7&filename=GSWX201701007&dbname=CJFDTEMP |url-status=dead }}

|

Gen. et sp. nov

|

Valid

|

Liao & Ma

|

Devonian (Givetian)

|

|

{{Flag|China}}

|

A rugose coral. Genus includes new species D. bianqingense.

|

Dibunophylloides columnatus{{Cite journal|author=Jerzy Fedorowski |year=2017 |title=Early Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 6. The Family Aulophyllidae Dybowski, 1873 |journal=Acta Geologica Polonica |volume=67 |issue=4 |pages=459–514 |doi=10.1515/agp-2017-0028 |bibcode=2017AcGeP..67..459F |doi-access=free }}

|

Sp. nov

|

Valid

|

Fedorowski

|

Carboniferous (Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Aulophyllidae.

|

Dibunophylloides paulus

|

Sp. nov

|

Valid

|

Fedorowski

|

Carboniferous (Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Aulophyllidae.

|

Dibunophylloides similis

|

Sp. nov

|

Valid

|

Fedorowski

|

Carboniferous (Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Aulophyllidae.

|

Dibunophyllum medium

|

Sp. nov

|

Valid

|

Fedorowski

|

Carboniferous (Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Aulophyllidae.

|

Enniskillenia multiseptata{{Cite journal|author1=E. W. Bamber |author2=S. Rodríguez |author3=B. C. Richards |author4=B. L. Mamet |year=2017 |title=Uppermost Viséan and Serpukhovian (Mississippian) rugose corals and biostratigraphy, Canadian Cordillera |journal=Palaeontographica Canadiana |volume=36 |pages=1–169 |isbn=978-1-897095-80-5 }}

|

Sp. nov

|

Valid

|

Bamber & Rodríguez in Bamber et al.

|

Carboniferous (Mississippian)

|

|

{{Flag|Canada}}

|

A rugose coral.

|

Fungiaphyllia{{Cite journal|author1=Galina K. Melnikova |author2=Ewa Roniewicz |year=2017 |title=Early Jurassic corals with dominating solitary growth forms from the Kasamurg Mountains, Central Asia |journal=Palaeoworld |volume=26 |issue=1 |pages=124–148 |doi=10.1016/j.palwor.2016.01.001}}

|

Gen. et sp. nov

|

Valid

|

Melnikova & Roniewicz

|

Early Jurassic (Hettangian/SinemurianPliensbachian)

|

|

{{Flag|Afghanistan|2013}}

|

A stony coral belonging to the family Latomeandridae. The type species is Fungiaphyllia communis.

|

Gillismilia{{Cite book |author1=Bernard Lathuilière |author2=Sylvain Charbonnier |author3=Jean-Michel Pacaud |year=2017 |title=Nomenclatural and taxonomic acts and remarks for the revision of Jurassic corals |journal=Zitteliana |volume=89 |pages=133–150 |url=https://epub.ub.uni-muenchen.de/40460/1/7_lathuire_133_150.pdf |isbn=978-3-946705-00-0 }}

|

Nom. nov

|

Valid

|

Lathuilière, Charbonnier & Pacaud

|

Early Jurassic (Pliensbachian)

|

|

{{Flag|France}}

|

A coral; a replacement name for Palaeocyathus Alloiteau (1956).

|

Guembelastraea dronovi

|

Sp. nov

|

Valid

|

Melnikova & Roniewicz

|

Early Jurassic (Hettangian/Sinemurian)

|

|

{{Flag|Afghanistan|2013}}

|

A stony coral belonging to the family Tropiastraeidae, a species of Guembelastraea.

|

Lithostrotion termieri{{cite journal |author1=Sergio Rodríguez |author2=Ian D. Somerville |author3=Ismail Said |year=2017 |title=New species of the rugose coral genus Lithostrotion Fleming in the upper Viséan from the Azrou-Khenifra Basin (Morocco) |journal=Spanish Journal of Palaeontology |volume=32 |issue=1 |pages=27–34 |url=http://sepaleontologia.es/revista/anteriores/SJP%20(2017)%20vol.%2032/vol.1/3%20Rodriguez%20et%20al%20web.pdf }}

|

Sp. nov

|

Valid

|

Rodríguez & Somerville in Rodríguez, Somerville & Said

|

Carboniferous (Viséan)

|

Azrou-Khenifra Basin

|

{{Flag|Morocco}}

|

A rugose coral belonging to the family Lithostrotionidae.

|

Macgeea tourneuri

|

Sp. nov

|

Valid

|

Coen-Aubert

|

Devonian (Givetian)

|

|

{{Flag|Mauritania}}

|

A rugose coral belonging to the family Phillipsastreidae.

|

Nina

|

Gen. et 3 sp. et comb. nov

|

Junior homonym

|

Fedorowski

|

Carboniferous (Serpukhovian and Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Bothrophyllidae. The type species is N. donetsiana; genus also includes new species N. dibimitaria and N. magna, as well as "Bothrophyllum" berestovensis Vassilyuk (1960). The generic name is preoccupied by Nina Horsfield (1829).

|

Oppelismilia spectabilis

|

Sp. nov

|

Valid

|

Melnikova & Roniewicz

|

Early Jurassic (Hettangian/Sinemurian)

|

|

{{Flag|Afghanistan|2013}}

|

A stony coral belonging to the family Oppelismiliidae, a species of Oppelismilia.

|

Parepismilia dolichostoma

|

Sp. nov

|

Valid

|

Melnikova & Roniewicz

|

Early Jurassic (Hettangian–early Sinemurian)

|

|

{{Flag|Afghanistan|2013}}

|

A stony coral belonging to the family Parepismiliidae, a species of Parepismilia.

|

Parepismilia dronovi

|

Sp. nov

|

Valid

|

Melnikova & Roniewicz

|

Early Jurassic (Hettangian/Sinemurian)

|

|

{{Flag|Afghanistan|2013}}

|

A stony coral belonging to the family Parepismiliidae, a species of Parepismilia.

|

Periplacotrochus{{Cite journal|author=Stephen D. Cairns |year=2017 |title=New azooxanthellate genus of Scleractinia (Flabellidae) from the Australian Cenozoic |journal=Journal of Paleontology |volume=91 |issue=3 |pages=407–416 |doi=10.1017/jpa.2016.83|bibcode=2017JPal...91..407C |s2cid=55731989 |doi-access=free }}

|

Gen. et comb. et sp. nov

|

Valid

|

Cairns

|

Late Eocene to middle Miocene

|

|

{{Flag|Australia}}

|

A flabellid coral. Genus includes P. deltoideus (Duncan, 1864), P. corniculatus (Dennant, 1899), P. elongatus (Duncan, 1864), P. pueblensis (Dennant, 1903), P. inflectus (Dennant, 1903) and P. magnus (Dennant, 1904), as well as new species P. cudmorei.

|

Petrophyllia niimiensis{{Cite journal|author1=Shuji Niko |author2=Shigeyuki Suzuki |author3=Eiji Taguchi |year=2017 |title=Petrophyllia niimiensis, a new Miocene species of scleractinian coral from the Bihoku Group in Niimi City, Okayama Prefecture, Southwest Japan |journal=Bulletin of the Akiyoshi-dai Museum of Natural History |volume=52 |pages=5–9 }}

|

Sp. nov

|

Valid

|

Niko, Suzuki & Taguchi

|

Miocene

|

Bihoku Group

|

{{Flag|Japan}}

|

A stony coral.

|

Protomichelinia funafusensis{{Cite journal|author=Shuji Niko |year=2017 |title=Early Permian tabulate corals from the Funafuseyama Limestone, Gifu Prefecture, Japan |journal=Bulletin of the National Museum of Nature and Science, Series C |volume=43 |pages=19–25 |url=http://www.kahaku.go.jp/research/publication/geology/download/43/BNMNS_C43_19.pdf }}

|

Sp. nov

|

Valid

|

Niko

|

Early Permian

|

Funafuseyama Limestone

|

{{Flag|Japan}}

|

A tabulate coral belonging to the order Favositida and the family Micheliniidae.

|

Qinscyphus{{Cite journal|author1=Yunhuan Liu |author2=Tiequan Shao |author3=Huaqiao Zhang |author4=Qi Wang |author5=Yanan Zhang |author6=Cheng Chen |author7=Yongchun Liang |author8=Jiaqi Xue |year=2017 |title=A new scyphozoan from the Cambrian Fortunian Stage of South China |journal=Palaeontology |volume=60 |issue=4 |pages=511–518 |doi=10.1111/pala.12306|bibcode=2017Palgy..60..511L |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Liu et al.

|

Cambrian (Fortunian)

|

Kuanchuanpu Formation

|

{{Flag|China}}

|

A probable crown jellyfish belonging to the family Olivooidae. The type species is Q. necopinus.

|

Rozkowskia lenta

|

Sp. nov

|

Valid

|

Fedorowski

|

Carboniferous (Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Aulophyllidae.

|

Scoliopora hosakai{{Cite journal|author1=Shuji Niko |author2=Yousuke Ibaraki |author3=Jun-ichi Tazawa |year=2017 |title=Middle Devonian tabulate corals from the Kotaki area, Niigata Prefecture, central Japan |journal=Science Reports of Niigata University. (Geology) |volume=32 |pages=25–31 |hdl=10191/47651 }}

|

Sp. nov

|

Valid

|

Niko, Ibaraki & Tazawa

|

Middle Devonian

|

|

{{Flag|Japan}}

|

A tabulate coral belonging to the order Favositida and the family Alveolitidae.

|

Sinaster{{Cite journal|author1=Xing Wang |author2=Jian Han |author3=Jean Vannier |author4=Qiang Ou |author5=Xiaoguang Yang |author6=Kentaro Uesugi |author7=Osamu Sasaki |author8=Tsuyoshi Komiya |year=2017 |title=Anatomy and affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation, South China |journal=Palaeontology |volume=60 |issue=6 |pages=853–867 |doi=10.1111/pala.12320 |bibcode=2017Palgy..60..853W |s2cid=90297513 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Wang et al.

|

Early Cambrian

|

Kuanchuanpu Formation

|

{{Flag|China}}

|

A member of Medusozoa belonging to the family Olivooidae. The type species is S. petalon.

|

Stephanophyllia plattenwaldensis{{Cite journal|author=Rosemarie Christine Baron-Szabo |year=2017 |title=Scleractinian corals from the upper Aptian–Albian of the Garschella Formation of central Europe (western Austria; eastern Switzerland): The Albian |journal=Jahrbuch der Geologischen Bundesanstalt |volume=157 |issue=1–4 |pages=241–260 |url=https://opac.geologie.ac.at/wwwopacx/wwwopac.ashx?command=getcontent&server=images&value=JB1571_241_A.pdf }}

|

Sp. nov

|

Valid

|

Baron-Szabo

|

Early Cretaceous (late Aptian to Albian)

|

Garschella Formation

|

{{Flag|Austria}}

|

A stony coral belonging to the family Micrabaciidae.

|

Sterictopathes{{Cite journal|author1=Andrzej Baliński |author2=Yuanlin Sun |year=2017 |title=Early Ordovician black corals from China |journal=Bulletin of Geosciences |volume=92 |issue=1 |pages=1–12 |doi=10.3140/bull.geosci.1632|doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Baliński & Sun

|

Ordovician (early Floian)

|

Fenxiang Formation

Honghuayuan Formation

|

{{Flag|China}}

|

A black coral related to Sinopathes reptans. The type species is S. radicatus.

|

Voragoaxum

|

Gen. et sp. nov

|

Valid

|

Fedorowski

|

Carboniferous (Bashkirian)

|

|

{{Flag|Ukraine}}

|

A rugose coral belonging to the family Aulophyllidae. The type species is V. cavum.

|

Zaphrentites etheringtonensis

|

Sp. nov

|

Valid

|

Bamber & Rodríguez in Bamber et al.

|

Carboniferous (Mississippian)

|

|

{{Flag|Canada}}

|

A rugose coral.

|

Zaphrentites lerandi

|

Sp. nov

|

Valid

|

Bamber & Rodríguez in Bamber et al.

|

Carboniferous (Mississippian)

|

|

{{Flag|Canada}}

|

A rugose coral.

|

Arthropods

{{Main|2017 in arthropod paleontology}}

Bryozoans

=Research=

  • Epizoic bryozoans are reported on fossil crabs from the Miocene Mishan Formation (Iran) by Key et al. (2017).{{cite journal |author1=Marcus M. Key, Jr. |author2=Matúš Hyžný |author3=Erfan Khosravi |author4=Natália Hudáčková |author5=Ninon Robin |author6=Majid Mirzaie Ataabadi |year=2017 |title=Bryozoan epibiosis on fossil crabs: a rare occurrence from the Miocene of Iran |journal=PALAIOS |volume=32 |issue=8 |pages=491–505 |doi=10.2110/palo.2017.040 |bibcode=2017Palai..32..491K |s2cid=134042609 }}

=New taxa=

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Acupipora mexicana{{cite journal |author1=Andrej Ernst |author2=Daniel Vachard |year=2017 |title=Middle Pennsylvanian bryozoans of Cerros de Tule, Sonora, Mexico |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=285 |issue=1 |pages=11–38 |doi=10.1127/njgpa/2017/0660}}

|

Sp. nov

|

Valid

|

Ernst & Vachard

|

Carboniferous (middle Pennsylvanian)

|

|

{{Flag|Mexico}}

|

|

Adeonellopsis sandbergi

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Adeonidae.

|

'Akatopora' wilmseni{{Cite journal |author1=Silviu O. Martha |author2=Birgit Niebuhr |author3=Joachim Scholz |year=2017 |title=Cheilostome Bryozoen |journal=Geologica Saxonica |volume=62 |pages=11–52 |url=http://www.senckenberg.de/files/content/forschung/publikationen/geologicasaxonica/62/09__geologica-saxonica_62_2016_martha-et-al.pdf |access-date=2017-09-22 |archive-url=https://web.archive.org/web/20170923002256/http://www.senckenberg.de/files/content/forschung/publikationen/geologicasaxonica/62/09__geologica-saxonica_62_2016_martha-et-al.pdf |archive-date=2017-09-23 |url-status=dead }}

|

Sp. nov

|

Valid

|

Martha, Niebuhr & Scholz

|

Late Cretaceous (mid-late Turonian)

|

Strehlen Formation

|

{{flag|Germany}}

|

A cheilostome bryozoan.

|

Atactotoechus vaulxensis{{Cite journal|author1=Andrej Ernst |author2=Zoya Tolokonnikova |author3=Edouard Poty |author4=Bernard Mottequin |year=2017 |title=A bryozoan fauna from the Mississippian (Tournaisian and Viséan) of Belgium |journal=Geobios |volume=50 |issue=2 |pages=105–121 |doi=10.1016/j.geobios.2017.02.002|bibcode=2017Geobi..50..105E }}

|

Sp. nov

|

Valid

|

Ernst et al.

|

Carboniferous (Mississippian)

|

|

{{flag|Belgium}}

|

A bryozoan.

|

Bashkirella arnaoense{{Cite journal|author1=Juan Luis Suárez Andrés |author2=Patrick N. Wyse Jackson |year=2017 |title=Fenestrate Bryozoa of the Moniello Formation (Lower-Middle Devonian, NW Spain) |journal=Bulletin of Geosciences |volume=92 |issue=2 |pages=153–183 |doi=10.3140/bull.geosci.1668 |doi-access=free }}

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Chasmatoporidae.

|

Bigeyina cantabrica

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (Emsian–early Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Semicosciniidae.

|

Bigeyina spinosa

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (Emsian–early Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Semicosciniidae.

|

Bragella{{Cite journal|author1=Emanuela Di Martino |author2=Paul D. Taylor |author3=Laura J. Cotton |author4=Paul N. Pearson |year=2017 |title=First bryozoan fauna from the Eocene–Oligocene transition in Tanzania |journal=Journal of Systematic Palaeontology |volume=16 |issue=3 |pages=225–243 |doi=10.1080/14772019.2017.1284163 |s2cid=89671986 |url=http://orca.cf.ac.uk/98311/1/DiMartino%20et%20al._text.revised.with%20figures.pdf }}

|

Gen. et sp. nov

|

Valid

|

Di Martino et al.

|

EoceneOligocene transition

|

|

{{flag|Tanzania}}

|

A cheilostome bryozoan. Genus includes new species B. pseudofedora.

|

Buskia waiinuensis{{cite journal |author1=Emanuela Di Martino |author2=Paul D. Taylor |author3=Dennis P. Gordon |author4=Lee Hsiang Liow |year=2017 |title=New bryozoan species from the Pleistocene of the Wanganui Basin, North Island, New Zealand |journal=European Journal of Taxonomy |issue=345 |pages=1–15 |doi=10.5852/ejt.2017.345 |doi-access=free }}

|

Sp. nov

|

Valid

|

Di Martino et al.

|

Pleistocene

|

Nukumaru Limestone

|

{{Flag|New Zealand}}

|

A member of Ctenostomatida belonging to the superfamily Vesicularioidea and the family Buskiidae.

|

Cheiloporina clarksvillensis

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Cheiloporinidae.

|

Cigclisula solenoides

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Colatooeciidae.

|

Coeloclemis zefrehensis{{Cite journal|author1=Andrej Ernst |author2=Peter Königshof |author3=Ali Bahrami |author4=Mehdi Yazdi |author5=Iliana Boncheva |year=2017 |title=A Late Devonian (Frasnian) bryozoan fauna from central Iran |journal=Palaeobiodiversity and Palaeoenvironments |volume=97 |issue=3 |pages=541–552 |doi=10.1007/s12549-016-0269-5 |bibcode=2017PdPe...97..541E |s2cid=131810146 }}

|

Sp. nov

|

Valid

|

Ernst et al.

|

Devonian (Frasnian)

|

Bahram Formation

|

{{flag|Iran}}

|

A trepostome bryozoan.

|

Diplosolen akatjevense{{Cite journal|author1=L. A. Viskova |author2=A. V. Pakhnevich |year=2017 |title=Bryozoan (Stenolaemata) records from the upper Callovian (Middle Jurassic) of the Moscow region |journal=Paleontological Journal |volume=51 |issue=3 |pages=258–263 |doi=10.1134/S0031030117030121 |bibcode=2017PalJ...51..258V |s2cid=133921567 }}

|

Sp. nov

|

Valid

|

Viskova & Pakhnevich

|

Middle Jurassic (Callovian)

|

|

{{Flag|Russia}}

|

A bryozoan belonging to the class Stenolaemata and the order Tubuliporida.

|

Ditaxipora lakriensis{{cite journal |author1=M. A. Sonar |author2=R. V. Pawar |year=2017 |title=Some fossil species of catenicellid and schizoporelloid bryozoans from the Cenozoic sediments of western Kachchh, Gujarat, India |journal=Journal of the Palaeontological Society of India |volume=62 |issue=1 |pages=31–38 |doi=10.1177/0971102320170103 |url=https://www.academia.edu/34061432 }}

|

Sp. nov

|

Valid

|

Sonar & Pawar

|

Miocene (Burdigalian)

|

Chhasra Formation

|

{{Flag|India}}

|

A member of the family Catenicellidae.

|

Eridopora moravica{{Cite journal|author1=Zoya Tolokonnikova |author2=Jiří Kalvoda |author3=Tomáš Kumpan |year=2017 |title=An early Tournaisian (Mississippian) bryozoan fauna from the Moravian Karst (Rhenohercynian Zone, Czech Republic) |journal=Geobios |volume=50 |issue=4 |pages=341–348 |doi=10.1016/j.geobios.2017.06.006 |bibcode=2017Geobi..50..341T }}

|

Sp. nov

|

Valid

|

Tolokonnikova, Kalvoda & Kumpan

|

Carboniferous (Tournaisian)

|

|

{{flag|Czech Republic}}

|

|

Escharoides joannae

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Romancheinidae.

|

Euthyrhombopora tenuis

|

Sp. nov

|

Valid

|

Ernst et al.

|

Devonian (Frasnian)

|

Bahram Formation

|

{{flag|Iran}}

|

A rhabdomesine cryptostome bryozoan.

|

Exechonella minutiperforata

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Exechonellidae.

|

Exidmonea baghi{{Cite journal|author1=Kamil Zágoršek |author2=Mehdi Yazdi |author3=Ali Bahrami |year=2017 |title=Cenozoic cyclostomatous bryozoans from the Qom Formation (Chahriseh area northeast of Isfahan, central Iran) |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=283 |issue=1 |pages=109–118 |doi=10.1127/njgpa/2017/0631 }}

|

Sp. nov

|

Valid

|

Zágoršek, Yazdi & Bahrami

|

Miocene

|

Qom Formation

|

{{flag|Iran}}

|

A cyclostome bryozoan.

|

Fabifenestella almazani

|

Sp. nov

|

Valid

|

Ernst & Vachard

|

Carboniferous (middle Pennsylvanian)

|

|

{{Flag|Mexico}}

|

|

Fenestrapora elegans

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (late Emsian–early Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Semicosciniidae.

|

Filites robustus

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (Emsian–early Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Acanthocladiidae.

|

Floridina subantiqua

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Onychocellidae.

|

Foratella cervisia{{Cite journal|author1=Paul D. Taylor |author2=Silviu O. Martha |year=2017 |title=Cenomanian cheilostome bryozoans from Devon, England |journal=Annales de Paléontologie |volume=103 |issue=1 |pages=19–31 |doi=10.1016/j.annpal.2016.11.002 |bibcode=2017AnPal.103...19T }}

|

Sp. nov

|

Valid

|

Taylor & Martha

|

Late Cretaceous (Cenomanian)

|

Beer Head Limestone Formation

|

{{flag|United Kingdom}}

|

A cheilostome bryozoan.

|

Hagiosynodos simplex

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Cheiloporinidae.

|

Heteractis tanzaniensis

|

Sp. nov

|

Valid

|

Di Martino et al.

|

EoceneOligocene transition

|

|

{{flag|Tanzania}}

|

A cheilostome bryozoan.

|

Hillmeropora

|

Gen. et sp. nov

|

Valid

|

Martha, Niebuhr & Scholz

|

Late Cretaceous (mid-late Turonian)

|

Strehlen Formation

|

{{flag|Germany}}

|

A cheilostome bryozoan genus belonging to the family Calloporidae. Type species H. pavonina; genus also includes Membranipora procurrens Brydone, 1929.

|

Jablonskipora{{cite journal |author1=Silviu O. Martha |author2=Paul D. Taylor |year=2017 |title=The oldest erect cheilostome bryozoan: Jablonskipora gen. nov. from the upper Albian of south-west England |journal=Papers in Palaeontology |volume=4 |issue=1 |pages=55–66 |doi=10.1002/spp2.1097 |s2cid=91058350 }}

|

Gen. et sp. nov

|

Valid

|

Martha & Taylor

|

Early Cretaceous (Albian)

|

Upper Greensand

|

{{Flag|United Kingdom}}

|

A cheilostome bryozoan. The type species is J. kidwellae.

|

Kalvariella antiqua

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (Emsian–early Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Acanthocladiidae.

|

Lacrimula crassa

|

Sp. nov

|

Valid

|

Di Martino et al.

|

EoceneOligocene transition

|

|

{{flag|Tanzania}}

|

A cheilostome bryozoan.

|

Lacrimula kilwaensis

|

Sp. nov

|

Valid

|

Di Martino et al.

|

EoceneOligocene transition

|

|

{{flag|Tanzania}}

|

A cheilostome bryozoan.

|

Margaretta pentaceratops

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Margarettidae.

|

Metrarabdotos aquaeguttum{{Cite journal|author1=Laís V. Ramalho |author2=Vladimir A. Távora |author3=Kamil Zagorsek |year=2017 |title=New records of the Bryozoan Metrarabdotos from the Pirabas Formation (Lower Miocene), Pará State, Brazil |journal=Palaeontologia Electronica |volume=20 |issue=2 |pages=Article number 20.2.32A |doi=10.26879/704 |doi-access=free }}

|

Sp. nov

|

Valid

|

Ramalho, Távora & Zagorsek

|

Early Miocene

|

Pirabas Formation

|

{{flag|Brazil}}

|

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

|

Metrarabdotos capanemensis

|

Sp. nov

|

Valid

|

Ramalho, Távora & Zagorsek

|

Early Miocene

|

Pirabas Formation

|

{{flag|Brazil}}

|

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

|

Metrarabdotos elongatum

|

Sp. nov

|

Valid

|

Ramalho, Távora & Zagorsek

|

Early Miocene

|

Pirabas Formation

|

{{flag|Brazil}}

|

A member of Lepralielloidea belonging to the family Metrarabdotosidae.

|

Microeciella kolomnensis

|

Sp. nov

|

Valid

|

Viskova & Pakhnevich

|

Middle Jurassic (Callovian)

|

|

{{Flag|Russia}}

|

A bryozoan belonging to the suborder Tubuliporina and the family Oncousoeciidae.

|

Microporella rusti

|

Sp. nov

|

Valid

|

Di Martino et al.

|

Pleistocene

|

Nukumaru Limestone

|

{{Flag|New Zealand}}

|

A member of the family Microporellidae.

|

Nellia winstonae{{Cite journal|author1=Emanuela Di Martino |author2=Paul D. Taylor |author3=Roger W. Portell |year=2017 |title=Bryozoans from the lower Miocene Chipola Formation, Calhoun County, Florida, USA |journal=Bulletin of the Florida Museum of Natural History |volume=53 |issue=4 |pages=97–200 |doi=10.58782/flmnh.pgmm1110 }}

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Quadricellariidae.

|

Nevianipora isfahani

|

Sp. nov

|

Valid

|

Zágoršek, Yazdi & Bahrami

|

Miocene

|

Qom Formation

|

{{flag|Iran}}

|

A cyclostome bryozoan.

|

'Onychocella' barbata

|

Sp. nov

|

Valid

|

Martha, Niebuhr & Scholz

|

Late Cretaceous (late Cenomanian)

|

Dölzschen Formation

|

{{flag|Germany}}

|

A cheilostome bryozoan. Taylor, Martha & Gordon (2018) transferred this species to the genus Kamilocella.{{cite journal |author1=Paul D. Taylor |author2=Silviu O. Martha |author3=Dennis P. Gordon |year=2018 |title=Synopsis of 'onychocellid' cheilostome bryozoan genera |journal=Journal of Natural History |volume=52 |issue=25–26 |pages=1657–1721 |doi=10.1080/00222933.2018.1481235 |bibcode=2018JNatH..52.1657T |s2cid=89706861 }}

|

Onychocella saxoniae

|

Sp. nov

|

Valid

|

Martha, Niebuhr & Scholz

|

Late Cretaceous (late Cenomanian)

|

Dölzschen Formation

|

{{flag|Germany}}

|

A cheilostome bryozoan.

|

Paralicornia interdigitata

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Candidae.

|

Paraseptopora geometrica

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (late Emsian–early Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Septoporidae.

|

Paraseptopora irregularis

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (Emsian–early Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Septoporidae.

|

Pharopora{{Cite journal|author1=Patrick N. Wyse Jackson |author2=Andrej Ernst |author3=Juan L. Suárez Andrés |year=2017 |title=Articulation in the Family Rhabdomesidae (Cryptostomata: Bryozoa) from the Mississippian of Ireland |journal=Irish Journal of Earth Sciences |volume=35 |pages=35–44 |doi=10.3318/ijes.2017.35.35 |s2cid=134697040 }}

|

Gen. et sp. nov

|

Valid

|

Wyse Jackson, Ernst & Suárez Andrés

|

Carboniferous (Tournaisian)

|

Hook Head Formation

|

{{Flag|Ireland}}

|

A member of Cryptostomata belonging to the family Rhabdomesidae. The type species is P. regularis.

|

Pleuromucrum epifanioi

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Phidoloporidae.

|

Pleuromucrum liowae

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Phidoloporidae.

|

Polyascosoecia iranica

|

Sp. nov

|

Valid

|

Zágoršek, Yazdi & Bahrami

|

Miocene

|

Qom Formation

|

{{flag|Iran}}

|

A cyclostome bryozoan.

|

Puellina quadrispinosa

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Cribrilinidae.

|

Revalotrypa inopinata{{Cite journal|author1=Petr V. Fedorov |author2=Anna V. Koromyslova |author3=Silviu O. Martha |year=2017 |title=The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae |journal=PalZ |volume=91 |issue=3 |pages=353–373 |doi=10.1007/s12542-017-0351-y |bibcode=2017PalZ...91..353F |s2cid=135228988 }}

|

Sp. nov

|

Valid

|

Fedorov, Koromyslova & Martha

|

Ordovician (Floian)

|

|

{{Flag|Russia}}

|

An esthonioporate bryozoan belonging to the family Revalotrypidae.

|

Revalotrypa yugaensis

|

Sp. nov

|

Valid

|

Fedorov, Koromyslova & Martha

|

Ordovician (Floian)

|

|

{{Flag|Russia}}

|

An esthonioporate bryozoan belonging to the family Revalotrypidae.

|

Schizolepraliella

|

Gen. et sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A Schizoporella-like cheilostome bryozoan of uncertain phylogenetic placement. The type species is S. nancyae.

|

Selenaria lyrulata{{Cite journal|author1=Juan López-Gappa |author2=Leandro Martín Pérez |author3=Miguel Griffin |year=2017 |title=First record of a fossil selenariid bryozoan in South America |journal=Alcheringa: An Australasian Journal of Palaeontology |volume=41 |issue=3 |pages=365–368 |doi=10.1080/03115518.2017.1283054 |bibcode=2017Alch...41..365L |s2cid=132337410 |url=http://sedici.unlp.edu.ar/handle/10915/81267 |hdl=11336/47794 |hdl-access=free }}

|

Sp. nov

|

Valid

|

López-Gappa, Pérez & Griffin

|

Early Miocene

|

Monte León Formation

|

{{Flag|Argentina}}

|

A bryozoan belonging to the family Selenariidae.

|

Spiniflabellum jacksoni

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Cribrilinidae.

|

Steginoporella tiara{{cite journal |author1=Dennis P. Gordon |author2=Kjetil L. Voje |author3=Paul D. Taylor |year=2017 |title=Living and fossil Steginoporellidae (Bryozoa: Cheilostomata) from New Zealand |journal=Zootaxa |volume=4350 |issue=2 |pages=345–362 |doi=10.11646/zootaxa.4350.2.9 |pmid=29245558 }}

|

Sp. nov

|

Valid

|

Gordon, Voje & Taylor

|

Early Pleistocene

|

|

{{Flag|New Zealand}}

|

A member of Cheilostomata belonging to the family Steginoporellidae.

|

Stylopoma farleyensis

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Schizoporellidae.

|

Stylopoma leverhulme

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Schizoporellidae.

|

Thalamoporella bitorquata

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Thalamoporellidae.

|

Thalamoporella hastigera

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Thalamoporellidae.

|

Thalamoporella ogivalis

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Thalamoporellidae.

|

Thalamoporella papalis

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Thalamoporellidae.

|

Thalamoporella polygonalis

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Thalamoporellidae.

|

Trypostega vokesi

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Trypostegidae.

|

Turbicellepora giardinai

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Celleporidae.

|

Utropora parva

|

Sp. nov

|

Valid

|

Suárez Andrés & Wyse Jackson

|

Devonian (Emsian–early Eifelian)

|

Moniello Formation

|

{{Flag|Spain}}

|

A member of Fenestrata belonging to the family Semicosciniidae.

|

Vix scolaroi

|

Sp. nov

|

Valid

|

Di Martino, Taylor & Portell

|

Early Miocene

|

Chipola Formation

|

{{flag|United States}}
({{flag|Florida}})

|

A cheilostome bryozoan belonging to the family Vicidae.

|

Wilbertopora manubriformis

|

Sp. nov

|

Valid

|

Taylor & Martha

|

Late Cretaceous (Cenomanian)

|

Beer Head Limestone Formation

|

{{flag|United Kingdom}}

|

A cheilostome bryozoan.

|

Wilbertopora ostiolatoides

|

Sp. nov

|

Valid

|

Martha, Niebuhr & Scholz

|

Late Cretaceous (mid-late Turonian)

|

Strehlen Formation

|

{{flag|Germany}}

|

A cheilostome bryozoan.

|

Brachiopods

=Research=

  • A study on the selectivity of brachiopod extinctions during the Ordovician–Silurian extinction events is published by Finnegan, Rasmussen & Harper (2017).{{cite journal|author1=Seth Finnegan |author2=Christian M. Ø. Rasmussen |author3=David A. T. Harper |year=2017 |title=Identifying the most surprising victims of mass extinction events: an example using Late Ordovician brachiopods |journal=Biology Letters |volume=13 |issue=9 |pages=20170400 |doi=10.1098/rsbl.2017.0400 |pmid=28954854 |pmc=5627174 }}
  • A study on the patterns of biomineralization of Late Permian brachiopod shells and on their implications for inferring the environmental disruptions associated with the Permian–Triassic extinction event is published by Garbelli, Angiolini & Shen (2017).{{Cite journal|author1=Claudio Garbelli |author2=Lucia Angiolini |author3=Shu-zhong Shen |year=2017 |title=Biomineralization and global change: A new perspective for understanding the end-Permian extinction |journal=Geology |volume=45 |issue=1 |pages=19–22 |doi=10.1130/G38430.1 |bibcode=2017Geo....45...19G }}

=New taxa=

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Acrothyra bonnia{{Cite journal|author1=C.B. Skovsted |author2=I. Knight |author3=U. Balthasar |author4=W.D. Boyce |year=2017 |title=Depth related brachiopod faunas from the lower Cambrian Forteau Formation of southern Labrador and western Newfoundland, Canada |journal=Palaeontologia Electronica |volume=20 |issue=3 |pages=Article number 20.3.54A |doi=10.26879/775 |doi-access=free |hdl=10026.1/11606 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Skovsted et al.

|

Cambrian Stage 4

|

Forteau Formation

|

{{flag|Canada}}
({{flag|Newfoundland and Labrador}})

|

A member of Acrotretida belonging to the family Acrotretidae.

|

Anarhynchia smithi{{Cite journal|author1=József Pálfy |author2=Zsófia Kovács |author3=Gregory D. Price |author4=Attila Vörös |author5=Gary G. Johannson |year=2017 |title=A new occurrence of the Early Jurassic brachiopod Anarhynchia from the Canadian Cordillera confirms its membership in chemosynthesis-based ecosystems |journal=Canadian Journal of Earth Sciences |volume=54 |issue=12 |pages=1179–1193 |doi=10.1139/cjes-2017-0179 |hdl=1807/79681 |bibcode=2017CaJES..54.1179P |url=http://real.mtak.hu/133550/1/Palfy_etal_CJES_Anarhynchia_paper_revised_complete.pdf |hdl-access=free }}

|

Sp. nov

|

Valid

|

Pálfy et al.

|

Early Jurassic (Pliensbachian)

|

Inklin Formation

|

{{Flag|Canada}}
({{flag|British Columbia}})

|

|

Atelelasma longisulcum{{cite book |author1=Maria Liljeroth |author2=David A. T. Harper |author3=Hilary Carlisle |author4=Arne T. Nielsen |year=2017 |title=Fossils and Strata, Number 62, Ordovician rhynchonelliformean brachiopods from Co. Waterford, SE Ireland: palaeobiogeography of the Leinster Terrane |publisher=Wiley-Blackwell |pages=1–164 |isbn=978-1-119-41255-7 |doi=10.1002/9781119412595 }}

|

Sp. nov

|

Valid

|

Liljeroth et al.

|

Ordovician

|

Dunabrattin Limestone Formation

Tramore Limestone Formation

|

{{Flag|Ireland}}

|

A member of Strophomenata belonging to the order Billingsellida and the family Clitambonitidae.

|

Atychorhynchia{{Cite journal|author1=José F. Baeza-Carratalá |author2=Matías Reolid |author3=Fernando García Joral |year=2017 |title=New deep-water brachiopod resilient assemblage from the South-Iberian Palaeomargin (Western Tethys) and its significance for the brachiopod adaptive strategies around the Early Toarcian Mass Extinction Event |journal=Bulletin of Geosciences |volume=92 |issue=2 |pages=233–256 |doi=10.3140/bull.geosci.1631 |doi-access=free |hdl=10045/68270 |hdl-access=free }}

|

Gen. et sp. nov

|

Valid

|

Baeza-Carratalá, Reolid & García Joral

|

Early Jurassic (late Pliensbachian–early Toarcian)

|

Zegrí Formation

|

{{Flag|Spain}}

|

A member of Rhynchonellida belonging to the family Norellidae. The type species is A. falsiorigo.

|

Avdeevella{{Cite journal|author=V. V. Baranov |year=2017 |title=New brachiopods from the Ordovician of northeastern Russia |journal=Paleontological Journal |volume=51 |issue=1 |pages=47–52 |doi=10.1134/S0031030117010038 |bibcode=2017PalJ...51...47B |s2cid=132869480 }}

|

Gen. et sp. nov

|

Valid

|

Baranov

|

Ordovician

|

|

{{Flag|Russia}}

|

The type species is A. mica.

|

Bilobia alichovae{{Cite journal|author=A. A. Madison |year=2017 |title=To the revision of the Upper Ordovician Bilobia Cooper (Strophomenida, Brachiopoda) |journal=Paleontological Journal |volume=51 |issue=4 |pages=368–373 |doi=10.1134/S0031030117040062 |bibcode=2017PalJ...51..368M |s2cid=90654526 |url=https://elibrary.ru/item.asp?id=29762018 }}

|

Sp. nov

|

Valid

|

Madison

|

Ordovician (Sandbian)

|

|

{{Flag|Russia}}
({{Flag|Leningrad Oblast}})

|

A member of Strophomenida.

|

Bittnerithyris{{Cite journal|author1=A. M. Popov |author2=Yu. D. Zakharov |year=2017 |title=Olenekian brachiopods from the Kamenushka River basin, South Primorye: New data on the brachiopod recovery after the end-Permian mass extinction |journal=Paleontological Journal |volume=51 |issue=7 |pages=735–745 |doi=10.1134/S0031030117070085 |bibcode=2017PalJ...51..735P |s2cid=89881140 }}

|

Gen. nov

|

Valid

|

Popov & Zakharov

|

Early Triassic (Olenekian)

|

|

{{Flag|Russia}}
({{Flag|Primorsky Krai}})

|

A member of Terebratulida.

|

Bronnothyris danaperensis{{Cite journal|author1=Maria Aleksandra Bitner |author2=Arnold Müller |year=2017 |title=Late Eocene (Priabonian) brachiopod fauna from Dnipropetrovsk, eastern Ukraine |journal=Bulletin of Geosciences |volume=92 |issue=2 |pages=211–231 |doi=10.3140/bull.geosci.1661 |doi-access=free }}

|

Sp. nov

|

Valid

|

Bitner & Müller

|

Eocene (Priabonian)

|

|

{{Flag|Ukraine}}

|

A member of Terebratulida belonging to the family Megathyrididae.

|

Burrirhynchia albiensis{{Cite journal|author=Danièle Gaspard |year=2017 |title=Deux nouvelles espèces de brachiopodes rhynchonelliformes de l'Albien stratotypique (Bassin de Paris) – mise au point |journal=Annales de Paléontologie |volume=103 |issue=2 |pages=93–100 |doi=10.1016/j.annpal.2017.04.004 |bibcode=2017AnPal.103...93G }}

|

Sp. nov

|

Valid

|

Gaspard

|

Early Cretaceous (Albian)

|

|

{{Flag|France}}

|

A member of Rhynchonellida belonging to the family Tetrarhynchiidae.

|

Colaptomena auduni

|

Sp. nov

|

Valid

|

Liljeroth et al.

|

Ordovician

|

Tramore Limestone Formation

|

{{Flag|Ireland}}

|

A member of Strophomenida belonging to the family Rafinesquinidae.

|

Cyrtinaella? houi

|

Sp. nov

|

Valid

|

Lü & Ma

|

Devonian (late Frasnian)

|

|

{{Flag|China}}

|

A member of Spiriferinida.

|

Cyrtospirifer ainosawensis{{Cite journal|author1=Jun-ichi Tazawa |author2=Hiroaki Inose |author3=Naotomo Kaneko |year=2017 |title=Cyrtospirifer ainosawensis sp. nov., from the Upper Devonian Ainosawa Formation, Soma, Abukuma Mountains, northeastern Japan |journal=The Journal of the Geological Society of Japan |volume=123 |issue=8 |pages=653–656 |doi=10.5575/geosoc.2017.0011 |doi-access=free }}

|

Sp. nov

|

Valid

|

Tazawa, Inose & Kaneko

|

Late Devonian

|

Ainosawa Formation

|

{{Flag|Japan}}

|

A member of Spiriferida belonging to the family Cyrtospiriferidae.

|

Cyrtospirifer choanjiensis{{Cite journal|author=Jun-ichi Tazawa |year=2017 |title=Discovery of Cyrtospirifer (Late Devonian Brachiopoda) from Choanji in the South Kitakami Belt, northeastern Japan |journal=The Journal of the Geological Society of Japan |volume=123 |issue=2 |pages=101–105 |doi=10.5575/geosoc.2016.0059 |doi-access=free }}

|

Sp. nov

|

Valid

|

Tazawa

|

Late Devonian

|

|

{{Flag|Japan}}

|

A member of Spiriferida belonging to the family Cyrtospiriferidae.

|

Dactylogonia costellata

|

Sp. nov

|

Valid

|

Liljeroth et al.

|

Ordovician

|

Dunabrattin Limestone Formation

Tramore Limestone Formation

|

{{Flag|Ireland}}

|

A member of Strophomenida belonging to the family Strophomenidae.

|

Dirafinesquina antiqua{{Cite journal|author1=L.E. Popov |author2=L.R.M. Cocks |year=2017 |title=The World's second oldest strophomenoid-dominated benthic assemblage in the first Dapingian (Middle Ordovician) brachiopod fauna identified from Iran |journal=Journal of Asian Earth Sciences |volume=140 |pages=1–12 |doi=10.1016/j.jseaes.2017.03.007 |bibcode=2017JAESc.140....1P }}

|

Sp. nov

|

Valid

|

Popov & Cocks

|

Ordovician (Dapingian)

|

|

{{Flag|Iran}}

|

A strophomenoid brachiopod.

|

Discinisca suborbicularis{{Cite journal|author1=T.N. Smirnova |author2=G.T. Ushatinskaya |author3=E.A. Zhegallo |author4=I.V. Panchenko |year=2017 |title=Shell microstructure of Discinisca suborbicularis sp. nov. (Brachiopoda, Lingulata) from the Upper Jurassic of Western Siberia |journal=Paleontological Journal |volume=51 |issue=5 |pages=480–490 |doi=10.1134/S0031030117050124 |bibcode=2017PalJ...51..480S |s2cid=135081073 |url=https://elibrary.ru/item.asp?id=29963058 }}

|

Sp. nov

|

Valid

|

Smirnova et al.

|

Late Jurassic

|

|

{{Flag|Russia}}

|

|

Discinisca undata{{Cite journal|author1=T. N. Smirnova |author2=G. T. Ushatinskaya |author3=E. A. Zhegallo |author4=I. V. Panchenko |year=2017 |title=First records of brachiopods of the family Discinidae (Class Lingulata) from the Upper Jurassic of West Siberia |journal=Paleontological Journal |volume=51 |issue=2 |pages=155–160 |doi=10.1134/S0031030117020150 |bibcode=2017PalJ...51..155S |s2cid=132978017 }}

|

Sp. nov

|

Valid

|

Smirnova in Smirnova et al.

|

Late Jurassic

|

|

{{Flag|Russia}}

|

A brachiopod belonging to the family Discinidae, a species of Discinisca.

|

Elkanathyris{{Cite journal|author1=Paul Copper |author2=Jisuo Jin |year=2017 |title=Early athyride brachiopod evolution through the Ordovician-Silurian mass extinction and recovery, Anticosti Island, eastern Canada |journal=Journal of Paleontology |volume=91 |issue=6 |pages=1123–1147 |doi=10.1017/jpa.2017.74 |bibcode=2017JPal...91.1123C |s2cid=134708988 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Copper & Jin

|

Silurian (Aeronian)

|

|

{{Flag|Canada}}
({{Flag|Quebec}})

|

An athyride brachiopod. The type species is E. pallula.

|

Eoporambonites raziabadensis

|

Sp. nov

|

Valid

|

Popov & Cocks

|

Ordovician (Dapingian)

|

|

{{Flag|Iran}}

|

A porambonitoid brachiopod.

|

Foveola ivari{{Cite journal|author1=Lars E. Holmer |author2=Leonid E. Popov |author3=Mansoureh Ghobadi Pour |author4=Zhiliang Zhang |author5=Zhifei Zhang |year=2017 |title=Unusual pitted Ordovician brachiopods from the East Baltic: the significance of coarsely pitted ornamentations in linguliforms |journal=Papers in Palaeontology |volume=3 |issue=3 |pages=387–399 |doi=10.1002/spp2.1080 |bibcode=2017PPal....3..387H |s2cid=134310799 }}

|

Sp. nov

|

Valid{{Cite web |url=http://zoobank.org/references/BE5BDD7C-D263-4653-9859-EE6119DD0886 |title=Archived copy |access-date=2017-05-11 |archive-date=2020-03-17 |archive-url=https://web.archive.org/web/20200317185124/http://zoobank.org/References/BE5BDD7C-D263-4653-9859-EE6119DD0886 |url-status=dead }}

|

Holmer et al.

|

Ordovician (Sandbian)

|

|

{{Flag|Estonia}}

|

A member of Obolidae.

|

Gypidula xui

|

Sp. nov

|

Valid

|

Lü & Ma

|

Devonian (late Frasnian)

|

|

{{Flag|China}}

|

A member of Pentamerida.

|

Hesperorthis leinsterensis

|

Sp. nov

|

Valid

|

Liljeroth et al.

|

Ordovician

|

Dunabrattin Limestone Formation

Tramore Limestone Formation

|

{{Flag|Ireland}}

|

A member of Orthida belonging to the family Hesperorthidae.

|

Hexigtenichonetes{{cite book |author1=Shuzhong Shen |author2=Yugan Jin |author3=Yan Zhang |author4=Elizabeth A. Weldon |year=2017 |chapter=Permian brachiopod genera on type species of China |editor1=Jiayu Rong |editor2=Yugan Jin |editor3=Shuzhong Shen |editor4=Renbin Zhan |title=Phanerozoic brachiopod genera of China |publisher=Beijing: Science Press |pages=651–881 |chapter-url=https://www.researchgate.net/publication/321962248 }}

|

Gen. et comb. nov

|

Valid

|

Shen in Shen et al.

|

Permian (Guadalupian)

|

Miaoling Formation

|

{{Flag|China}}

|

A member of Productida belonging to the family Rugosochonetidae. The type species is "Hemichonetes" hemipleura Li & Su in Li et al. (1980); genus also includes "Hemichonetes guangxingensis Li & Su in Li et al. (1980), "Hemichonetes subquadrata Li & Su in Li et al. (1980) and "Hemichonetes yanjiensis Li & Su in Li et al. (1980).

|

Hibernobonites

|

Gen. et comb. nov

|

Valid

|

Liljeroth et al.

|

Ordovician

|

Dunabrattin Limestone Formation

Tramore Limestone Formation

Tourmakeady Limestone Formation?

|

{{Flag|Ireland}}

|

A member of Pentamerida belonging to the family Porambonitidae. The type species is "Atrypa" filosa M'Coy (1846); genus might also include "Porambonites" dubius Williams & Curry (1985).

|

Howellites hibernicus

|

Sp. nov

|

Valid

|

Liljeroth et al.

|

Ordovician

|

Dunabrattin Limestone Formation

Tramore Limestone Formation

|

{{Flag|Ireland}}

|

A member of Orthida belonging to the family Dalmanellidae.

|

Isophragma parallelum

|

Sp. nov

|

Valid

|

Liljeroth et al.

|

Ordovician

|

Dunabrattin Limestone Formation

Tramore Limestone Formation

|

{{Flag|Ireland}}

|

A member of Strophomenida belonging to the family Plectambonitidae.

|

Joania ukrainica

|

Sp. nov

|

Valid

|

Bitner & Müller

|

Eocene (Priabonian)

|

|

{{Flag|Ukraine}}

|

A member of Terebratulida belonging to the family Megathyrididae.

|

Karadagithyris boullierae{{Cite journal|author1=Adam T. Halamski |author2=Amine Cherif |year=2017 |title=Oxfordian brachiopods from the Saïda and Frenda mountains (Tlemcenian Domain, north-western Algeria) |journal=Annales Societatis Geologorum Poloniae |volume=87 |issue=2 |pages=141–156 |doi=10.14241/asgp.2017.006 |doi-access=free }}

|

Sp. nov

|

Valid

|

Halamski & Cherif

|

Late Jurassic (Oxfordian)

|

Argiles de Saïda Formation

|

{{Flag|Algeria}}

|

A member of Terebratulida belonging to the family Muirwoodellidae.

|

Karlsorus{{Cite journal|author1=Jisuo Jin |author2=Lars E. Holmer |year=2017 |title=Pentameroid brachiopod Karlsorus new genus from the upper Wenlock (Silurian) Slite Beds, Gotland, Sweden |journal=Journal of Paleontology |volume=91 |issue=5 |pages=911–918 |doi=10.1017/jpa.2017.46 |bibcode=2017JPal...91..911J |s2cid=134495311 |doi-access=free }}

|

Gen. et comb. nov

|

Valid

|

Jin & Holmer

|

Silurian (Wenlock)

|

|

{{Flag|Sweden}}

|

A new genus for "Pentamerus" gothlandicus Lebedev (1892).

|

Koninckodonta sumuntanensis

|

Sp. nov

|

Valid

|

Baeza-Carratalá, Reolid & García Joral

|

Early Jurassic (late Pliensbachian–early Toarcian)

|

Zegrí Formation

|

{{Flag|Spain}}

|

A member of Athyridida belonging to the family Koninckinidae.

|

Kurtothyris

|

Nom. nov

|

Valid

|

Shen in Shen et al.

|

Permian (late Cisuralian)

|

Chihsia Formation

|

{{Flag|China}}

|

A member of Spiriferida belonging to the family Skelidorygmidae; a replacement name for Litothyris Chang (1987). The type species is "Litothyris" anhuiensis Chang (1987).

|

Kyrshabaktella diabola

|

Sp. nov

|

Valid

|

Skovsted et al.

|

Cambrian Stage 4

|

Forteau Formation

|

{{flag|Canada}}
({{flag|Newfoundland and Labrador}})

|

A member of Linguloidea belonging to the family Kyrshabaktellidae.

|

Lacunites ivantsovi

|

Sp. nov

|

Valid

|

Holmer et al.

|

Ordovician (early Darriwilian)

|

|

{{Flag|Russia}}

|

A paterinid brachiopod.

|

Lamellaerhynchia carronensis

|

Sp. nov

|

Valid

|

Gaspard

|

Early Cretaceous (Albian)

|

|

{{Flag|France}}

|

A member of Rhynchonellida belonging to the family Cyclothyrididae.

|

Leptagonia franca{{Cite journal|author1=Bernard Mottequin |author2=Eric Simon |year=2017 |title=New insights on Tournaisian–Visean (Carboniferous, Mississippian) athyridide, orthotetide, rhynchonellide, and strophomenide brachiopods from southern Belgium |journal=Palaeontologia Electronica |volume=20 |issue=2 |pages=Article number 20.2.28A |doi=10.26879/758 |doi-access=free }}

|

Sp. nov

|

Valid

|

Mottequin & Simon

|

Carboniferous (Tournaisian)

|

Tournai Formation

|

{{Flag|Belgium}}

|

A member of Strophomenoidea belonging to the family Rafinesquinidae.

|

Levipugnax? liui

|

Sp. nov

|

Valid

|

Lü & Ma

|

Devonian (late Frasnian)

|

|

{{Flag|China}}

|

A member of Rhynchonellida.

|

Liaotarimella

|

Nom. nov

|

Valid

|

Shen in Shen et al.

|

Permian (Artinskian)

|

Wutankule Formation

|

{{Flag|China}}

|

A member of Productida belonging to the family Productellidae. A replacement name for Tarimella Chen (2004). The type species is "Tarimella" tarimensis Chen (2004).

|

Lichuanorelloides{{Cite journal|author1=Fengyu Wang |author2=Jing Chen |author3=Xu Dai |author4=Haijun Song |year=2017 |title=A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian–Triassic extinction |journal=Papers in Palaeontology |volume=3 |issue=3 |pages=425–439 |doi=10.1002/spp2.1083 |bibcode=2017PPal....3..425W |s2cid=134867277 }}

|

Gen. et sp. nov

|

Valid

|

Wang et al.

|

Early Triassic

|

|

{{Flag|China}}

|

Genus includes new species L. lichuanensis.

|

Meristella? aksuensis{{Cite journal|author1=Tatiana L. Modzalevskaya |author2=Leonid E. Popov |author3=Mansoureh Ghobadi Pour |author4=Michail S. Dufour |year=2017 |title=First report on the Early Devonian (Lochkovian) brachiopods from eastern Central Pamirs, Tajikistan |journal=Journal of Asian Earth Sciences |volume=138 |pages=427–438 |doi=10.1016/j.jseaes.2017.02.030 |bibcode=2017JAESc.138..427M }}

|

Sp. nov

|

Valid

|

Modzalevskaya et al.

|

Devonian (Lochkovian)

|

|

{{Flag|Tajikistan}}

|

|

Nisusia guizhouensis{{Cite journal|author1=Yong-Qin Mao |author2=Yuan-Long Zhao |author3=Cheng-Wen Wang |author4=Timothy Topper |year=2017 |title=A fresh look at Nisusia Walcott, 1905 from the Cambrian Kaili Formation in Guizhou |journal=Palaeoworld |volume=26 |issue=1 |pages=12–24 |doi=10.1016/j.palwor.2016.03.001 }}

|

Sp. nov

|

Valid

|

Mao et al.

|

Cambrian

|

Kaili Formation

Qingxudong Formation

|

{{Flag|China}}

|

A brachiopod belonging to the subphylum Rhynchonelliformea, order Kutorginida and the family Nisusiidae.

|

Nucleospira hannoniae

|

Nom. nov

|

Valid

|

Mottequin & Simon

|

Carboniferous (Tournaisian)

|

Tournai Formation

|

{{Flag|Belgium}}

|

A member of Athyridida belonging to the family Nucleospiridae; a replacement name for Athyris globulina de Koninck (1887).

|

Onniella variabilis{{Cite journal|author1=David A.T. Harper |author2=Matthew A. Parkes |author3=Zhan Ren-Bin |year=2017 |title=Late Ordovician deep-water brachiopod fauna from Raheen, Waterford Harbour, Ireland |journal=Irish Journal of Earth Sciences |volume=35 |pages=1–18 |doi=10.3318/ijes.2017.35.1 |s2cid=134598008 |url=http://dro.dur.ac.uk/22092/1/22092.pdf }}

|

Sp. nov

|

Valid

|

Harper, Parkes & Zhan

|

Ordovician (Katian)

|

Raheen Formation

|

{{Flag|Ireland}}

|

A dalmanelloid brachiopod belonging to the family Dalmanellidae.

|

Ouraniorhynchus

|

Gen. et sp. nov

|

Valid

|

Modzalevskaya et al.

|

Devonian (Lochkovian)

|

|

{{Flag|Tajikistan}}

|

A brachiopod. Genus includes new species O. dronovi.

|

Permocryptospirifer

|

Gen. et comb. nov

|

Valid

|

Shen & Grunt in Shen et al.

|

Permian (late Cisuralian and Guadalupian)

|

Chihsia Formation

Maokou Formation

Shazipo Formation

|

{{Flag|China}}

|

A member of Athyridida belonging to the family Athyrididae. The type species is "Cryptospirifer" omeishanensis Huang (1933); genus also includes "Cryptospirifer" minor Yang (1984) and "Cryptospirifer" shawanensis Jin et al. (1974).

|

Piarorhynchella tazawai

|

Sp. nov

|

Valid

|

Popov & Zakharov

|

Early Triassic (Olenekian)

|

|

{{Flag|Russia}}
({{Flag|Primorsky Krai}})

|

A member of Rhynchonellida.

|

Platystrophia tramorensis

|

Sp. nov

|

Valid

|

Liljeroth et al.

|

Ordovician

|

Tramore Limestone Formation

|

{{Flag|Ireland}}

|

A member of Orthida belonging to the family Platystrophiidae.

|

Pustulobolus

|

Gen. et sp. nov

|

Valid

|

Skovsted et al.

|

Cambrian Stage 3-4

|

Forteau Formation

|

{{flag|Canada}}
({{flag|Newfoundland and Labrador}})

|

A member of Linguloidea belonging to the family Eoobolidae. The type species is P. triangulus.

|

Qidongia{{Cite journal|author1=Dan Lü |author2=Xue-Ping Ma |year=2017 |title=Small-sized brachiopods from the Upper Frasnian (Devonian) of central Hunan, China |journal=Palaeoworld |volume=26 |issue=3 |pages=456–478 |doi=10.1016/j.palwor.2017.01.005 }}

|

Gen. et sp. nov

|

Valid

|

Lü & Ma

|

Devonian (late Frasnian)

|

|

{{Flag|China}}

|

A member of Terebratulida. The type species is Q. tani.

|

Rhipidomella discreta{{Cite journal|author1=G.A. Cisterna |author2=A.F. Sterren |author3=O. López Gamundí |author4=M.M. Vergel |year=2017 |title=Carboniferous postglacial faunas in the late Serpukhovian–Bashkirian interval of central-western Argentina |journal=Alcheringa: An Australasian Journal of Palaeontology |volume=41 |issue=3 |pages=413–431 |doi=10.1080/03115518.2017.1299795 |bibcode=2017Alch...41..413C |s2cid=133077581 |hdl=11336/44723 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Cisterna et al.

|

Carboniferous (late SerpukhovianBashkirian)

|

El Paso Formation

|

{{Flag|Argentina}}

|

A brachiopod belonging to the group Orthida and the family Rhipidomellidae.

|

Rioultina zalasensis{{Cite journal|author=Urszula Radwańska |year=2017 |title=Selected Oxfordian brachiopods from Zalas (Cracow Upland, Poland) |journal=Acta Geologica Polonica |volume=67 |issue=3 |pages=423–430 |doi=10.1515/agp-2017-0021|bibcode=2017AcGeP..67..433R |doi-access=free }}

|

Sp. nov

|

Valid

|

Radwańska

|

Late Jurassic (Oxfordian)

|

|

{{Flag|Poland}}

|

A member of Thecideida belonging to the family Thecidellinidae.

|

Sericoidea hibernica

|

Sp. nov

|

Valid

|

Harper, Parkes & Zhan

|

Ordovician (Katian)

|

Raheen Formation

|

{{Flag|Ireland}}

|

A plectambonitoid brachiopod belonging to the family Sowerbyellidae.

|

Serratocrista scaldisensis

|

Sp. nov

|

Valid

|

Mottequin & Simon

|

Carboniferous (Tournaisian)

|

Tournai Formation

|

{{Flag|Belgium}}

|

A member of Orthotetida belonging to the family Schuchertellidae.

|

Simehorthis{{Cite journal|author1=Mohammad-Reza Kebria-Ee Zadeh |author2=Leonid E. Popov |author3=Mansoureh Ghobadi Pour |year=2017 |title=A new orthide brachiopod genus from the Middle Ordovician of the Alborz Mountains, Iran |journal=GFF |volume=139 |issue=4 |pages=327–332 |doi=10.1080/11035897.2017.1347197 |bibcode=2017GFF...139..327K |s2cid=135028500 }}

|

Gen. et sp. nov

|

Valid

|

Kebria-Ee Zadeh, Popov & Ghobadi Pour

|

Ordovician (Darriwilian)

|

Lashkarak Formation

|

{{Flag|Iran}}

|

A member of Orthida belonging to the family Hesperorthidae. Genus includes new species S. fascicostellata.

|

Somalithyris lakhaparensis{{cite journal |author1=Debahuti Mukherjee |author2=Sabyasachi Shome |year=2017 |title=Tithonian brachiopods from the Kachchh and Jaisalmer basins, India |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=285 |issue=2 |pages=187–199 |doi=10.1127/njgpa/2017/0676 }}

|

Sp. nov

|

Valid

|

Mukherjee & Shome

|

Late Jurassic (Tithonian)

|

|

{{Flag|India}}

|

|

Starnikoviella

|

Gen. et sp. nov

|

Valid

|

Baranov

|

Ordovician

|

|

{{Flag|Russia}}

|

The type species is S. settedabanica.

|

Tectogonotoechia rivasi{{cite journal |author1=Jenaro L. García-Alcalde |author2=Zarela Herrera |year=2017 |title=Tectogonotoechia rivasi n. sp. A new lower Pragian Celtiberian (Spain) Ancystrorhynchoidea rhynchonellid brachiopod |journal=Spanish Journal of Palaeontology |volume=32 |issue=1 |pages=115–128 |url=http://sepaleontologia.es/revista/anteriores/SJP%20(2017)%20vol.%2032/vol.1/10%20Garci%c3%8c%3fa-Alcalde%20&%20Herrera%20web.pdf }}

|

Sp. nov

|

Valid

|

García-Alcalde & Herrera

|

Devonian (Pragian)

|

Nogueras Formation

|

{{Flag|Spain}}

|

A member of Rhynchonellida belonging to the superfamily Ancistrorhynchoidea and the family Iberirhynchiidae.

|

Thomasaria? baii

|

Sp. nov

|

Valid

|

Lü & Ma

|

Devonian (late Frasnian)

|

|

{{Flag|China}}

|

A member of Spiriferida.

|

Thomasaria? liangi

|

Sp. nov

|

Valid

|

Lü & Ma

|

Devonian (late Frasnian)

|

|

{{Flag|China}}

|

A member of Spiriferida.

|

Tunethyris blodgetti{{Cite journal|author=Howard R. Feldman |year=2017 |title=Tunethyris blodgetti sp. nov. (Brachiopoda, Terebratulida) from the Middle Triassic of the Makhtesh Ramon, southern Israel |journal=Annales Societatis Geologorum Poloniae |volume=87 |issue=1 |pages=89–99 |doi=10.14241/asgp.2017.004|url=https://geojournals.pgi.gov.pl/asgp/article/view/25788 |doi-access=free }}

|

Sp. nov

|

Valid

|

Feldman

|

Middle Triassic

|

Saharonim Formation

|

{{Flag|Israel}}

|

A member of Terebratulida belonging to the family Dielasmatidae.

|

Westonia mardini{{Cite journal|author1=M. Mergl |author2=İ. Hoşgör |author3=I. O. Yilmaz |author4=S. Zamora |author5=J. Colmenar |year=2017 |title=Divaricate patterns in Cambro-Ordovician obolid brachiopods from Gondwana |journal=Historical Biology: An International Journal of Paleobiology |volume=30 |issue=7 |pages=1015–1029 |doi=10.1080/08912963.2017.1327531 |s2cid=134763114 }}

|

Sp. nov

|

Valid

|

Mergl et al.

|

Cambrian (Furongian)

|

Sosink Formation

|

{{Flag|Turkey}}

|

|

Xiangia

|

Gen. et sp. nov

|

Junior homonym

|

Lü & Ma

|

Devonian (late Frasnian)

|

|

{{Flag|China}}

|

A member of Spiriferida. The type species is X. liaoi. The generic name is preoccupied by Xiangia Peng (1987).

|

Zhanorthis

|

Gen. et sp. nov

|

Valid

|

Popov & Cocks

|

Ordovician (Dapingian)

|

|

{{Flag|Iran}}

|

An orthoid brachiopod. Genus includes new species Z. gerdkuhensis.

|

Ziyunospirifer{{cite book |author1=Shuzhong Shen |author2=Li Qiao |author3=Yan Zhang |author4=Yuanlin Sun |author5=Yugan Jin |year=2017 |chapter=Carboniferous brachiopod genera on type species of China |editor1=Jiayu Rong |editor2=Yugan Jin |editor3=Shuzhong Shen |editor4=Renbin Zhan |title=Phanerozoic brachiopod genera of China |publisher=Beijing: Science Press |pages=559–649 |chapter-url=https://www.researchgate.net/publication/321962196 }}

|

Nom. nov

|

Valid

|

Shen in Shen et al.

|

Early Carboniferous

|

Zhaojiashan Formation

|

{{Flag|China}}

|

A member of Spiriferida belonging to the family Choristitidae; a replacement name for Quizhouspirifer Xian (1982). The type species is "Quizhouspirifer" ziyunensis Xian (1982).

|

Molluscs

{{Main|2017 in paleomalacology}}

Echinoderms

=Research=

  • Systematic revision of the North American members of the diploporitan family Holocystitidae is published by Sheffield & Sumrall (2017).{{cite journal |author1=Sarah L. Sheffield |author2=Colin D. Sumrall |year=2017 |title=Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology |journal=Journal of Paleontology |volume=91 |issue=4 |pages=755–766 |doi=10.1017/jpa.2016.159 |bibcode=2017JPal...91..755S |s2cid=133298313 |doi-access=free }}
  • Triassic members of the otherwise Paleozoic groups of sea urchins (the family Proterocidaridae), brittle stars (the family Eospondylidae) and starfish are reported by Thuy, Hagdorn & Gale (2017).{{cite journal |author1=Ben Thuy |author2=Hans Hagdorn |author3=Andy S. Gale |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic |journal=Geology |volume=45 |issue=6 |pages=531–534 |doi=10.1130/G38909.1 |bibcode=2017Geo....45..531T |doi-access=free }}{{cite journal |author=Daniel B. Blake |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT |journal=Geology |volume=45 |issue=7 |pages=e417 |doi=10.1130/G39163C.1 |bibcode=2017Geo....45E.417B |doi-access=free }}{{cite journal |author1=Ben Thuy |author2=Hans Hagdorn |author3=Andy S. Gale |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY |journal=Geology |volume=45 |issue=7 |pages=e418 |doi=10.1130/G39210Y.1 |bibcode=2017Geo....45E.418T |doi-access=free }}{{cite journal |author1=Mariusz A. Salamon |author2=Przemysław Gorzelak |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT |journal=Geology |volume=45 |issue=7 |pages=e419 |doi=10.1130/G39196C.1 |bibcode=2017Geo....45E.419S |doi-access=free }}{{cite journal |author=Ben Thuy |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY |journal=Geology |volume=45 |issue=7 |pages=e420 |doi=10.1130/G39221Y.1 |bibcode=2017Geo....45E.420T |doi-access=free }}{{cite journal |author1=Aaron W. Hunter |author2=Kenneth J. McNamara |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: COMMENT |journal=Geology |volume=45 |issue=11 |pages=e431 |doi=10.1130/G39575C.1 |bibcode=2017Geo....45E.431H |doi-access=free }}{{cite journal |author1=Ben Thuy |author2=Hans H. Hagdorn |author3=Andy S. Gale |year=2017 |title=Paleozoic echinoderm hangovers: Waking up in the Triassic: REPLY |journal=Geology |volume=45 |issue=11 |pages=e432 |doi=10.1130/G39684Y.1 |bibcode=2017Geo....45E.432T |doi-access=free }}
  • Phylogenetic analysis and systematic revision of early to middle Paleozoic non-camerate crinoids published by Wright (2017).{{cite journal |author=David F. Wright | year=2017 |title= Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata) |journal=Journal of Paleontology |volume=91 |issue=4 |pages=799–814 |doi=10.1017/jpa.2016.141| bibcode=2017JPal...91..799W | s2cid=5018503 |doi-access=free }}
  • Systematic revision of Ordovician camerate crinoids published by Cole (2017).{{cite journal |author=Selina R. Cole | year=2017 |title= Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata) |journal=Journal of Paleontology |volume=91 |issue=4 |pages=815–828 |doi=10.1017/jpa.2016.137| bibcode=2017JPal...91..815C | s2cid=90459044 |doi-access=free }}
  • Major revision to the classification of fossil and extant Crinoidea by Wright et al. (2017), including the presentation of new phylogeny-based and rank-based classifications.{{cite journal |author1=David F. Wright |author2=William I. Ausich |author3=Selina R. Cole |author4=Mark E. Peter |author5=Elizabeth C. Rhenberg | year=2017 |title= Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata) |journal=Journal of Paleontology |volume=91 |issue=4 |pages=829–846 |doi=10.1017/jpa.2016.142|bibcode=2017JPal...91..829W |s2cid=13806992 |doi-access=free }}
  • A study on large-scale patterns of morphologic evolution in the Paleozoic radiation of eucladid crinoids is published by Wright (2017).{{cite journal |author=David F. Wright |year=2017 |title=Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 13745 |doi=10.1038/s41598-017-13979-9 |pmid=29062117 |pmc=5653864 |bibcode=2017NatSR...713745W }}
  • A study on the internal morphology of the water vascular system in a specimen of a stem-ophiuroid species Protasterina flexuosa from the Ordovician (Katian) Kope Formation (Kentucky, United States) is published by Clark et al. (2017).{{cite journal |author1=Elizabeth G. Clark |author2=Bhart-Anjan S. Bhullar |author3=Simon A. F. Darroch |author4=Derek E. G. Briggs |year=2017 |title=Water vascular system architecture in an Ordovician ophiuroid |journal=Biology Letters |volume=13 |issue=12 |pages=20170635 |doi=10.1098/rsbl.2017.0635 |pmid=29212753 |pmc=5746540 }}
  • A study on the paleoecology of the echinoderm species known from the upper Campanian Pierre Shale (including the crinoid Lakotacrinus brezinai), especially on their adaptations to the cold seep environment, is published by Kato, Oji & Shirai (2017).{{cite journal |author1=Moe Kato |author2=Tatsuo Oji |author3=Kotaro Shirai |year=2017 |title=Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway |journal=PALAIOS |volume=32 |issue=4 |pages=218–230 |doi=10.2110/palo.2016.079 |url=https://www.researchgate.net/publication/315991440 |bibcode=2017Palai..32..218K |s2cid=131975877 }}{{cite journal |author1=Aaron W. Hunter |author2=Neal L. Larson |author3=Jamie Brezina |year=2018 |title=Comment to Kato et al. (2017), "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway" |journal=PALAIOS |volume=33 |issue=6 |pages=282–283 |doi=10.2110/palo.2017.071 |bibcode=2018Palai..33..282H |s2cid=133937083 }}{{cite journal |author1=Moe Kato |author2=Tatsuo Oji |author3=Kotaro Shirai |year=2018 |title=Reply to comment on Kato et al. (2017) "Paleoecology of echinoderms in cold seep environments revealed by isotope analysis in the Late Cretaceous Western Interior Seaway" |journal=PALAIOS |volume=33 |issue=6 |pages=284–285 |doi=10.2110/palo.2018.028 |bibcode=2018Palai..33..284K |s2cid=134000894 }}

=New taxa=

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Amblypygus matruhensis{{cite journal |author=Mohamed Said M. Ali |year=2017 |title=First Record of a New Species of Amblypygus (Echinoidea) from the Middle Miocene of Mersa Matruh, Western Desert, Egypt |journal=Paleontological Research |volume=21 |issue=1 |pages=44–53 |doi=10.2517/2016PR016 |s2cid=132772107 }}

|

Sp. nov

|

Valid

|

Ali

|

Middle Miocene

|

|

{{Flag|Egypt}}

|

A sea urchin.

|

Ambonacrinus{{cite journal |author1=Selina R. Cole |author2=William I. Ausich |author3=Jorge Colmenar |author4=Samuel Zamora |year=2017 |title=Filling the Gondwanan gap: paleobiogeographic implications of new crinoids from the Castillejo and Fombuena formations (Middle and Upper Ordovician, Iberian Chains, Spain) |journal=Journal of Paleontology |volume=91 |issue=4 |pages=715–734 |doi=10.1017/jpa.2016.135 |bibcode=2017JPal...91..715C |s2cid=132280262 |doi-access=free |hdl=20.500.12468/565 |hdl-access=free }}

|

Gen. et sp. nov

|

Valid

|

Cole et al.

|

Ordovician (Katian)

|

Fombuena Formation

|

{{Flag|Spain}}

|

A diplobathrid camerate crinoid. Genus includes new species A. decorus.

|

Andymetra toarcensis{{cite journal |author1=Hans Hess |author2=Ben Thuy |year=2017 |title=Extraordinary diversity of feather stars (Echinodermata: Crinoidea: Comatulida) from a Lower Jurassic (Pliensbachian–Toarcian) rock reef of Feuguerolles (Normandy, France) |journal=Swiss Journal of Palaeontology |volume=136 |issue=2 |pages=301–321 |doi=10.1007/s13358-016-0122-5 |bibcode=2017SwJP..136..301H |s2cid=132449128 }}

|

Sp. nov

|

Valid

|

Hess & Thuy

|

Early Jurassic

|

|

{{Flag|France}}

|

A comatulid crinoid.

|

Anthroosasterias{{Cite journal|author=Daniel B. Blake |year=2017 |title=Two new Carboniferous Asteroidea (Echinodermata) of the family Urasterellidae |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=284 |issue=1 |pages=65–73 |doi=10.1127/njgpa/2017/0652 }}

|

Gen. et sp. nov

|

Valid

|

Blake

|

Carboniferous

|

Gilmore City Formation

|

{{flag|United States}}
({{Flag|Iowa}})

|

A starfish belonging to the family Urasterellidae. Genus includes new species A. mikrotero.

|

Antillaster farisi{{cite journal |author=Mohamed Said M. Ali |year=2017 |title=Middle Eocene echinoids from Gebel Qarara, Maghagh, Eastern Desert, Egypt |journal=Journal of African Earth Sciences |volume=133 |pages=46–73 |doi=10.1016/j.jafrearsci.2017.04.031 |bibcode=2017JAfES.133...46A }}

|

Sp. nov

|

Valid

|

Ali

|

Middle Eocene

|

|

{{Flag|Egypt}}

|

A sea urchin.

|

Aspidophiura? seren{{cite journal |author1=Timothy A.M. Ewin |author2=Ben Thuy |year=2017 |title=Brittle stars from the British Oxford Clay: unexpected ophiuroid diversity on Jurassic sublittoral mud bottoms |journal=Journal of Paleontology |volume=91 |issue=4 |pages=781–798 |doi=10.1017/jpa.2016.162 |bibcode=2017JPal...91..781E |s2cid=132581349 |doi-access=free }}

|

Sp. nov

|

Valid

|

Ewin & Thuy

|

Jurassic

|

Oxford Clay Formation

|

{{Flag|United Kingdom}}

|

A brittle star.

|

Ateleocystites? lansae{{cite journal |author1=Patrick D. McDermott |author2=Christopher R. C. Paul |year=2017 |title=Ateleocystites? lansae sp. nov. (Mitrata, Anomalocystitidae) from the Upper Ordovician of South Wales |journal=Geological Journal |volume=52 |issue=1 |pages=1–13 |doi=10.1002/gj.2712 |bibcode=2017GeolJ..52....1M |s2cid=140153267 }}

|

Sp. nov

|

Valid

|

McDermott & Paul

|

Ordovician (Katian)

|

Slade and Redhill Beds

|

{{Flag|United Kingdom}}

|

A mitrate belonging to the family Anomalocystitidae, possibly a species of Ateleocystites.

|

Brissus mihalyi{{Cite journal|author1=Bálint Polonkai |author2=Andreas Kroh |author3=Ágnes Görög |author4=Ildikó Selmeczi |author5=Mihály Dunai |author6=Emese Réka Bodor |year=2017 |title=First occurrence of echinoid genus Brissus in the Badenian (Middle Miocene) of Hungary and description of Brissus mihalyi n. sp |journal=Földtani Közlöny |volume=147 |issue=4 |pages=383–398 |doi=10.23928/foldt.kozl.2017.147.4.383 |doi-access=free }}

|

Sp. nov.

|

Valid

|

Polonkai et al.

|

Middle Miocene

|

Leitha Limestone Formation

|

{{Flag|Hungary}}

|

A heart urchin belonging to the family Brissidae.

|

Crepidosoma doylei{{Cite journal|author1=Daniel B. Blake |author2=Stephen K. Donovan |author3=David A.T. Harper |year=2017 |title=A new Silurian ophiuroid from the west of Ireland |journal=Irish Journal of Earth Sciences |volume=35 |pages=57–66 |doi=10.3318/ijes.2017.35.57 |s2cid=134782375 |url=http://dro.dur.ac.uk/23585/1/23585.pdf }}

|

Sp. nov

|

Valid

|

Blake, Donovan & Harper

|

Silurian (Telychian)

|

Kilbride Formation

|

{{Flag|Ireland}}

|

A brittle star belonging to the group Oegophiurida and the family Encrinasteridae.

|

Dalicrinus

|

Gen. et sp. nov

|

Valid

|

Cole et al.

|

Ordovician (Katian)

|

Fombuena Formation

|

{{Flag|Spain}}

|

A diplobathrid camerate crinoid. Genus includes new species D. hammanni.

|

Diplodetus brisenoi{{cite journal |author1=Luis E. Silva-Martínez |author2=Alberto Blanco-Piñón |author3=Jesús A. de León-González |author4=Hidalgo Rodríguez-Vela |year=2017 |title=New Echinoid (Spatangoida: Toxasterinidae) from the Campanian of Coahuila, Northeastern Mexico |journal=Boletín de la Sociedad Geológica Mexicana |volume=69 |issue=2 |pages=371–384 |url=http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/353-sitio/articulos/cuarta-epoca/6902/1747-6902-4-silva |doi=10.18268/BSGM2017v69n2a4 |doi-access=free }}

|

Sp. nov

|

Valid

|

Silva-Martínez et al.

|

Late Cretaceous (early Campanian)

|

Austin Formation

|

{{Flag|Mexico}}

|

A heart urchin belonging to the family Brissidae.

|

Echinocyamus belali

|

Sp. nov

|

Valid

|

Ali

|

Middle Eocene

|

|

{{Flag|Egypt}}

|

A sea urchin.

|

Enakomusium whymanae

|

Sp. nov

|

Valid

|

Ewin & Thuy

|

Jurassic

|

Oxford Clay Formation

|

{{Flag|United Kingdom}}

|

A brittle star.

|

Eopatelliocrinus hispaniensis

|

Sp. nov

|

Valid

|

Cole et al.

|

Ordovician (Katian)

|

Fombuena Formation

|

{{Flag|Spain}}

|

A monobathrid camerate crinoid.

|

Eotiaris guadalupensis{{cite journal |author1=Jeffrey R. Thompson |author2=Elizabeth Petsios |author3=David J. Bottjer |year=2017 |title=A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids |journal=Journal of Paleontology |volume=91 |issue=4 |pages=767–780 |doi=10.1017/jpa.2016.158 |bibcode=2017JPal...91..767T |s2cid=29250459 |doi-access=free }}

|

Sp. nov

|

Valid

|

Thompson in Thompson, Petsios & Bottjer

|

Permian (Capitanian)

|

Bell Canyon Formation

|

{{Flag|United States}}
({{Flag|Texas}})

|

A sea urchin. The name first appeared in the publication of Thompson et al. (2015);{{cite journal |author1=Jeffrey R. Thompson |author2=Elizabeth Petsios |author3=Eric H. Davidson |author4=Eric M. Erkenbrack |author5=Feng Gao |author6=David J. Bottjer |year=2015 |title=Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid |journal=Scientific Reports |volume=5 |pages=Article number 15541 |doi=10.1038/srep15541 |pmid=26486232 |pmc=4614444|bibcode=2015NatSR...515541T }} however, it was published in an online only journal Scientific Reports and it was not registered with ZooBank, making it invalid until it was validated by Thompson, Petsios & Bottjer (2017).

|

Felbabkacystis{{cite journal |author1=Elise Nardin |author2=Bertrand Lefebvre |author3=Oldřich Fatka |author4=Martina Nohejlová |author5=Libor Kašička |author6=Miroslav Šinágl |author7=Michal Szabad |year=2017 |title=Evolutionary implications of a new transitional blastozoan echinoderm from the middle Cambrian of the Czech Republic |journal=Journal of Paleontology |volume=91 |issue=4 |pages=672–684 |doi=10.1017/jpa.2016.157 |bibcode=2017JPal...91..672N |s2cid=132699375 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Nardin et al.

|

Cambrian (Drumian)

|

Jince Formation

|

{{Flag|Czech Republic}}

|

A transitional form between calyx-bearing and theca-bearing blastozoans. Genus includes new species F. luckae.

|

Fombuenacrinus

|

Gen. et sp. nov

|

Valid

|

Cole et al.

|

Ordovician (Katian)

|

Fombuena Formation

|

{{Flag|Spain}}

|

A diplobathrid camerate crinoid. Genus includes new species F. nodulus.

|

Forcipicrinus

|

Gen. et sp. nov

|

Valid

|

Hess & Thuy

|

Early Jurassic

|

|

{{Flag|France}}

|

An isocrinid crinoid. Genus includes new species F. normannicus.

|

Globator roselli{{cite journal |author=José Francisco Carrasco |year=2017 |title=Primera cita del género Globator (Echinoidea, Eoceno) en España. Nueva especie |journal=Batalleria |volume=25 |pages=8–12 |url=http://mgsb.es/publications/index_archivos/Globator.pdf }}

|

Sp. nov

|

Valid

|

Carrasco

|

Eocene

|

|

{{Flag|Spain}}

|

A sea urchin related to members of the genus Conulus.

|

Goniopygus emmae{{Cite journal|author=Enric Forner i Valls |year=2017 |title=Equinoïdeus nous (Echinodermata: Echinoidea) del Campanià de Moyenne Moulouya, nord est del Marroc |journal=Nemus: Revista de l'Ateneu de Natura |volume=7 |pages=51–72 |url=https://dialnet.unirioja.es/servlet/articulo?codigo=6253780 }}

|

Sp. nov

|

Valid

|

Forner i Valls

|

Late Cretaceous (Campanian)

|

|

{{Flag|Morocco}}

|

A sea urchin belonging to the group Arbacioida and the family Acropeltidae.

|

Grigopyrgus{{cite journal |author1=Peter Müller |author2=Gerhard Hahn |year=2017 |title=Grigopyrgus n. gen., a new agelacrinitid edrioasteroid genus from the Lower Devonian of the Westerwald: (Echinodermata, Rhenish Slate Mountains, Germany) |journal=Mainzer Geowissenschaftliche Mitteilungen |volume=45 |pages=93–102 }}

|

Gen. et comb. nov

|

Valid

|

Müller & Hahn

|

Early Devonian

|

|

{{Flag|Germany}}

|

A member of Edrioasteroidea belonging to the family Agelacrinitidae; a new genus for "Agelacrinites" curvatus Grigo (1995).

|

Goyacrinus

|

Gen. et sp. nov

|

Valid

|

Cole et al.

|

Ordovician (Katian)

|

Fombuena Formation

|

{{Flag|Spain}}

|

A diplobathrid camerate crinoid. Genus includes new species G. gutierrezi.

|

Heropyrgus{{Cite journal|author1=Derek E. G. Briggs |author2=Derek J. Siveter |author3=David J. Siveter |author4=Mark D. Sutton |author5=Imran A. Rahman |year=2017 |title=An edrioasteroid from the Silurian Herefordshire Lagerstätte of England reveals the nature of the water vascular system in an extinct echinoderm |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1862 |pages=20171189 |doi=10.1098/rspb.2017.1189 |pmid=28904139 |pmc=5597833 |hdl=10044/1/53015 }}

|

Gen. et sp. nov

|

Valid

|

Briggs et al.

|

Silurian

|

Herefordshire Lagerstätte

|

{{Flag|United Kingdom}}

|

A rhenopyrgid edrioasteroid. The type species is H. disterminus.

|

Holocystites salmoensis{{cite journal |author1=Sarah L. Sheffield |author2=William I. Ausich |author3=Colin D. Sumrall |year=2017 |title=Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns |journal=Canadian Journal of Earth Sciences |volume=55 |issue=1 |pages=1–7 |doi=10.1139/cjes-2017-0160 |hdl=1807/80500 |url=http://osf.io/nbt58/ |doi-access=free |hdl-access=free }}

|

Sp. nov

|

Valid

|

Sheffield, Ausich & Sumrall

|

Ordovician (Hirnantian)

|

Ellis Bay Formation

|

{{Flag|Canada}}
({{Flag|Quebec}})

|

A member of Diploporita belonging to the family Holocystitidae. Subsequently transferred to the genus Brightonicystis by Paul (2025).{{Cite journal |author=Christopher R. C. Paul |title=Generic revision of holocystitid blastozoans |year=2025 |journal=Acta Palaeontologica Polonica |volume=70 |issue=1 |pages=125–141 |doi=10.4202/app.01212.2024 |doi-access=free }}

|

Metalia lindaae

|

Sp. nov

|

Valid

|

Ali

|

Middle Eocene

|

|

{{Flag|Egypt}}

|

A sea urchin.

|

Monostychia alanrixi{{Cite journal|author1=Tony Sadler |author2=Sarah K. Martin |author3=Stephen J. Gallagher |year=2017 |title=Three new species of the echinoid genus Monostychia Laube, 1869 from Western Australia |journal=Alcheringa: An Australasian Journal of Palaeontology |volume=41 |issue=4 |pages=464–473 |doi=10.1080/03115518.2017.1282979 |bibcode=2017Alch...41..464S |s2cid=90600580 }}

|

Sp. nov

|

Valid

|

Sadler, Martin & Gallagher

|

Miocene

|

Colville Sandstone

|

{{Flag|Australia}}

|

A sea urchin.

|

Monostychia macnamarai

|

Sp. nov

|

Valid

|

Sadler, Martin & Gallagher

|

Miocene

|

Colville Sandstone

|

{{Flag|Australia}}

|

A sea urchin.

|

Monostychia robertirwini

|

Sp. nov

|

Valid

|

Sadler, Martin & Gallagher

|

Miocene

|

Colville Sandstone

|

{{Flag|Australia}}

|

A sea urchin.

|

Moroccodiscus{{Cite journal|author1=Mike Reich |author2=James Sprinkle |author3=Bertrand Lefebvre |author4=Gertrud E. Rössner |author5=Samuel Zamora |year=2017 |title=The first Ordovician cyclocystoid (Echinodermata) from Gondwana and its morphology, paleoecology, taphonomy, and paleogeography |journal=Journal of Paleontology |volume=91 |issue=4 |pages=735–754 |doi=10.1017/jpa.2017.7 |bibcode=2017JPal...91..735R |s2cid=135376365 |doi-access=free |hdl=20.500.12468/709 |hdl-access=free }}

|

Gen. et sp. nov

|

Valid

|

Reich et al.

|

Ordovician (Darriwilian)

|

Taddrist Formation

|

{{Flag|Morocco}}

|

A cyclocystoid echinoderm. Genus includes new species M. smithi.

|

Oehlerticrinus peachi{{Cite journal|author1=Stephen K. Donovan |author2=Fiona E. Fearnhead |year=2017 |title=A Lower Devonian hexacrinitid crinoid (Camerata, Monobathrida) from south-west England |journal=PalZ |volume=91 |issue=2 |pages=217–222 |doi=10.1007/s12542-017-0344-x |bibcode=2017PalZ...91..217D |s2cid=134913415 }}

|

Sp. nov

|

Valid

|

Donovan & Fearnhead

|

Early Devonian

|

Looe Basin

|

{{Flag|United Kingdom}}

|

A crinoid belonging to the group Monobathrida and the family Hexacrinitidae.

|

Ophiotitanos smithi

|

Sp. nov

|

Valid

|

Ewin & Thuy

|

Jurassic

|

Oxford Clay Formation

|

{{Flag|United Kingdom}}

|

A brittle star.

|

Ova rancoca{{cite journal |author=Louis G. Zachos |year=2017 |title=Paleocene echinoid faunas of the eastern United States |journal=Journal of Paleontology |volume=91 |issue=5 |pages=1001–1024 |doi=10.1017/jpa.2017.22 |bibcode=2017JPal...91.1001Z |s2cid=134191333 |doi-access=free }}

|

Sp. nov

|

Valid

|

Zachos

|

Paleocene (Thanetian)

|

Vincentown Formation

|

{{Flag|United States}}
({{Flag|New Jersey}})

|

A sea urchin.

|

Paerticrinus{{cite journal |author1=David F. Wright |author2=Ursula Toom |year=2017 |title=New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata) |journal=Palaeontology |volume=60 |issue=6 |pages=893–910 |doi=10.1111/pala.12324 |doi-access=free |bibcode=2017Palgy..60..893W }}

|

Gen. et sp. nov

|

Valid

|

Wright & Toom

|

Silurian (Rhuddanian)

|

|

{{Flag|Estonia}}

|

A crinoid. Genus includes new species P. arvosus.

|

Palaeocomaster structus

|

Sp. nov

|

Valid

|

Hess & Thuy

|

Early Jurassic

|

|

{{Flag|France}}

|

A comatulid crinoid.

|

Persiacarpos{{Cite journal|author1=S.V. Rozhnov |author2=R.L. Parsley |year=2017 |title=A new cornute (Homalozoa: Echinodermata) from the Uppermost Middle Cambrian (Stage 3, Furongian) from northern Iran: its systematics and functional morphology |journal=Paleontological Journal |volume=51 |issue=5 |pages=500–509 |doi=10.1134/S0031030117050100 |bibcode=2017PalJ...51..500R |s2cid=133862520 |url=https://elibrary.ru/item.asp?id=29963076 }}

|

Gen. et sp. nov

|

Valid

|

Rozhnov & Parsley

|

Cambrian

|

Mila Formation

|

{{Flag|Iran}}

|

A member of Cornuta. Genus includes new species P. jefferiesi.

|

Petalobrissus ossoi

|

Sp. nov

|

Valid

|

Forner i Valls

|

Late Cretaceous (Campanian)

|

|

{{Flag|Morocco}}

|

A sea urchin belonging to the group Cassiduloida and the family Faujasidae.

|

Petalocrinus stenopetalus{{cite journal |author1=Yingyan Mao |author2=William I. Ausich |author3=Yue Li |author4=Jih-Pai Lin |author5=Caihua Lin |year=2017 |title=New taxa and phyletic evolution of the Aeronian (Llandovery, Silurian) Petalocrinidae (Echinodermata, Crinoidea) in Guizhou, South China Block |journal=Journal of Paleontology |volume=91 |issue=3 |pages=477–492 |doi=10.1017/jpa.2016.156 |bibcode=2017JPal...91..477M |s2cid=91044529 |doi-access=free }}

|

Sp. nov

|

Valid

|

Mao et al.

|

Silurian (Aeronian)

|

|

{{Flag|China}}

|

A crinoid belonging to the family Petalocrinidae.

|

Picassocrinus

|

Gen. et sp. nov

|

Valid

|

Cole et al.

|

Ordovician (Katian)

|

Fombuena Formation

|

{{Flag|Spain}}

|

A cladid crinoid. Genus includes new species P. villasi.

|

Ronsocrinus{{cite journal |author1=David R. Cordie |author2=Brian J. Witzke |year=2017 |title=A New Crinoid Genus from the Middle Devonian of Iowa, USA (Camerata, Melocrinitidae) |journal=Paleontological Research |volume=21 |issue=1 |pages=7–13 |doi=10.2517/2016PR014 |s2cid=132181687 }}

|

Gen. et sp. nov

|

Valid

|

Cordie & Witzke

|

Devonian (Givetian)

|

|

{{Flag|United States}}
({{Flag|Iowa}})

|

A camerate crinoid belonging to the family Melocrinitidae. Genus includes new species R. rabia.

|

Salenia palmyra

|

Sp. nov

|

Valid

|

Zachos

|

Paleocene (Danian)

|

Clayton Formation

|

{{Flag|United States}}
({{Flag|Alabama}}
{{Flag|Georgia (U.S. state)}})

|

A sea urchin.

|

Sanducystis{{cite journal |author1=Samuel Zamora |author2=Colin D. Sumrall |author3=Xue-Jian Zhu |author4=Bertrand Lefebvre |year=2017 |title=A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata) |journal=Geological Magazine |volume=154 |issue=3 |pages=465–475 |doi=10.1017/S001675681600011X |bibcode=2017GeoM..154..465Z |hdl=20.500.12468/771 |s2cid=131161649 |hdl-access=free }}

|

Gen. et sp. nov

|

Valid

|

Zamora et al.

|

Cambrian (Furongian)

|

Sandu Formation

|

{{Flag|China}}

|

A stemmed echinoderm. The type species is S. sinensis.

|

Singillatimetra truncata

|

Sp. nov

|

Valid

|

Hess & Thuy

|

Early Jurassic

|

|

{{Flag|France}}

|

An isocrinid crinoid.

|

Solanocrinites jagti

|

Sp. nov

|

Valid

|

Hess & Thuy

|

Early Jurassic

|

|

{{Flag|France}}

|

A comatulid crinoid.

|

Spinimetra

|

Gen. et sp. nov

|

Valid

|

Hess & Thuy

|

Early Jurassic

|

|

{{Flag|France}}

|

A comatulid crinoid. Genus includes new species S. chesnieri.

|

Spirocrinus circularis

|

Sp. nov

|

Valid

|

Mao et al.

|

Silurian (Aeronian)

|

|

{{Flag|China}}

|

A crinoid belonging to the family Petalocrinidae.

|

Spirocrinus dextrosus

|

Sp. nov

|

Valid

|

Mao et al.

|

Silurian (Aeronian)

|

|

{{Flag|China}}

|

A crinoid belonging to the family Petalocrinidae.

|

Staurasterias

|

Gen. et sp. nov

|

Valid

|

Blake

|

Carboniferous

|

Keokuk Formation

|

{{flag|United States}}
({{flag|Indiana}})

|

A starfish belonging to the family Urasterellidae. Genus includes new species S. elegans.

|

Sumrallia{{cite journal |author1=Peter Müller |author2=Gerhard Hahn |year=2017 |title=Edrioasteroidea from the Seifen Formation of the Westerwald, Rhenish Slate Mountains (Lower Devonian, Germany), part 2: Sumrallia rseiberti gen. et sp. nov |journal=PalZ |volume=91 |issue=4 |pages=629–639 |doi=10.1007/s12542-017-0356-6 |bibcode=2017PalZ...91..629M |s2cid=135233073 }}

|

Gen. et sp. nov

|

Valid

|

Müller & Hahn

|

Early Devonian

|

Seifen Formation

|

{{Flag|Germany}}

|

A member of Edrioasteroidea. Genus includes new species S. rseiberti.

|

Superstesaster{{cite journal |author1=Loïc Villier |author2=Arnaud Brayard |author3=Kevin G. Bylund |author4=James F. Jenks |author5=Gilles Escarguel |author6=Nicolas Olivier |author7=Daniel A. Stephen |author8=Emmanuelle Vennin |author9=Emmanuel Fara |year=2017 |title=Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids |journal=Journal of Systematic Palaeontology |volume=16 |issue=5 |pages=395–415 |doi=10.1080/14772019.2017.1308972 |s2cid=89854727 |url=https://hal.archives-ouvertes.fr/hal-01694010/file/Villier%20et%20al.%202018%20JSP%20HAL.pdf }}

|

Gen. et sp. nov

|

Valid

|

Villier et al.

|

Early Triassic

|

|

{{Flag|United States}}
({{Flag|Utah}})

|

A starfish. Genus includes new species S. promissor.

|

Teleosaster{{cite journal |author1=Aaron W. Hunter |author2=Kenneth J. McNamara |year=2017 |title=Prolonged co-existence of 'archaic' and 'modern' Palaeozoic ophiuroids – evidence from the early Permian, Southern Carnarvon Basin, Western Australia |journal=Journal of Systematic Palaeontology |volume=16 |issue=11 |pages=891–907 |doi=10.1080/14772019.2017.1353549|s2cid=135162886 |url=https://figshare.com/articles/journal_contribution/5303008 }}

|

Gen. et sp. nov

|

Valid

|

Hunter & McNamara

|

Permian (Kungurian)

|

Cundlego Formation

|

{{Flag|Australia}}

|

A brittle star. Genus includes new species T. creasyi.

|

Tintinnabulicrinus

|

Gen. et sp. nov

|

Valid

|

Wright & Toom

|

Ordovician (Katian)

|

|

{{Flag|Estonia}}

|

A crinoid. Genus includes new species T. estoniensis.

|

Ulphaceaster{{cite journal |author1=Didier Néraudeau |author2=Jean-Pierre Pineau |author3=Jean-Christophe Dudicourt |author4=Patrice Raboeuf |year=2017 |title=Ulphaceaster sarthacensis, nouveau genre et nouvelle espèce d'échinide Archiaciidae du Cénomanien (Sarthe, France) |journal=Annales de Paléontologie |volume=103 |issue=1 |pages=87–91 |doi=10.1016/j.annpal.2017.01.002 |bibcode=2017AnPal.103...87N }}

|

Gen. et sp. nov

|

Valid

|

Néraudeau et al.

|

Late Cretaceous (Cenomanian)

|

|

{{Flag|France}}

|

A sea urchin belonging to the family Archiaciidae. Genus includes new species U. sarthacensis.

|

Vologesia rollingstones{{cite journal |author1=Nils Schlüter |author2=Frank Wiese |year=2017 |title=Late Cretaceous species of Vologesia (Echinoidea, Cassiduloida) from northern Spain |journal=Zootaxa |volume=4306 |issue=2 |pages=261–270 |doi=10.11646/zootaxa.4306.2.6 }}

|

Sp. nov

|

Valid

|

Schlüter & Wiese

|

Late Cretaceous (early Campanian)

|

|

{{Flag|Spain}}

|

A sea urchin belonging to the family Echinolampadidae.

|

Conodonts

=Research=

  • A study on the conodont assemblage from the Silurian (Homerian) Rootsiküla Formation (Estonia), interpreted as occurring in the evaporite-bearing strata, and on the conodont diversity in various environments, is published by Jarochowska et al. (2017).{{Cite journal|author1=Emilia Jarochowska |author2=Viive Viira |author3=Rein Einasto |author4=Rafał Nawrot |author5=Oskar Bremer |author6=Peep Männik |author7=Axel Munnecke |s2cid=131974217 |year=2017 |title=Conodonts in Silurian hypersaline environments: Specialized and unexpectedly diverse |journal=Geology |volume=45 |issue=1 |pages=3–6 |doi=10.1130/G38492.1 |bibcode=2017Geo....45....3J }}
  • Articulated skeletal remains of Hindeodus parvus, providing direct evidence of the number and arrangement of elements in the apparatus, are described from the Lower Triassic of China by Zhang et al. (2017).{{Cite journal|author1=Muhui Zhang |author2=Haishui Jiang |author3=Mark A. Purnell |author4=Xulong Lai |year=2017 |title=Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons of Hindeodus |journal=Palaeontology |volume=60 |issue=4 |pages=595–608 |doi=10.1111/pala.12305 |bibcode=2017Palgy..60..595Z |doi-access=free |hdl=2381/40480 |hdl-access=free }}{{Cite journal|author1=Sachiko Agematsu |author2=Martyn L. Golding |author3=Michael J. Orchard |year=2018 |title=Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhang et al.) |journal=Palaeontology |volume=61 |issue=5 |pages=785–792 |doi=10.1111/pala.12372 |bibcode=2018Palgy..61..785A |doi-access=free }}{{Cite journal|author1=Mark A. Purnell |author2=Muhui Zhang |author3=Haishui Jiang |author4=Xulong Lai |year=2018 |title=Reconstruction, composition and homology of conodont skeletons: a response to Agematsu et al. |journal=Palaeontology |volume=61 |issue=5 |pages=793–796 |doi=10.1111/pala.12387 |bibcode=2018Palgy..61..793P |doi-access=free |hdl=2381/42406 |hdl-access=free }}

=New taxa=

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Acodus zeballus{{Cite journal|author1=Gustavo G. Voldman |author2=Guillermo L. Albanesi |author3=Gladys Ortega |author4=María Eugenia Giuliano |author5=Carlos Ruben Monaldi |year=2017 |title=New conodont taxa and biozones from the Lower Ordovician of the Cordillera Oriental, NW Argentina |journal=Geological Journal |volume=52 |issue=3 |pages=394–414 |doi=10.1002/gj.2766 |bibcode=2017GeolJ..52..394V |s2cid=131460368 |hdl=11336/44167 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Voldman & Albanesi in Voldman et al.

|

Early Ordovician

|

|

{{Flag|Argentina}}

|

|

Aldridgeognathus{{Cite journal|author1=C. Giles Miller |author2=Alan P. Heward |author3=Angelo Mossoni |author4=Ivan J. Sansom |year=2017 |title=Two new early balognathid conodont genera from the Ordovician of Oman and comments on the early evolution of prioniodontid conodonts |journal=Journal of Systematic Palaeontology |volume=16 |issue=7 |pages=571–593 |doi=10.1080/14772019.2017.1314985 |s2cid=134576678 |url=http://pure-oai.bham.ac.uk/ws/files/41270615/Miller_etal_2017_two_new_balognathids_Ord_Oman_Amdeh5.pdf }}

|

Gen. et sp. nov

|

Valid

|

Miller et al.

|

Ordovician (Darriwilian)

|

Amdeh Formation

|

{{Flag|Oman}}

|

A member of Balognathidae. Genus includes new species A. manniki.

|

Bispathodus ultimus corradinii{{Cite journal|author1=Till Söte |author2=Sven Hartenfels |author3=Ralph Thomas Becker |year=2017 |title=Uppermost Famennian stratigraphy and facies development of the Reigern Quarry near Hachen (northern Rhenish Massif, Germany) |journal=Palaeobiodiversity and Palaeoenvironments |volume=97 |issue=3 |pages=633–654 |doi=10.1007/s12549-017-0287-y |bibcode=2017PdPe...97..633S |s2cid=134615450 }}

|

Subsp. nov

|

Valid

|

Söte, Hartenfels & Becker

|

Devonian (Famennian)

|

|

{{Flag|Germany}}

|

|

Coelocerodontus hunanensis

|

Sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Furongian)

|

Panjiazui Formation

|

{{Flag|China}}

|

A euconodont.

|

Ctenopolygnathus parallelus{{Cite journal|author1=N. S. Ovnatanova |author2=L. I. Kononova |author3=L. S. Kolesnik |author4=Yu. A. Gatovsky |year=2017 |title=Upper Devonian conodonts of northeastern European Russia |journal=Paleontological Journal |volume=51 |issue=10 |pages=973–1165 |doi=10.1134/S003103011710001X |bibcode=2017PalJ...51..973O |s2cid=90202627 }}

|

Sp. nov

|

Valid

|

Ovnatanova et al.

|

Late Devonian

|

Kedzyrschor Formation

|

{{Flag|Russia}}

|

|

Fahraeusodus jachalensis{{Cite journal|author1=Fernanda Serra |author2=Nicolás A. Feltes |author3=Miles A. Henderson |author4=Guillermo L. Albanesi |year=2017 |title=Darriwilian (Middle Ordovician) conodont biofacies from the Central Precordillera of Argentina |journal=Marine Micropaleontology |volume=130 |pages=15–28 |doi=10.1016/j.marmicro.2016.12.002 |bibcode=2017MarMP.130...15S |hdl=11336/44643 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Feltes & Albanesi in Serra et al.

|

Ordovician (Darriwilian)

|

Gualcamayo Formation

Las Aguaditas Formation

Las Chacritas Formation

San Juan Formation

|

{{Flag|Argentina}}

|

|

Furnishina wangcunensis

|

Sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Furongian)

|

Bitiao Formation

|

{{Flag|China}}

|

A member of Paraconodontida.

|

Gothodus vetus

|

Sp. nov

|

Valid

|

Voldman & Albanesi in Voldman et al.

|

Early Ordovician

|

|

{{Flag|Argentina}}

|

|

Guexispathodus{{Cite journal|author1=Pablo Plasencia |author2=Ali Murat Kiliç |author3=Aymon Baud |author4=Milan Sudar |author5=Francis Hirsch |year=2017 |title=The evolutionary trend of platform-denticulation in Middle Triassic Acuminate Gondolellidae (Conodonta) |journal=Turkish Journal of Zoology |volume=42 |issue=2 |pages=187–197 |doi=10.3906/zoo-1708-20 |doi-access=free }}

|

Gen. et comb. nov

|

Valid

|

Plasencia et al.

|

Middle Triassic

|

Mukheiris Formation

Saharonim Formation

|

{{Flag|Israel}}

{{Flag|Jordan}}

|

A member of the family Gondolellidae. The type species is "Neospathodus" shagami Benjamini & Chepstow-Lusty (1986); genus also includes "Pseudofurnishius" siyalaensis Sadeddin & Kozur (1992).

|

Gullodus tieqiaoensis{{Cite journal|author1=Y.D. Sun |author2=X.T. Liu |author3=J.X. Yan |author4=B. Li |author5=B. Chen |author6=D.P.G. Bond |author7=M.M. Joachimski |author8=P.B. Wignall |author9=X. Wang |author10=X.L. Lai |year=2017 |title=Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=465, Part A |pages=42–63 |doi=10.1016/j.palaeo.2016.10.013 |bibcode=2017PPP...465...42S |url=http://eprints.whiterose.ac.uk/108745/1/Sun%20et%20al%202016.pdf }}

|

Sp. nov

|

Valid

|

Sun et al.

|

Permian

|

|

{{Flag|China}}

|

|

Icriodus ballbergensis{{Cite journal|author1=Felix Lüddecke |author2=Sven Hartenfels |author3=Ralph Thomas Becker |year=2017 |title=Conodont biofacies of a monotonous middle Famennian pelagic carbonate succession (Upper Ballberg Quarry, northern Rhenish Massif) |journal=Palaeobiodiversity and Palaeoenvironments |volume=97 |issue=3 |pages=591–613 |doi=10.1007/s12549-017-0288-x |bibcode=2017PdPe...97..591L |s2cid=134191571 }}

|

Sp. nov

|

Valid

|

Lüddecke, Hartenfels & Becker

|

Devonian (Famennian)

|

|

{{Flag|Germany}}

|

|

Icriodus marieae{{Cite journal|author1=Thomas J. Suttner |author2=Erika Kido |author3=Andreas W. W. Suttner |year=2017 |title=Icriodus marieae, a new icriodontid conodont species from the Middle Devonian |journal=PalZ |volume=91 |issue=1 |pages=137–144 |doi=10.1007/s12542-017-0337-9 |pmid=28615752 |pmc=5445598 |bibcode=2017PalZ...91..137S }}

|

Sp. nov

|

Valid

|

Suttner, Kido & Suttner

|

Middle Devonian

|

Valentin Formation

|

{{Flag|Austria}}

{{Flag|France}}

{{Flag|Germany}}

|

|

Idiognathodus boardmani{{Cite journal|author1=Nicholas J. Hogancamp |author2=James E. Barrick |year=2017 |title= Ungrooved species of Idiognathodus from the lower Gzhelian (Pennsylvanian) Heebner Shale, Midcontinent North America, U.S.A. |journal=Micropaleontology |volume=62 |issue=5 |pages=385–53 |doi=10.47894/mpal.62.5.04 |bibcode=2017MiPal..62..385H |s2cid=248382981 |url=http://www.micropress.org/microaccess/micropaleontology/issue-331/article-2009 }}

|

Sp. nov

|

Valid

|

Hogancamp & Barrick

|

Carboniferous (Gzhelian)

|

Heebner Shale

|

{{Flag|United States}}

|

|

Idiognathodus itaitubensis{{Cite journal|author1=Cassiane Negreiros Cardoso |author2=Javier Sanz-López |author3=Silvia Blanco-Ferrera |year=2017 |title=Pennsylvanian conodonts from the Tapajós Group (Amazonas Basin, Brazil) |journal=Geobios |volume=50 |issue=2 |pages=75–95 |doi=10.1016/j.geobios.2017.02.004 |bibcode=2017Geobi..50...75C }}

|

Sp. nov

|

Valid

|

Cardoso, Sanz-López & Blanco-Ferrera

|

Carboniferous (Pennsylvanian)

|

Tapajós Group

|

{{Flag|Brazil}}

|

|

Idiognathoides luokunensis{{Cite journal|author1=Ke-Yi Hu |author2=Yu-Ping Qi |author3=Qiu-Lai Wang |author4=Tamara I. Nemyrovska |author5=Ji-Tao Chen |year=2017 |title=Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China |journal=Palaeoworld |volume=26 |issue=1 |pages=64–82 |doi=10.1016/j.palwor.2015.12.003 }}

|

Sp. nov

|

Valid

|

Hu & Qi in Hu et al.

|

Carboniferous (Bashkirian)

|

|

{{Flag|China}}

|

|

Iowagnathus{{Cite journal|author1=Huaibao P. Liu |author2=Stig M. Bergström |author3=Brian J. Witzke |author4=Derek E. G. Briggs |author5=Robert M. McKay |author6=Annalisa Ferretti |year=2017 |title=Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA |journal=Journal of Paleontology |volume=91 |issue=3 |pages=493–511 |doi=10.1017/jpa.2016.155 |bibcode=2017JPal...91..493L |hdl=11380/1114523 |s2cid=132698401 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Liu et al.

|

Ordovician (Whiterock Stage)

|

Winneshiek Konservat-Lagerstätte

|

{{Flag|United States}}
({{Flag|Iowa}})

|

Genus includes new species I. grandis.

|File:Iowagnathus_grandus.png

Kirilella

|

Gen. et comb. nov

|

Valid

|

Plasencia et al.

|

Middle Triassic

|

|

{{Flag|Austria}}

{{Flag|Canada}}

{{Flag|China}}

{{Flag|Egypt}}

{{Flag|Hungary}}

{{Flag|Israel}}

{{Flag|Italy}}

{{Flag|Japan}}

{{Flag|Jordan}}

{{Flag|Russia}}

{{Flag|Spain}}

{{Flag|United States}}

|

A member of the family Gondolellidae. The type species is "Polygnathus" mungoensis Diebel (1956); genus also includes "Tardogondolella" diebeli Kozur & Mostler (1971), "Epigondolella" mostleri Kozur in Kozur & Mock (1972) and "Metapolygnathus" longobardicus Kovács (1983).

|

Laiwugnathus hunanensis

|

Sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Drumian)

|

Huaqiao Formation

|

{{Flag|China}}

|

A member of Paraconodontida.

|

Laiwugnathus transitans

|

Sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Guzhangian and Paibian)

|

Chefu Formation

|

{{Flag|China}}

|

A member of Paraconodontida.

|

Lenathodus{{Cite journal|author1=Nadezhda Izokh |author2=Aleksandr Yazikov |year=2017 |title=Discovery of Early Carboniferous conodonts in Northern Kharaulakh Ranges (lower reaches of the Lena River, northeastern Siberia, Arctic Russia) |journal=Revue de Micropaléontologie |volume=60 |issue=2 |pages=213–232 |doi=10.1016/j.revmic.2017.03.001 |bibcode=2017RvMic..60..213I }}

|

Gen. et sp. nov

|

Valid

|

Izokh in Izokh & Yazikov

|

Early Carboniferous

|

|

{{Flag|Russia}}

|

Genus includes new species L. bakharevi.

|

Lugnathus{{Cite journal|author1=Xi-ping Dong |author2=Huaqiao Zhang |year=2017 |title=Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China |journal=Journal of Paleontology |volume=91 |issue=S73 |pages=1–89 |doi=10.1017/jpa.2015.43 |bibcode=2017JPal...91S...1D |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian Stage 10 and Early Ordovician (Tremadocian)

|

Panjiazui Formation

|

{{Flag|China}}

|

A member of Paraconodontida. Genus includes new species L. hunanensis.

|

Marquezella

|

Gen. et comb. nov

|

Valid

|

Plasencia et al.

|

Middle Triassic

|

|

{{Flag|Austria}}

{{Flag|Bulgaria}}

{{Flag|China}}

{{Flag|France}}

{{Flag|Greece}}

{{Flag|Hungary}}

{{Flag|India}}

{{Flag|Italy}}

{{Flag|Japan}}

{{Flag|Russia}}

{{Flag|Slovakia}}

{{Flag|Slovenia}}

{{Flag|Spain}}

|

A member of the family Gondolellidae. The type species is "Gladigondolella" truempyi Hirsch (1971); genus also includes "Polygnathus" japonicus Hayashi (1968).

|

Mayrodus{{Cite journal|author1=Shunxin Zhang |author2=David M.S. Jowett |author3=Christopher R. Barnes |year=2017 |title=Hirnantian (Ordovician) through Wenlock (Silurian) conodont biostratigraphy, bioevents, and integration with graptolite biozones, Cape Phillips Formation slope facies, Cornwallis Island, Canadian Arctic Islands |journal=Canadian Journal of Earth Sciences |volume=54 |issue=9 |pages=936–960 |doi=10.1139/cjes-2017-0023 |hdl=1807/78295 |bibcode=2017CaJES..54..936Z |hdl-access=free }}

|

Gen. et sp. nov

|

Valid

|

Zhang, Jowett & Barnes

|

Silurian (Sheinwoodian)

|

Cape Phillips Formation

|

{{Flag|Canada}}
({{Flag|Nunavut}})

|

A conodont of uncertain phylogenetic placement. The type species is M. melchini.

|

Miaognathus

|

Gen. et sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian Stage 10

|

Shenjiawan Formation

|

{{Flag|China}}

|

A member of Paraconodontida. Genus includes new species M. multicostatus.

|

Millerodontus

|

Gen. et sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Furongian)

|

Shenjiawan Formation

|

{{Flag|China}}

|

A euconodont. Genus includes new species M. intermedius.

|

Mosherella praebudaensis{{Cite journal|author1=Yanlong Chen |author2=Alexander Lukeneder |year=2017 |title=Late Triassic (Julian) conodont biostratigraphy of a transition from reefal limestones to deep-water environments on the Cimmerian terranes (Taurus Mountains, southern Turkey) |journal=Papers in Palaeontology |volume=3 |issue=3 |pages=441–460 |doi=10.1002/spp2.1082 |bibcode=2017PPal....3..441C |s2cid=135222844 }}

|

Sp. nov

|

Valid

|

Chen & Lukeneder

|

Late Triassic (Carnian)

|

Kasimlar Formation

|

{{Flag|Turkey}}

|

|

Neopolygnathus communis yazikovi

|

Subsp. nov

|

Valid

|

Izokh in Izokh & Yazikov

|

Early Carboniferous

|

|

{{Flag|Russia}}

|

|

Neopolygnathus crucesignatis{{Cite journal|author1=Artem N. Plotitsyn |author2=Andrey V. Zhuravlev |year=2017 |title=The new conodont species of Neopolygnathus and Polygnathus from the Tournaisian of the North Urals and Chernyshev Ridge |journal=Syktyvkar Palaeontological Miscellany |volume=8 |pages=24–30 |url=http://geo.komisc.ru/images/stories/conf/2018/Paleontolog8/24-30.pdf }}

|

Sp. nov

|

Valid

|

Plotitsyn & Zhuravlev

|

Carboniferous (Tournaisian)

|

|

{{Flag|Russia}}

|

|

Norigondolella carlae{{cite book |author1=Manuel Rigo |author2=Michele Mazza |author3=Viktor Karádi |author4=Alda Nicora |title=The Late Triassic World |series=Topics in Geobiology |date=2018 |volume=46 |chapter=New Upper Triassic Conodont Biozonation of the Tethyan Realm |editor=Lawrence H. Tanner |publisher=Springer |pages=189–235 |isbn=978-3-319-68008-8 |doi=10.1007/978-3-319-68009-5_6 |hdl=11577/3258473 }}

|

Sp. nov

|

In press

|

Rigo et al.

|

Late Triassic (Carnian)

|

Scillato Formation

|

{{Flag|Austria}}

{{Flag|Italy}}

{{Flag|Turkey}}

|

A member of Ozarkodinida.

|

Omanognathus

|

Gen. et sp. nov

|

Valid

|

Miller et al.

|

Ordovician (Darriwilian)

|

Amdeh Formation

|

{{Flag|Oman}}

|

A member of Balognathidae. Genus includes new species O. daiqaensis.

|

Palmatolepis chernovi{{Cite journal|author=M. A. Soboleva |year=2017 |title=New species of genus Palmatolepis (conodonts) from Frasnian deposits of the Subpolar and Polar Urals |journal=Syktyvkar Palaeontological Miscellany |volume=8 |pages=40–50 |url=http://geo.komisc.ru/images/stories/conf/2018/Paleontolog8/40-50.pdf }}

|

Sp. nov

|

Valid

|

Soboleva

|

Devonian (Frasnian)

|

|

{{Flag|Russia}}

|

|

Palmatolepis spallettae{{Cite journal|author1=Gilbert Klapper |author2=Thomas T. Uyeno |author3=Derek K. Armstrong |author4=Peter G. Telford |year=2017 |title=Palmatolepis spallettae, new name for a Frasnian conodont species |journal=Journal of Paleontology |volume=91 |issue=3 |pages=578 |doi=10.1017/jpa.2017.21 |bibcode=2017JPal...91..578K |s2cid=133637822 |doi-access=free }}

|

Nom. nov

|

Valid

|

Klapper et al.

|

Devonian (Frasnian)

|

|

{{Flag|Canada}}
({{Flag|Ontario}})

|

A replacement name for Palmatolepis nodosa Klapper et al. (2004).

|

Palmatolepis zhuravlevi

|

Sp. nov

|

Valid

|

Soboleva

|

Devonian (Frasnian)

|

|

{{Flag|Russia}}

|

|

Polygnathus arcus

|

Sp. nov

|

Valid

|

Plotitsyn & Zhuravlev

|

Carboniferous (Tournaisian)

|

|

{{Flag|Russia}}

|

|

Polygnathus mawsonae

|

Sp. nov

|

Junior homonym

|

Ovnatanova et al.

|

Devonian (Famennian)

|

Sortomael' Formation

|

{{Flag|Australia}}

{{Flag|Russia}}

|

Ovnatanova et al. (2019) coined a replacement name Polygnathus sharyuensis.{{Cite journal|author1=N. S. Ovnatanova |author2=L. I. Kononova |author3=L. S. Kolesnik |author4=Yu. A. Gatovsky |year=2019 |title=Polygnathus sharyuensis nom. nov., a new replacement name for the Famennian (Upper Devonian) Polygnathus mawsonae Ovnatanova et al., 2017 (Conodonta) |journal=Paleontological Journal |volume=53 |issue=2 |pages=214 |doi=10.1134/S0031030119020096 |s2cid=195299628 |url=https://elibrary.ru/item.asp?id=37068695 |doi-access=free |bibcode=2019PalJ...53..214O }}

|

Polygnathus postvogesi{{Cite journal |author1=A. N. Plotitsyn |author2=A. V. Zhuravlev |year=2017 |title=A new species of the conodont genus Polygnathus from the Tournaisian of the northern Urals, Chernyshev Ridge and Pai-Khoi |journal=Paleontological Journal |volume=51 |issue=3 |pages=304–307 |doi=10.1134/S0031030117030091 |bibcode=2017PalJ...51..304P |s2cid=133888829 |url=https://www.researchgate.net/publication/322400125 }}

|

Sp. nov

|

Valid

|

Plotitsyn & Zhuravlev

|

Carboniferous (Tournaisian)

|

|

{{Flag|Russia}}

|

|

Prosagittodontus compressus

|

Sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Guzhangian and Paibian)

|

Chefu Formation

|

{{Flag|China}}

|

A member of Paraconodontida.

|

Pseudohindeodus elliptica

|

Sp. nov

|

Valid

|

Sun et al.

|

Permian

|

|

{{Flag|China}}

|

|

Quadralella wanlanensis{{Cite journal|author1=Z.T. Zhang |author2=Y.D. Sun |author3=X.L. Lai |author4=M.M. Joachimski |author5=P.B. Wignall |year=2017 |title=Early Carnian conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian subdivision in Guizhou, South China |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=486 |pages=142–157 |doi=10.1016/j.palaeo.2017.02.011 |bibcode=2017PPP...486..142Z |url=http://eprints.whiterose.ac.uk/112226/1/1-s2.0-S0031018217301414-main.pdf }}

|

Sp. nov

|

Valid

|

Zhang et al.

|

Triassic

|

|

{{Flag|China}}

|

|

Quadralella yongyueensis

|

Sp. nov

|

Valid

|

Zhang et al.

|

Triassic

|

|

{{Flag|China}}

|

|

Siphonodella carinata{{Cite journal|author=Andrey V. Zhuravlev |year=2017 |title=A new species of the conodont genus Siphonodella Branson & Mehl (late Tournaisian) |journal=Estonian Journal of Earth Sciences |volume=66 |issue=4 |pages=188–192 |doi=10.3176/earth.2017.15 |doi-access=free }}

|

Sp. nov

|

Valid

|

Zhuravlev

|

Carboniferous (Tournaisian)

|

Idzhid Formation

|

{{Flag|Russia}}
({{Flag|Komi Republic}})

|

|

Siphonodella kalvodai{{Cite journal|author1=Sandra I. Kaiser |author2=Tomáš Kumpan |author3=Vojtěch Cígler |year=2017 |title=New unornamented siphonodellids (Conodonta) of the lower Tournaisian from the Rhenish Massif and Moravian Karst (Germany and Czech Republic) |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=286 |issue=1 |pages=1–33 |doi=10.1127/njgpa/2017/0684 |url=https://www.researchgate.net/publication/320149584 }}

|

Sp. nov

|

Valid

|

Kaiser, Kumpan & Cígler

|

Carboniferous (Tournaisian)

|

Líšeň Formation

|

{{Flag|Czech Republic}}

{{Flag|Tajikistan}}

|

A member of Ozarkodinida belonging to the family Elictognathidae.

|

Sweetognathus asymmetrica

|

Sp. nov

|

Valid

|

Sun et al.

|

Permian

|

|

{{Flag|China}}

|

|

Tujiagnathus

|

Gen. et sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Furongian)

|

Bitiao Formation

|

{{Flag|China}}

|

A euconodont. Genus includes new species T. gracilis.

|

Vjalovognathus carinatus{{Cite journal|author1=Lina Wang |author2=Paul B. Wignall |author3=Yadong Sun |author4=Chunbo Yan |author5=Zaitian Zhang |author6=Xulong Lai |year=2017 |title=New Permian-Triassic conodont data from Selong (Tibet) and the youngest occurrence of Vjalovognathus |journal=Journal of Asian Earth Sciences |volume=146 |pages=152–167 |doi=10.1016/j.jseaes.2017.05.014 |bibcode=2017JAESc.146..152W |url=http://eprints.whiterose.ac.uk/116518/1/Wang%20Lina%20et%20al.%2C%202017.JAES.pdf }}

|

Sp. nov

|

Valid

|

Wang et al.

|

Permian (Changhsingian)

|

|

{{Flag|China}}

{{Flag|India}}

|

|

Wangcunella

|

Gen. et sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Furongian)

|

Bitiao Formation

|

{{Flag|China}}

|

A euconodont. Genus includes new species W. conicus.

|

Wangcunognathus

|

Gen. et sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Paibian)

|

Bitiao Formation

|

{{Flag|China}}

|

A member of Paraconodontida. Genus includes new species W. elegans.

|

Westergaardodina dimorpha

|

Sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Paibian)

|

Bitiao Formation

|

{{Flag|China}}

|

A member of Paraconodontida.

|

Westergaardodina gigantea

|

Sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Guzhangian)

|

Chefu Formation

|

{{Flag|China}}

|

A member of Paraconodontida.

|

Westergaardodina sola

|

Sp. nov

|

Valid

|

Dong & Zhang

|

Cambrian (Guzhangian)

|

Chefu Formation

|

{{Flag|China}}

|

A member of Paraconodontida.

|

Zentagnathus

|

Gen. et comb. nov

|

Valid

|

Voldman & Albanesi in Voldman et al.

|

Early Ordovician

|

|

{{Flag|Argentina}}

|

A new genus for "Trapezognathus" primitivus Voldman, Albanesi & Zeballo in Voldman et al. (2013); genus also includes "Trapezognathus" argentinensis Rao et al. (1994)

|

Fishes

{{Main|2017 in paleoichthyology}}

Amphibians

=Research=

  • A study on the evolution of eye size in early tetrapods and in fish belonging to the lineage that gave rise to tetrapods, as well as on the impact of the eye size on the eye performance while viewing objects through water and through air is published by MacIver et al. (2017).{{Cite journal|author1=Malcolm A. MacIver |author2=Lars Schmitz |author3=Ugurcan Mugan |author4=Todd D. Murphey |author5=Curtis D. Mobley |year=2017 |title=Massive increase in visual range preceded the origin of terrestrial vertebrates |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=12 |pages=E2375–E2384 |doi=10.1073/pnas.1615563114 |pmid=28270619 |bibcode=2017PNAS..114E2375M |pmc=5373340 |doi-access=free }}
  • A study on the evolution of forelimb musculature from the lobe-finned fish to early tetrapods is published online by Molnar et al. (2017).{{Cite journal|author1=Julia L. Molnar|author2=Rui Diogo|author3=John R. Hutchinson|author4=Stephanie E. Pierce|year=2017|title=Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition|url=https://www.researchgate.net/publication/320988769|journal=Biological Reviews|volume=93|issue=2|pages=1077–1107|doi=10.1111/brv.12386|pmid=29125205|s2cid=4704712|doi-access=free}}
  • A study on the influence of habitat traits on the persistence length of living and fossil amphibian species is published by Tietje & Rödel (2017).{{Cite journal|author1=Melanie Tietje |author2=Mark-Oliver Rödel |year=2017 |title=Contradicting habitat type-extinction risk relationships between living and fossil amphibians |journal=Royal Society Open Science |volume=4 |issue=5 |pages=170051 |doi=10.1098/rsos.170051 |pmid=28573010 |pmc=5451811 |bibcode=2017RSOS....470051T }}
  • A study on the development of the vertebral intercentrum and pleurocentrum in fossil amphibians is published by Danto et al. (2017).{{Cite journal|author1=Marylène Danto |author2=Florian Witzmann |author3=Stephanie E. Pierce |author4=Nadia B. Fröbisch |year=2017 |title=Intercentrum versus pleurocentrum growth in early tetrapods: A paleohistological approach |journal=Journal of Morphology |volume=278 |issue=9 |pages=1262–1283 |doi=10.1002/jmor.20709 |pmid=28517044 |s2cid=38390403 }}
  • A study on the probable function of the interpterygoid vacuities (holes in the palate) in temnospondyls as the site of muscle attachment is published by Witzmann & Werneburg (2017).{{Cite journal|author1=Florian Witzmann |author2=Ingmar Werneburg |year=2017 |title=The Palatal Interpterygoid Vacuities of Temnospondyls and the Implications for the Associated Eye- and Jaw Musculature |journal=The Anatomical Record |volume=300 |issue=7 |pages=1240–1269 |doi=10.1002/ar.23582 |pmid=28220619 |s2cid=4417795 |doi-access=free }}
  • A study on the earliest larval development in temnospondyls, as indicated by specimens from the Permian (Sakmarian) lake sediments near Obermoschel (Saar–Nahe Basin, Germany), is published by Werneburg (2017).{{cite journal |author1=Ralf Werneburg |year=2017 |title=Earliest 'nursery ground' of temnospondyl amphibians in the Permian |journal=Semana. Naturwissenschaftliche Veröffentlichungen des Naturhistorischen Museums Schloss Bertholdsburg Schleusingen |volume=32 |pages=3–42 |url=https://www.researchgate.net/publication/323642345 }}
  • A study on the histology of the small palatal plates and their denticles in a Permian dissorophoid temnospondyl from the Dolese Brothers Limestone Quarry near Richards Spur (Oklahoma, United States) is published by Gee, Haridy & Reisz (2017).{{Cite journal|author1=Bryan M. Gee |author2=Yara Haridy |author3=Robert R. Reisz |year=2017 |title=Histological characterization of denticulate palatal plates in an Early Permian dissorophoid |journal=PeerJ |volume=5 |pages=e3727 |doi=10.7717/peerj.3727 |pmid=28848692 |pmc=5571816 |doi-access=free }}
  • Taxonomic revision of all described rhinesuchids and a study on the phylogenetic relationships of members of Rhinesuchidae is published by Marsicano et al. (2017), who transfer the species "Rhinesuchus" capensis Haughton (1925) to the genus Rhinesuchoides.{{Cite journal|author1=Claudia A. Marsicano |author2=Elizabeth Latimer |author3=Bruce Rubidge |author4=Roger M.H Smith |year=2017 |title=The Rhinesuchidae and early history of the Stereospondyli (Amphibia: Temnospondyli) at the end of the Palaeozoic |journal=Zoological Journal of the Linnean Society |volume=181 |issue=2 |pages=357–384 |doi=10.1093/zoolinnean/zlw032 |hdl=11336/105150 |hdl-access=free }}
  • New specimen of the rhinesuchid Australerpeton cosgriffi (a skull and mandible) is described from the Permian Rio do Rasto Formation (Brazil) by Azevedo, Vega & Soares (2017).{{Cite journal|author1=Karine Lohmann Azevedo |author2=Cristina Silveira Vega |author3=Marina Bento Soares |year=2017 |title=A new specimen of Australerpeton cosgriffi Barberena, 1998 (Stereospondyli: Rhinesuchidae) from the Middle/Upper Permian Rio do Rasto Formation, Paraná Basin, Brazil |journal=Revista Brasileira de Paleontologia |volume=20 |issue=3 |pages=333–344 |doi=10.4072/rbp.2017.3.05 |doi-access=free }}
  • A description of the anatomy of the braincase and middle ear regions of an exceptionally well-preserved skull of Stanocephalosaurus amenasensis from the Triassic of Algeria is published by Arbez, Dahoumane & Steyer (2017).{{Cite journal|author1=Thomas Arbez |author2=Anissa Dahoumane |author3=J.-Sébastien Steyer |year=2017 |title=Exceptional endocranium and middle ear of Stanocephalosaurus (Temnospondyli: Capitosauria) from the Triassic of Algeria revealed by micro-CT scan, with new functional interpretations of the hearing system |journal=Zoological Journal of the Linnean Society |volume=180 |issue=4 |pages=910–929 |doi=10.1093/zoolinnean/zlw007 |url=https://hal.sorbonne-universite.fr/hal-01643473/file/ARBEZ_Thomas.pdf }}
  • A study on the anatomy of the skulls of metoposaurid species Metoposaurus krasiejowensis and Apachesaurus gregorii, as well as its implications for establishing whether metoposaurids were active or ambush predators is published by Fortuny, Marcé-Nogué & Konietzko-Meier (2017).{{Cite journal|author1=Josep Fortuny |author2=Jordi Marcé-Nogué |author3=Dorota Konietzko-Meier |year=2017 |title=Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach |journal=Journal of Anatomy |volume=230 |issue=6 |pages=752–765 |doi=10.1111/joa.12605 |pmid=28369819 |pmc=5442151 }}
  • An analysis of the microanatomy and histology of metoposaurid vertebra from the Petrified Forest National Park is published by Gee, Parker & Marsh (2017), who interpret Apachesaurus gregorii as more likely to be an early ontogenetic stage of a large metoposaurid, such as Koskinonodon perfectus rather than a distinct species.{{Cite journal|author1=Bryan M. Gee |author2=William G. Parker |author3=Adam D. Marsh |year=2017 |title=Microanatomy and paleohistology of the intercentra of North American metoposaurids from the Upper Triassic of Petrified Forest National Park (Arizona, USA) with implications for the taxonomy and ontogeny of the group |journal=PeerJ |volume=5 |pages=e3183 |doi=10.7717/peerj.3183 |pmid=28439462 |pmc=5398283 |doi-access=free }}
  • A juvenile specimen of Koskinonodon perfectus is described from the Norian Petrified Forest Member of the Late Triassic Chinle Formation (Arizona, United States) by Gee & Parker (2017).{{Cite journal|author1=Bryan M. Gee |author2=William G. Parker |year=2017 |title=A juvenile Koskinonodon perfectus (Temnospondyli, Metoposauridae) from the Upper Triassic of Arizona and its implications for the taxonomy of North American metoposaurids |journal=Journal of Paleontology |volume=91 |issue=5 |pages=1047–1059 |doi=10.1017/jpa.2017.18 |bibcode=2017JPal...91.1047G |s2cid=134611838 |doi-access=free }}
  • A study on the physiology (especially metabolic rate, body temperature, breathing, feeding, digestion, osmoregulation and excretion) of Archegosaurus decheni is published by Witzmann & Brainerd (2017).{{Cite journal|author1=Florian Witzmann |author2=Elizabeth Brainerd |year=2017 |title=Modeling the physiology of the aquatic temnospondyl Archegosaurus decheni from the early Permian of Germany |journal=Fossil Record |volume=20 |issue=2 |pages=105–127 |doi=10.5194/fr-20-105-2017 |doi-access=free |bibcode=2017FossR..20..105W }}
  • A study on the histology of the dermal skull roof bones in Kokartus honorarius is published by Skutschas & Boitsova (2017).{{Cite journal|author1=Pavel P. Skutschas |author2=Elizaveta A. Boitsova |year=2017 |title=Histology of sculptured cranial dermal bones of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan |journal= Historical Biology: An International Journal of Paleobiology |volume=29 |issue=3 |pages=423–429 |doi=10.1080/08912963.2016.1171859 |bibcode=2017HBio...29..423S |s2cid=87609117 }}
  • Fossilized soft tissues preserved with the type specimen of the salamander Phosphotriton sigei are described by Tissier, Rage & Laurin (2017).{{Cite journal|author1=Jérémy Tissier |author2=Jean-Claude Rage |author3=Michel Laurin |year=2017 |title=Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander |journal=PeerJ |volume=5 |pages=e3861 |doi=10.7717/peerj.3861 |pmc=5629955 |pmid=29018606 |doi-access=free }}
  • A study on the bite force in extant Cranwell's horned frog (Ceratophrys cranwelli) and its implications for estimating the bite force in the Late Cretaceous species Beelzebufo ampinga is published by Lappin et al. (2017).{{Cite journal|author1=A. Kristopher Lappin |author2=Sean C. Wilcox |author3=David J. Moriarty |author4=Stephanie A. R. Stoeppler |author5=Susan E. Evans |author6=Marc E. H. Jones |year=2017 |title=Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 11963 |doi=10.1038/s41598-017-11968-6 |pmid=28931936 |pmc=5607344 |bibcode=2017NatSR...711963L }}
  • Frog fossils, including the first known fossils of shovelnose frogs, are described from the early Pliocene of Kanapoi (Kenya) by Delfino (2017).{{Cite journal|author=Massimo Delfino |year=2017 |title=Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae) |journal=Journal of Human Evolution |volume=140 |pages=Article 102353 |doi=10.1016/j.jhevol.2017.06.008 |pmid=28712471 |s2cid=22517710 }}
  • A study on the morphology of the skull of Lethiscus stocki and on the phylogenetic relationships of early tetrapods, recovering lepospondyls as a polyphyletic group, is published by Pardo et al. (2017).{{Cite journal|author1=Jason D. Pardo |author2=Matt Szostakiwskyj |author3=Per E. Ahlberg |author4=Jason S. Anderson |year=2017 |title=Hidden morphological diversity among early tetrapods |journal=Nature |volume=546 |issue=7660 |pages=642–645 |doi=10.1038/nature22966 |pmid=28636600 |bibcode=2017Natur.546..642P |hdl=1880/113382 |s2cid=2478132 |hdl-access=free }}

=New taxa=

==Temnospondyls==

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Aphaneramma gavialimimus{{Cite journal|author1=Josep Fortuny |author2=Stéphanie Gastou |author3=François Escuillié |author4=Lovasoa Ranivoharimanana |author5=J.-Sébastien Steyer |year=2017 |title=A new extreme longirostrine temnospondyl from the Triassic of Madagascar: phylogenetic and palaeobiogeographical implications for trematosaurids |journal=Journal of Systematic Palaeontology |volume=16 |issue=8 |pages=675–688 |doi=10.1080/14772019.2017.1335805 |s2cid=134191156 |url=https://figshare.com/articles/dataset/A_new_extreme_longirostrine_temnospondyl_from_the_Triassic_of_Madagascar_phylogenetic_and_palaeobiogeographical_implications_for_trematosaurids/5155366 }}

|

Sp. nov

|

Valid

|

Fortuny et al.

|

Early Triassic (Olenekian)

|

|

{{Flag|Madagascar}}

|

|

File:Aphaneramma12DB.jpg]]

Chinlestegophis{{Cite journal|author1=Jason D. Pardo |author2=Bryan J. Small |author3=Adam K. Huttenlocker |year=2017 |title=Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=27 |pages=E5389–E5395 |doi=10.1073/pnas.1706752114 |pmid=28630337 |pmc=5502650 |bibcode=2017PNAS..114E5389P |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Pardo, Small & Huttenlocker

|

Late Triassic

|

Chinle Formation

|

{{Flag|United States}}
({{Flag|Colorado}})

|

A member of Stereospondyli, possibly a stem-caecilian. The type species is C. jenkinsi.

|

Cyclotosaurus naraserluki{{Cite journal|author1=Marco Marzola |author2=Octávio Mateus |author3=Neil H. Shubin |author4=Lars B. Clemmensen |year=2017 |title=Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland) |journal=Journal of Vertebrate Paleontology |volume=37 |issue=2 |pages=e1303501 |doi=10.1080/02724634.2017.1303501 |bibcode=2017JVPal..37E3501M |hdl=10362/33003 |s2cid=134255506 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Marzola et al.

|

Late Triassic

|

Fleming Fjord Formation

|

{{Flag|Greenland}}

|

|

File:CyclotosaurusDB2.jpg]]

Tomeia{{Cite journal|author1=Estevan Eltink |author2=Átila A. Stock Da-Rosa |author3= Sérgio Dias-da-Silva |year=2017 |title=A capitosauroid from the Lower Triassic of South America (Sanga do Cabral Supersequence:Paraná Basin), its phylogenetic relationships and biostratigraphic implications |journal=Historical Biology |volume=29 |issue=7 |pages=863–874 |doi= 10.1080/08912963.2016.1255736 |bibcode=2017HBio...29..863E |s2cid=132509118 |url=https://www.researchgate.net/publication/310406381}}

|

Gen. et sp. nov

|

Valid

|

Eltink, Stock Da-Rosa, & Dias-da-Silva

|

Early Triassic

|

Sanga do Cabral Formation

|

{{Flag|Brazil}}

|

A capitosaur.

|

==Lissamphibians==

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Chachaiphrynus{{Cite journal|author=Laura Nicoli |year=2017 |title=New clues on anuran evolution: the oldest record of an extant hyloid clade in the Oligocene of Patagonia |journal=Historical Biology: An International Journal of Paleobiology |volume=29 |issue=8 |pages=1031–1044 |doi=10.1080/08912963.2017.1282475 |bibcode=2017HBio...29.1031N |s2cid=90532522 |hdl=11336/49287 |hdl-access=free }}

|

Gen. et sp. nov

|

Valid

|

Nicoli

|

Oligocene

|

|

{{Flag|Argentina}}

|

A member of Odontophrynidae. The type species is C. lynchi.

|

Genibatrachus{{Cite journal|author1=Ke-Qin Gao |author2=Jianye Chen |year=2017 |title=A new crown-group frog (Amphibia: Anura) from the Early Cretaceous of northeastern Inner Mongolia, China |journal=American Museum Novitates |issue=3876 |pages=1–39 |doi=10.1206/3876.1 |hdl=2246/6702 |s2cid=44121192 |url=https://www.biodiversitylibrary.org/item/262833 }}

|

Gen. et sp. nov

|

Valid

|

Gao & Chen

|

Early Cretaceous

|

Guanghua (upper part of Longjiang) Formation

|

{{Flag|China}}

|

A crown-group frog. The type species is G. baoshanensis.

|

Sanshuibatrachus{{Cite journal|author1=Yuan Wang |author2=Zbyněk Roček |author3=Liping Dong |year=2017 |title=A new pelobatoid frog from the lower Eocene of southern China |journal=Palaeobiodiversity and Palaeoenvironments |volume=98 |issue=2 |pages=225–242 |doi=10.1007/s12549-017-0304-1 |s2cid=89974467 }}

|

Gen. et sp. nov

|

Valid

|

Wang, Roček & Dong

|

Early Eocene

|

|

{{Flag|China}}

|

A pelobatoid frog of uncertain phylogenetic placement. Genus includes new species S. sinensis.

|

==Other amphibians==

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Spathicephalus marsdeni{{Cite journal|author1=Timothy R. Smithson |author2=Michael A. E. Browne |author3=Sarah J Davies |author4=John E. A. Marshall |author5=David Millward |author6=Stig A. Walsh |author7=Jennifer A. Clack |year=2017 |title=A new Mississippian tetrapod from Fife, Scotland, and its environmental context |journal=Papers in Palaeontology |volume=3 |issue=4 |pages=547–557 |doi=10.1002/spp2.1086 |doi-access=free |bibcode=2017PPal....3..547S |hdl=2381/40472 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Smithson et al.

|

Carboniferous (Viséan)

|

Anstruther Formation

|

{{Flag|United Kingdom}}

|

A member of the superfamily Baphetoidea.

|

Yumenerpeton{{Cite journal|author1=Shan Jiang |author2=Shu-an Ji |author3=Jinyou Mo |year=2017 |title=First record of bystrowianid chroniosuchians (Amphibia: Anthracosauromorpha) from the Middle Permian of China |journal=Acta Geologica Sinica (English Edition) |volume=91 |issue=5 |pages=1523–1529 |url=http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2017endzxb05001&flag=1 |doi=10.1111/1755-6724.13397 |bibcode=2017AcGlS..91.1523J |s2cid=134350720 }}

|

Gen. et sp. nov

|

Valid

|

Jiang, Ji & Mo

|

Middle Permian

|

Xidagou Formation

|

{{Flag|China}}

|

A bystrowianid chroniosuchian. The type species is Y. yangi.

|

Reptiles

{{Main|2017 in reptile paleontology|2017 in archosaur paleontology}}

Synapsids

=Non-mammalian synapsids=

==Research==

  • Phreatophasma aenigmaticum is argued to be a member of Caseidae by Brocklehurst & Fröbisch (2017).{{cite journal |author1=Neil Brocklehurst |author2=Jörg Fröbisch |year=2017 |title=A re-examination of the enigmatic Russian tetrapod Phreatophasma aenigmaticum and its evolutionary implications |journal=Fossil Record |volume=20 |issue=1 |pages=87–93 |doi=10.5194/fr-20-87-2017 |doi-access=free |bibcode=2017FossR..20...87B }}
  • New fossil material of the caseid Alierasaurus ronchii is described from the Permian deposits of Cala del Vino Formation (Sardinia, Italy) by Romano et al. (2017).{{cite journal |author1=Marco Romano |author2=Ausonio Ronchi |author3=Simone Maganuco |author4=Umberto Nicosia |year=2017 |title=New material of Alierasaurus ronchii (Synapsida, Caseidae) from the Permian of Sardinia (Italy), and its phylogenetic affinities |journal=Palaeontologia Electronica |volume=20 |issue=2 |pages=Article number 20.2.26A |doi=10.26879/684 |doi-access=free |hdl=11573/1045550 |hdl-access=free }}
  • A study on the histology of the humeri of Ophiacodon, revealing the existence of fibrolamellar bone in the postcranial bones of this taxon, is published by Shelton & Sander (2017).{{cite journal |author1=Christen D. Shelton |author2=Paul Martin Sander |year=2017 |title=Long bone histology of Ophiacodon reveals the geologically earliest occurrence of fibrolamellar bone in the mammalian stem lineage |journal=Comptes Rendus Palevol |volume=16 |issue=4 |pages=397–424 |doi=10.1016/j.crpv.2017.02.002 |bibcode=2017CRPal..16..397S |doi-access=free }}
  • A study on the body size evolution of edaphosaurids and sphenacodontids is published by Brocklehurst & Brink (2017).{{cite journal |author1=Neil Brocklehurst |author2=Kirstin S. Brink |year=2017 |title=Selection towards larger body size in both herbivorous and carnivorous synapsids during the Carboniferous |journal=FACETS |volume=2 |pages=68–84 |doi=10.1139/facets-2016-0046 |doi-access=free }}
  • A study on the evolution of the endothermy in non-mammalian therapsids as indicated by oxygen isotope composition of bone and tooth phosphate in Permian and Triassic therapsids is published by Rey et al. (2017).{{cite journal |author1=Kévin Rey |author2=Romain Amiot |author3=François Fourel |author4=Fernando Abdala |author5=Frédéric Fluteau |author6=Nour-Eddine Jalil |author7=Jun Liu |author8=Bruce S. Rubidge |author9=Roger M.H. Smith |author10=J. Sébastien Steyer |author11=Pia A. Viglietti |author12=Xu Wang |author13=Christophe Lécuyer |year=2017 |title=Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades |journal=eLife |volume=6 |pages=e28589 |doi=10.7554/eLife.28589 |pmid=28716184 |pmc=5515572 |doi-access=free }}
  • A study on the brain morphology of non-mammaliaform therapsids based on skull endocasts of Moschops capensis and a number of biarmosuchians (including Herpetoskylax hopsoni and members of the genera Hipposaurus and Lemurosaurus) is published by Benoit et al. (2017).{{cite journal |author1=J. Benoit |author2=V. Fernandez |author3=P.R. Manger |author4=B.S. Rubidge |year=2017 |title=Endocranial casts of pre-mammalian therapsids reveal an unexpected neurological diversity at the deep evolutionary root of mammals |journal=Brain, Behavior and Evolution |volume=90 |issue=4 |pages=311–333 |doi=10.1159/000481525 |pmid=29130981 |s2cid=12062696 }}
  • A study on the morphology of the bony labyrinth of five biarmosuchian specimens is published by Benoit et al. (2017).{{cite journal |author1=Julien Benoit |author2=Paul R. Manger |author3=Vincent Fernandez |author4=Bruce S. Rubidge |year=2017 |title=The bony labyrinth of late Permian Biarmosuchia: palaeobiology and diversity in non-mammalian Therapsida |journal=Palaeontologia Africana |volume=52 |pages=58–77 |hdl=10539/23023 }}
  • A study on the anatomy of the skull of Moschops capensis, revealing adaptations of the central nervous system related to head-to-head fighting, is published by Benoit et al. (2017).{{cite journal |author1=Julien Benoit |author2=Paul R. Manger |author3=Luke Norton |author4=Vincent Fernandez |author5=Bruce S. Rubidge |year=2017 |title=Synchrotron scanning reveals the palaeoneurology of the head-butting Moschops capensis (Therapsida, Dinocephalia) |journal=PeerJ |volume=5 |pages=e3496 |doi=10.7717/peerj.3496 |pmid=28828230 |pmc=5554600 |doi-access=free }}
  • A study on the resting metabolic rate in Moghreberia nmachouensis is published by Olivier et al. (2017).{{cite journal |author1=Chloe Olivier |author2=Alexandra Houssaye |author3=Nour-Eddine Jalil |author4=Jorge Cubo |year=2017 |title=First palaeohistological inference of resting metabolic rate in an extinct synapsid, Moghreberia nmachouensis (Therapsida: Anomodontia) |journal=Biological Journal of the Linnean Society |volume=121 |issue=2 |pages=409–419 |doi=10.1093/biolinnean/blw044 |doi-access=free }}
  • A study on the contents of the depression known as the "unossified zone" in the brain cavity of Diictodon feliceps is published by Laaß, Schillinger & Kaestner (2017).{{cite journal |author1=Michael Laaß |author2=Burkhard Schillinger |author3=Anders Kaestner |year=2017 |title=What did the "Unossified zone" of the non-mammalian therapsid braincase house? |journal=Journal of Morphology |volume=278 |issue=8 |pages=1020–1032 |doi=10.1002/jmor.20583 |pmid=28621458 |s2cid=23767779 }}
  • A reassessment of the skull morphology and phylogenetic position of Compsodon helmoedi is published by Angielczyk & Kammerer (2017).{{cite journal |author1=Kenneth D. Angielczyk |author2=Christian F. Kammerer |year=2017 |title=The cranial morphology, phylogenetic position and biogeography of the upper Permian dicynodont Compsodon helmoedi van Hoepen (Therapsida, Anomodontia) |journal=Papers in Palaeontology |volume=3 |issue=4 |pages=513–545 |doi=10.1002/spp2.1087 |doi-access=free |bibcode=2017PPal....3..513A }}
  • A skeleton of Lystrosaurus curvatus in a fossilized burrow, preserved with taphonomic evidence indicating that this individual was the burrow maker, is described from the Lower Triassic of the South African Karoo Basin by Botha-Brink (2017).{{cite journal |author=Jennifer Botha-Brink |year=2017 |title=Burrowing in Lystrosaurus: preadaptation to a postextinction environment? |journal=Journal of Vertebrate Paleontology |volume=37 |issue=5 |pages=e1365080 |doi=10.1080/02724634.2017.1365080 |bibcode=2017JVPal..37E5080B |s2cid=89742527 |url=https://figshare.com/articles/journal_contribution/5503705 }}
  • A structure analogous to the mammalian neocortex is reported in Kawingasaurus fossilis by Laaß & Kaestner (2017).{{cite journal |author1=Michael Laaß |author2=Anders Kaestner |year=2017 |title=Evidence for convergent evolution of a neocortex-like structure in a late Permian therapsid |journal=Journal of Morphology |volume=278 |issue=8 |pages=1033–1057 |doi=10.1002/jmor.20712 |pmid=28621462 |s2cid=25032751 }}
  • A gorgonopsian dentary affected by a condition closely resembling compound odontoma is reported from the Upper Permian of Tanzania by Whitney, Mose & Sidor (2017).{{cite journal |author1=Megan R. Whitney |author2=Larry Mose |author3=Christian A. Sidor |year=2017 |title=Odontoma in a 255-million-year-old mammalian forebear |journal=JAMA Oncology |volume=3 |issue=7 |pages=998–1000 |doi=10.1001/jamaoncol.2016.5417 |pmid=27930769 |pmc=5824274 }}
  • A detailed description of the braincase of two gorgonopsian specimens (a probable specimen of Aelurosaurus wilmanae from South Africa and a possible specimen of Arctognathus? nasuta from Tanzania) is published by Araújo et al. (2017).{{cite journal |author1=Ricardo Araújo |author2=Vincent Fernandez |author3=Michael J. Polcyn |author4=Jörg Fröbisch |author5=Rui M.S. Martins |year=2017 |title=Aspects of gorgonopsian paleobiology and evolution: insights from the basicranium, occiput, osseous labyrinth, vasculature, and neuroanatomy |journal=PeerJ |volume=5 |pages=e3119 |doi=10.7717/peerj.3119 |pmid=28413721 |pmc=5390774 |doi-access=free }}
  • A redescription and revision of the gorgonopsian genus Arctops is published by Kammerer (2017).{{cite journal |author=Christian F. Kammerer |year=2017 |title=Anatomy and relationships of the South African gorgonopsian Arctops (Therapsida, Theriodontia) |journal=Papers in Palaeontology |volume=3 |issue=4 |pages=583–611 |doi=10.1002/spp2.1094 |bibcode=2017PPal....3..583K |s2cid=90784117 }}
  • Rediscovered holotype of the gorgonopsian species Clelandina major is described by Kammerer (2017), who considers this species to be a junior synonym of Clelandina rubidgei.{{cite journal |author=Christian F. Kammerer |year=2017 |title=Rediscovery of the holotype of Clelandina major Broom, 1948 (Gorgonopsia: Rubidgeinae) with implications for the identity of this species |journal=Palaeontologia Africana |volume=52 |pages=85–88 |hdl=10539/23480 }}
  • A study on the anatomy of the teeth and maxilla of Euchambersia mirabilis and its implications for the hypothesis that venom gland were present in this species is published by Benoit et al. (2017).{{cite journal |author1=Julien Benoit |author2=Luke A. Norton |author3=Paul R. Manger |author4=Bruce S. Rubidge |year=2017 |title=Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning techniques |journal=PLOS ONE |volume=12 |issue=2 |pages=e0172047 |doi=10.1371/journal.pone.0172047 |pmid=28187210 |pmc=5302418 |bibcode=2017PLoSO..1272047B |doi-access=free }}
  • A redescription and a study on the phylogenetic relationships of Silphoictidoides ruhuhuensis is published by Maisch (2017), who considers the species to be a basal member of Baurioidea.{{cite journal |author=Michael W. Maisch |year=2017 |title=Re-assessment of Silphoictidoides ruhuhuensis von Huene, 1950 (Therapsida, Therocephalia) from the Late Permian of Tanzania: one of the most basal baurioids known |journal=Palaeodiversity |volume=10 |issue=1 |pages=25–39 |doi=10.18476/pale.v10.a3 |s2cid=90077728 |doi-access=free }}
  • A study on the internal morphology of the interorbital region of the skull of basal cynodonts, including rarely fossilized orbitosphenoid elements, is published by Benoit et al. (2017).{{Cite journal|author1=Julien Benoit |author2=Sandra C. Jasinoski |author3=Vincent Fernandez |author4=Fernando Abdala |year=2017 |title=The mystery of a missing bone: revealing the orbitosphenoid in basal Epicynodontia (Cynodontia, Therapsida) through computed tomography |journal=The Science of Nature |volume=104 |issue=7–8 |pages=Article 66 |doi=10.1007/s00114-017-1487-z |pmid=28721557 |bibcode=2017SciNa.104...66B |s2cid=23688904 |hdl=11336/58253 |hdl-access=free }}
  • A study on the anatomy of the nasal regions of the non-mammalian cynodonts Massetognathus, Probainognathus and Elliotherium, comparing it to the nasal regions of fossil mammaliaforms and extant mammals, is published by Crompton et al. (2017).{{cite journal |author1=A. W. Crompton |author2=T. Owerkowicz |author3=B.-A. S. Bhullar |author4=C. Musinsky |year=2017 |title=Structure of the nasal region of non-mammalian cynodonts and mammaliaforms: Speculations on the evolution of mammalian endothermy |journal=Journal of Vertebrate Paleontology |volume=37 |issue=1 |pages=e1269116 |doi=10.1080/02724634.2017.1269116 |bibcode=2017JVPal..37E9116C |s2cid=39300694 }}
  • A survey of the aggregations of the specimens of Galesaurus planiceps and Thrinaxodon liorhinus, with emphasis on whether the aggregations consist of individuals of similar age or representing a mixture of different age classes, is published by Jasinoski & Abdala (2017).{{cite journal |author1=Sandra C. Jasinoski |author2=Fernando Abdala |year=2017 |title=Aggregations and parental care in the Early Triassic basal cynodonts Galesaurus planiceps and Thrinaxodon liorhinus |journal=PeerJ |volume=5 |pages=e2875 |doi=10.7717/peerj.2875 |pmid=28097072 |pmc=5228509 |doi-access=free }}
  • A study on the ontogenetic changes in the skull and mandible of Galesaurus planiceps is published by Jasinoski & Abdala (2017).{{cite journal |author1=Sandra C. Jasinoski |author2=Fernando Abdala |year=2017 |title=Cranial Ontogeny of the Early Triassic Basal Cynodont Galesaurus planiceps |journal=The Anatomical Record |volume=300 |issue=2 |pages=353–381 |doi=10.1002/ar.23473 |pmid=27615281 |s2cid=3629704 |doi-access=free |hdl=11336/66934 |hdl-access=free }}
  • A description of the postcranial skeleton of Boreogomphodon from the Triassic Pekin Formation (North Carolina, United States) and a review of the postcranial variation across members of the family Traversodontidae is published by Liu, Schneider & Olsen (2017).{{cite journal |author1=Jun Liu |author2=Vincent P. Schneider |author3=Paul E. Olsen |year=2017 |title=The postcranial skeleton of Boreogomphodon (Cynodontia: Traversodontidae) from the Upper Triassic of North Carolina, USA and the comparison with other traversodontids |journal=PeerJ |volume=5 |pages=e3521 |doi=10.7717/peerj.3521 |pmid=28929007 |pmc=5601084 |doi-access=free }}
  • A study on the jaw movement of Exaeretodon argentinus as indicated by its dental microwear is published by Kubo, Yamada & Kubo (2017).{{cite journal |author1=Tai Kubo |author2=Eisuke Yamada |author3=Mugino O. Kubo |year=2017 |title=Masticatory jaw movement of Exaeretodon argentinus (Therapsida: Cynodontia) inferred from its dental microwear |journal=PLOS ONE |volume=12 |issue=11 |pages=e0188023 |doi=10.1371/journal.pone.0188023 |pmid=29186178 |pmc=5706674 |bibcode=2017PLoSO..1288023K |doi-access=free }}
  • A study on the morphology of the teeth of the cynodont Candelariodon barberenai, as well as on the phylogenetic relationships of the species, is published by Martinelli et al. (2017).{{cite journal |author1=Agustín G. Martinelli |author2=Marina Bento Soares |author3=Téo Veiga De Oliveira |author4=Pablo G. Rodrigues |author5=Cesar L. Schultz |year=2017 |title=The Triassic eucynodont Candelariodon barberenai revisited and the early diversity of stem prozostrodontians |journal=Acta Palaeontologica Polonica |volume=62 |issue=3 |pages=527–542 |doi=10.4202/app.00344.2017 |doi-access=free }}
  • A description of the anatomy of the postcranial skeleton of Tritylodon longaevus is published by Gaetano, Abdala & Govender (2017).{{cite journal |author1=Leandro C. Gaetano |author2=Fernando Abdala |author3=Romala Govender |year=2017 |title=The postcranial skeleton of the Lower Jurassic Tritylodon longaevus from southern Africa |journal=Ameghiniana |volume=54 |issue=1 |pages=1–35 |doi=10.5710/AMGH.11.09.2016.3011 |s2cid=131866292 |hdl=11336/67040 |hdl-access=free }}
  • A reassessment of the anatomy of the postcanine teeth of Stereognathus, based upon all available material from the United Kingdom, is published by Panciroli et al. (2017), who consider the species S. hebridicus to be a junior synonym of the species S. ooliticus.{{cite journal |author1=Elsa Panciroli |author2=Stig Walsh |author3=Nicholas C. Fraser |author4=Stephen L. Brusatte |author5=Ian Corfe |year=2017 |title=A reassessment of the postcanine dentition and systematics of the tritylodontid Stereognathus (Cynodontia, Tritylodontidae, Mammaliamorpha), from the Middle Jurassic of the United Kingdom |journal=Journal of Vertebrate Paleontology |volume=37 |issue=5 |pages=e1351448 |doi=10.1080/02724634.2017.1351448 |bibcode=2017JVPal..37E1448P |hdl=10138/230155 |s2cid=90100319 |doi-access=free |hdl-access=free }}
  • Cast of a burrow which was probably made by a tritheledontid cynodont is described from the Early Jurassic upper Elliot Formation (South Africa) by Bordy et al. (2017).{{cite journal |author1=E.M. Bordy |author2=L. Sciscio |author3=F. Abdala |author4=B.W. McPhee |author5=J.N. Choiniere |year=2017 |title=First Lower Jurassic vertebrate burrow from southern Africa (upper Elliot Formation, Karoo Basin, South Africa) |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=468 |pages=362–372 |doi=10.1016/j.palaeo.2016.12.024 |bibcode=2017PPP...468..362B |hdl=11336/91165 |hdl-access=free }}
  • A study on the evolution of jaw muscles across the cynodontmammaliaform transition is published by Lautenschlager et al. (2017).{{cite journal |author1=Stephan Lautenschlager |author2=Pamela Gill |author3=Zhe-Xi Luo |author4=Michael J. Fagan |author5=Emily J. Rayfield |year=2017 |title=Morphological evolution of the mammalian jaw adductor complex |journal=Biological Reviews |volume=92 |issue=4 |pages=1910–1940 |doi=10.1111/brv.12314 |pmid=27878942 |pmc=6849872 |url=https://research-information.bristol.ac.uk/ws/files/93471435/Lautenschlager_et_al_2016_Biological_Reviews.pdf }}

==New taxa==

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Alemoatherium{{cite journal |author1=Agustín G. Martinelli |author2=Estevan Eltink |author3=Átila A. S. Da-Rosa |author4=Max C. Langer |year=2017 |title=A new cynodont from the Santa Maria formation, south Brazil, improves Late Triassic probainognathian diversity |journal=Papers in Palaeontology |volume=3 |issue=3 |pages=401–423 |doi=10.1002/spp2.1081 |bibcode=2017PPal....3..401M |s2cid=134049061 }}

|

Gen. et sp. nov

|

Valid

|

Martinelli et al.

|

Late Triassic (late Carnian)

|

Santa Maria Formation

|

{{Flag|Brazil}}

|

A cynodont belonging to the group Prozostrodontia. The type species is A. huebneri.

|File:Alemoatherium_jaw_diagram.png

Aleodon cromptoni{{cite journal |author1=Agustín G. Martinelli |author2=Christian F. Kammerer |author3=Tomaz P. Melo |author4=Voltaire D. Paes Neto |author5=Ana Maria Ribeiro |author6=Átila A. S. Da-Rosa |author7=Cesar L. Schultz |author8=Marina Bento Soares |year=2017 |title=The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance |journal=PLOS ONE |volume=12 |issue=6 |pages=e0177948 |doi=10.1371/journal.pone.0177948 |pmid=28614355 |pmc=5470689 |bibcode=2017PLoSO..1277948M |doi-access=free }}

|

Sp. nov

|

Valid

|

Martinelli et al.

|

Triassic (Ladinian—early Carnian)

|

|

{{Flag|Brazil}}

{{Flag|Namibia}}?

|

A cynodont belonging to the family Chiniquodontidae.

|File:Figure_1_-_Localities_with_Aleodon_cromptoni_sp._(Martinelli_et._al._2017).png

Bulbasaurus{{cite journal |author=Christian F. Kammerer |author2=Roger M.H. Smith |year=2017 |title=An early geikiid dicynodont from the Tropidostoma Assemblage Zone (late Permian) of South Africa |journal=PeerJ |volume=5 |pages=e2913 |doi=10.7717/peerj.2913 |pmid=28168104 |pmc=5289114 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Kammerer & Smith

|

Late Permian

|

Teekloof Formation

|

{{Flag|South Africa}}

|

A dicynodont belonging to the family Geikiidae. The type species is B. phylloxyron.

|File:Bulbasaurus_skull.png

Dalongkoua{{cite journal |author=Jun Liu |author2=Fernando Abdala |year=2017 |title=Therocephalian (Therapsida) and chroniosuchian (Reptiliomorpha) from the Permo-Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar, Xinjiang, China |journal=Vertebrata PalAsiatica |volume=55 |issue=1 |pages=24–40 |url=http://www.ivpp.cas.cn/cbw/gjzdwxb/xbwzxz/201611/t20161128_4707955.html |doi=10.19615/j.cnki.1000-3118.2017.01.002 }}

|

Gen. et sp. nov

|

Valid

|

Liu & Abdala

|

Late Permian

|

Guodikeng Formation

|

{{Flag|China}}

|

A therocephalian. The type species is D. fuae.

|

Microwhaitsia{{cite journal |author1=Adam K. Huttenlocker |author2=Roger M.H. Smith |year=2017 |title=New whaitsioids (Therapsida: Therocephalia) from the Teekloof Formation of South Africa and therocephalian diversity during the end-Guadalupian extinction |journal=PeerJ |volume=5 |pages=e3868 |doi=10.7717/peerj.3868 |pmid=29018609 |pmc=5632541 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Huttenlocker & Smith

|

Permian (Wuchiapingian)

|

Teekloof Formation

|

{{Flag|South Africa}}

|

A whaitsiid therocephalian. The type species is M. mendrezi.

|

Nuurtherium{{cite journal |author1=Paúl M. Velazco |author2=Alexandra J. Buczek |author3=Michael J. Novacek |year=2017 |title=Two new tritylodontids (Synapsida, Cynodontia, Mammaliamorpha) from the Upper Jurassic, southwestern Mongolia |journal=American Museum Novitates |issue=3874 |pages=1–35 |doi=10.1206/3874.1 |hdl=2246/6698 |s2cid=58895088 |url=https://www.biodiversitylibrary.org/item/262802 }}

|

Gen. et sp. nov

|

Valid

|

Velazco, Buczek & Novacek

|

Late Jurassic

|

Ulan Malgait Sequence

|

{{Flag|Mongolia}}

|

A tritylodontid cynodont. The type species is N. baruunensis.

|

Ophidostoma

|

Gen. et sp. nov

|

Valid

|

Huttenlocker & Smith

|

Permian (Wuchiapingian)

|

Teekloof Formation

|

{{Flag|South Africa}}

|

A whaitsioid therocephalian of uncertain phylogenetic placement. The type species is O. tatarinovi.

|

Parasuminia{{Cite journal|author=A. A. Kurkin |year=2017 |title=A new Galeopid (Anomodontia, Galeopidae) from the Permian of Eastern Europe |journal=Paleontological Journal |volume=51 |issue=3 |pages=308–312 |doi=10.1134/S0031030117030042 |bibcode=2017PalJ...51..308K |s2cid=134828114 }}

|

Gen. et sp. nov

|

Valid

|

Kurkin

|

Permian (Severodvinian)

|

Poldarsa Formation

|

{{Flag|Russia}}

|

An anomodont related to Suminia. Genus includes new species P. ivakhnenkoi.

|

Scalenodon ribeiroae{{cite journal |author1=Tomaz P. Melo |author2=Agustín G. Martinelli |author3=Marina B. Soares |year=2017 |title=A new gomphodont cynodont (Traversodontidae) from the Middle–Late Triassic Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence, Brazil |journal=Palaeontology |volume=60 |issue=4 |pages=571–582 |doi=10.1111/pala.12302 |bibcode=2017Palgy..60..571M |s2cid=135139694 |doi-access=free }}

|

Sp. nov

|

Valid

|

Melo, Martinelli & Soares

|

Triassic

|

Santa Maria Supersequence

|

{{Flag|Brazil}}

|

A traversodontid cynodont.

|

Shartegodon

|

Gen. et sp. nov

|

Valid

|

Velazco, Buczek & Novacek

|

Late Jurassic

|

Ulan Malgait Sequence

|

{{Flag|Mongolia}}

|

A tritylodontid cynodont. The type species is S. altai.

|

Shiguaignathus{{cite journal |author1=Jun Liu |author2=Fernando Abdala |year=2017 |title=The tetrapod fauna of the upper Permian Naobaogou Formation of China: 1. Shiguaignathus wangi gen. et sp. nov., the first akidnognathid therocephalian from China |journal=PeerJ |volume=5 |pages=e4150 |doi=10.7717/peerj.4150 |pmid=29230374 |pmc=5723136 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Liu & Abdala

|

Late Permian

|

Naobaogou Formation

|

{{Flag|China}}

|

An akidnognathid therocephalian. The type species is S. wangi.

|File:Shiguaignathus.png

=Mammals=

{{Main|2017 in mammal paleontology}}

Other animals

=Research=

  • A study on a succession of Ediacaran to Cambrian fossil assemblages from the eastern Siberian Platform (Russia) is published by Zhu et al. (2017), who argue that so-called Ediacaran and earliest Cambrian skeletal biotas overlap without notable biotic turnover.{{Cite journal|author1=M. Zhu |author2=A. Yu. Zhuravlev |author3=R.A. Wood |author4=F. Zhao |author5=S.S. Sukhov |year=2017 |title=A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform |journal=Geology |volume=45 |issue=5 |pages=459–462 |doi=10.1130/G38865.1 |bibcode=2017Geo....45..459Z |hdl=20.500.11820/319d761a-cd15-4e81-9038-bde69d45046b |s2cid=132968299 |url=https://www.pure.ed.ac.uk/ws/files/30398752/30398726._AAM._Wood..pdf }}
  • A study on the Ediacaran taxon Parvancorina minchami, indicating that this animal was capable of performing rheotaxis, is published by Paterson et al. (2017).{{Cite journal|author1=John R. Paterson |author2=James G. Gehling |author3=Mary L. Droser |author4=Russell D. C. Bicknell |year=2017 |title=Rheotaxis in the Ediacaran epibenthic organism Parvancorina from South Australia |journal=Scientific Reports |volume=7 |pages=Article number 45539 |doi=10.1038/srep45539 |pmid=28358056 |pmc=5371987 |bibcode=2017NatSR...745539P }}
  • A study on the water flow around the body of the Ediacaran taxon Parvancorina and its implications for the feeding mode and mobility of this animal is published by Darroch et al. (2017).{{Cite journal|author1=Simon A. F. Darroch |author2=Imran A. Rahman |author3=Brandt Gibson |author4=Rachel A. Racicot |author5=Marc Laflamme |year=2017 |title=Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina |journal=Biology Letters |volume=13 |issue=5 |pages=20170033 |doi=10.1098/rsbl.2017.0033 |pmid=28515329 |pmc=5454237 }}
  • Fossils of members of the genus Namacalathus (co-occurring with Cloudina and Corumbella) are reported from the Ediacaran Tagatiya Guazú Formation (Itapucumi Group, Paraguay) by Warren et al. (2017), extending known geographic range of the taxon.{{Cite journal|author1=Lucas Veríssimo Warren |author2=Fernanda Quaglio |author3=Marcello Guimarães Simões |author4=Claudio Gaucher |author5=Claudio Riccomini |author6=Daniel G. Poiré |author7=Bernardo Tavares Freitas |author8=Paulo C. Boggiani |author9=Alcides Nobrega Sial |year=2017 |title=Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran |journal=Precambrian Research |volume=298 |pages=79–87 |doi=10.1016/j.precamres.2017.05.003 |bibcode=2017PreR..298...79W |hdl=11449/163140 |url=http://sedici.unlp.edu.ar/handle/10915/146896 |hdl-access=free }}
  • A study on the morphology, growth and development of Dickinsonia costata is published by Evans, Droser & Gehling (2017).{{Cite journal|author1=Scott D. Evans |author2=Mary L. Droser |author3=James G. Gehling |year=2017 |title=Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata |journal=PLOS ONE |volume=12 |issue=5 |pages=e0176874 |doi=10.1371/journal.pone.0176874 |pmid=28520741 |pmc=5435172 |bibcode=2017PLoSO..1276874E |doi-access=free }}
  • A study on the growth and development of Dickinsonia is published by Hoekzema et al. (2017), who interpret this taxon as an animal.{{Cite journal|author1=Renee S. Hoekzema |author2=Martin D. Brasier |author3=Frances S. Dunn |author4=Alexander G. Liu |year=2017 |title=Quantitative study of developmental biology confirms Dickinsonia as a metazoan |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1862 |pages=20171348 |doi=10.1098/rspb.2017.1348 |pmid=28904140 |pmc=5597836 }}
  • A study on the anatomy of Dickinsonia costata and D. tenuis is published by Zakrevskaya & Ivantsov (2017), who interpret D. costata as probably descended from D. tenuis by neoteny.{{Cite journal|author1=M.A. Zakrevskaya |author2=A.Yu. Ivantsov |year=2017 |title=Dickinsonia costata — the first evidence of neoteny in Ediacaran organisms |journal=Invertebrate Zoology |volume=14 |issue=1 |pages=92–98 |doi=10.15298/invertzool.14.1.13 |doi-access=free }}
  • Description of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian Carrara Formation (California, United States), tentatively assigned to the genus Discophyllum (an animal of uncertain phylogenetic placement, might be a chondrophore or an eldoniid) is published by Lieberman et al. (2017).{{Cite journal|author1=Bruce S. Lieberman |author2=Richard Kurkewicz |author3=Heather Shinogle |author4=Julien Kimmig |author5=Breandán Anraoi MacGabhann |year=2017 |title=Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA |journal=PeerJ |volume=5 |pages=e3312 |doi=10.7717/peerj.3312 |pmid=28603667 |pmc=5463991 |doi-access=free }}
  • Specimens of Cloudina associated with microbial mat textures are reported from the Ediacaran Tamengo Formation (Brazil) by Becker-Kerber et al. (2017).{{Cite journal|author1=Bruno Becker-Kerber |author2=Mírian Liza Alves Forancelli Pacheco |author3=Isaac Daniel Rudnitzki |author4=Douglas Galante |author5=Fabio Rodrigues |author6=Juliana de Moraes Leme |year=2017 |title=Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 5482 |doi=10.1038/s41598-017-05753-8 |pmid=28710440 |pmc=5511220 |bibcode=2017NatSR...7.5482B }}
  • An assemblage of trace fossils from EdiacaranCambrian siltstones in Brazil, probably produced by a nematoid-like organism, is described by Parry et al. (2017).{{Cite journal|author1=Luke A. Parry |author2=Paulo C. Boggiani |author3=Daniel J. Condon |author4=Russell J. Garwood |author5=Juliana de M. Leme |author6=Duncan McIlroy |author7=Martin D. Brasier |author8=Ricardo Trindade |author9=Ginaldo A. C. Campanha |author10=Mírian L. A. F. Pacheco |author11=Cleber Q. C. Diniz |author12=Alexander G. Liu |year=2017 |title=Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil |journal=Nature Ecology & Evolution |volume=1 |issue=10 |pages=1455–1464 |doi=10.1038/s41559-017-0301-9 |pmid=29185521 |bibcode=2017NatEE...1.1455P |s2cid=40497407 |url=http://eprints.esc.cam.ac.uk/4280/1/s41559-017-0301-9.pdf }}
  • A diverse fauna dominated by sponges living immediately after the Hirnantian extinction is described from China by Botting et al. (2017).{{Cite journal|author1=Joseph P. Botting |author2=Lucy A. Muir |author3=Yuandong Zhang |author4=Xuan Ma |author5=Junye Ma |author6=Longwu Wang |author7=Jianfang Zhang |author8=Yanyan Song |author9=Xiang Fang |year=2017 |title=Flourishing Sponge-Based Ecosystems after the End-Ordovician Mass Extinction |journal=Current Biology |volume=27 |issue=4 |pages=556–562 |doi=10.1016/j.cub.2016.12.061 |pmid=28190724 |doi-access=free |bibcode=2017CBio...27..556B }}
  • A diverse Early Triassic (Olenekian) marine assemblage (Paris biota), including leptomitid protomonaxonid sponges (a group otherwise known only from Cambrian and Ordovician), new forms of the crinoid order Holocrinida displaying advanced characters, a probable basal ophiodermatid and gladius-bearing coleoids (previously unknown in Early Triassic strata) is reported from Paris (Idaho, United States) by Brayard et al. (2017).{{Cite journal|author1=Arnaud Brayard |author2=L. J. Krumenacker |author3=Joseph P. Botting |author4=James F. Jenks |author5=Kevin G. Bylund |author6=Emmanuel Fara |author7=Emmanuelle Vennin |author8=Nicolas Olivier |author9=Nicolas Goudemand |author10=Thomas Saucède |author11=Sylvain Charbonnier |author12=Carlo Romano |author13=Larisa Doguzhaeva |author14=Ben Thuy |author15=Michael Hautmann |author16=Daniel A. Stephen |author17=Christophe Thomazo |author18=Gilles Escarguel |year=2017 |title=Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna |journal=Science Advances |volume=3 |issue=2 |pages=e1602159 |doi=10.1126/sciadv.1602159 |pmid=28246643 |pmc=5310825 |bibcode=2017SciA....3E2159B }}
  • A study on the muscle anatomy of Pambdelurion whittingtoni is published by Young & Vinther (2017).{{Cite journal|author1=Fletcher J. Young |author2=Jakob Vinther |year=2017 |title=Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni |journal=Palaeontology |volume=60 |issue=1 |pages=27–54 |doi=10.1111/pala.12269 |bibcode=2017Palgy..60...27Y |hdl=1983/92180ef0-2205-4c65-9a70-90d59cfea2f4 |s2cid=55477207 |url=https://research-information.bristol.ac.uk/en/publications/onychophoranlike-myoanatomy-of-the-cambrian-gilled-lobopodian-pambdelurion-whittingtoni(92180ef0-2205-4c65-9a70-90d59cfea2f4).html |hdl-access=free }}
  • Cambrian species Zhenghecaris shankouensis, originally classified as a bivalved arthropod, is reinterpreted as a member of Radiodonta by Zeng et al. (2017).
  • The holotype specimen of a putative lobopodian species Aysheaia prolata is reinterpreted as an isolated frontal appendage of a radiodontan belonging to the genus Stanleycaris by Pates, Daley & Ortega-Hernández (2017).{{Cite journal|author1=Stephen Pates |author2=Allison C. Daley |author3=Javier Ortega-Hernández |year=2017 |title=Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris |journal=Acta Palaeontologica Polonica |volume=62 |issue=3 |pages=619–625 |doi=10.4202/app.00361.2017 |doi-access=free }}
  • A revision of the radiodontan genus Caryosyntrips is published by Pates & Daley (2017), who interpret the holotype specimen of a putative lobopodian species Mureropodia apae as a partial isolated appendage of a member of the genus Caryosyntrips.{{Cite journal|author1=Stephen Pates |author2=Allison C. Daley |year=2017 |title=Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada |journal=Papers in Palaeontology |volume=3 |issue=3 |pages=461–470 |doi=10.1002/spp2.1084 |bibcode=2017PPal....3..461P |s2cid=135026011 |url=http://osf.io/5avkg/ }}
  • Description of the morphology of Amplectobelua symbrachiata, with a focus on its head region, is published by Cong et al. (2017).{{Cite journal|author1=Peiyun Cong |author2=Allison C. Daley |author3=Gregory D. Edgecombe |author4=Xianguang Hou |year=2017 |title=The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata |journal=BMC Evolutionary Biology |volume=17 |issue=1 |pages=208 |doi=10.1186/s12862-017-1049-1 |pmid=28854872 |pmc=5577670 |doi-access=free |bibcode=2017BMCEE..17..208C }}
  • A study on the anatomy of the Cambrian hyolith Haplophrentis, as well as on the phylogenetic relationships of the hyoliths, is published by Moysiuk, Smith & Caron (2017).{{Cite journal|author1=Joseph Moysiuk |author2=Martin R. Smith |author3=Jean-Bernard Caron |year=2017 |title=Hyoliths are Palaeozoic lophophorates |journal=Nature |volume=541 |issue=7637 |pages=394–397 |doi=10.1038/nature20804 |pmid=28077871 |bibcode=2017Natur.541..394M |s2cid=4409157 |url=http://dro.dur.ac.uk/20195/1/20195.pdf }}
  • A study on the phylogenetic relationships of Tullimonstrum gregarium, challenging its interpretation as a vertebrate, is published by Sallan et al. (2017).{{Cite journal|author1=Lauren Sallan |author2=Sam Giles |author-link2=Sam Giles|author3=Robert S. Sansom |author4=John T. Clarke |author5=Zerina Johanson |author6=Ivan J. Sansom |author7=Philippe Janvier |year=2017 |title=The 'Tully Monster' is not a vertebrate: characters, convergence and taphonomy in Palaeozoic problematic animals |journal=Palaeontology |volume=60 |issue=2 |pages=149–157 |doi=10.1111/pala.12282 |bibcode=2017Palgy..60..149S |s2cid=90132820 |url=http://pure-oai.bham.ac.uk/ws/files/39492257/Tullimonstrum_Palaeo_Revision_FINAL.pdf }}
  • New exceptionally preserved fossils of Vetulicola longbaoshanensis are described from the Lower Cambrian Wulongqing Formation (China) by Li, Liu & Ou (2017).{{Cite journal|author1=JinShu Li |author2=JianNi Liu |author3=Qiang Ou |year=2017 |title=New observations on Vetulicola longbaoshanensis from the Lower Cambrian Guanshan Biota (Series 2, Stage 4), South China |journal=Science China Earth Sciences |volume=60 |issue=10 |pages=1795–1804 |doi=10.1007/s11430-017-9088-y |bibcode=2017ScChD..60.1795L |s2cid=135037211 }}
  • Putative trematode metacercariae preserved at the base of the femora of an agamid lizard are described from the Cretaceous Burmese amber (Myanmar) by Poinar et al. (2017).{{Cite journal|author1=George Poinar Jr. |author2=Kenneth A. Philbrick |author3=Martin J. Cohn |author4=Russell T. Turner |author5=Urszula T. Iwaniec |author6=Joerg Wunderlich |year=2017 |title=X-ray microcomputed tomography reveals putative trematode metacercaria in a 100 million year-old lizard (Squamata: Agamidae) |journal=Cretaceous Research |volume=80 |pages=27–30 |doi=10.1016/j.cretres.2017.07.017 |bibcode=2017CrRes..80...27P }}

=New taxa=

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Acoelia discontinua{{Cite journal|author=Ya-Sheng Wu |year=2017 |title=A latest Permian non-reef calcisponge fauna from Laibin, Guangxi, southern China and its significance |journal=Journal of Palaeogeography |volume=6 |issue=1 |pages=60–68 |doi=10.1016/j.jop.2016.10.002 |bibcode=2017JPalG...6...60W |doi-access=free }}

|

Sp. nov

|

Valid

|

Wu

|

Permian (Changhsingian)

|

|

{{Flag|China}}

|

A calcareous sponge belonging to the order Inozoa and the family Acoeliidae.

|

Aeroretiolites{{Cite journal|author1=Michael J. Melchin |author2=Alfred C. Lenz |author3=Anna Kozłowska |year=2017 |title=Retiolitine graptolites from the Aeronian and lower Telychian (Llandovery, Silurian) of Arctic Canada |journal=Journal of Paleontology |volume=91 |issue=1 |pages=116–145 |doi=10.1017/jpa.2016.107 |bibcode=2017JPal...91..116M |s2cid=131854052 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Melchin, Lenz & Kozłowska

|

Silurian

|

|

{{Flag|Canada}}

|

A graptolite. Genus includes new species A. cancellatus.

|

Aladraco{{cite journal |author=Gerd Geyer |year=2017 |title=A new enigmatic hyolith from the Cambrian of West Gondwana and its bearing on the systematics of hyoliths |journal=Papers in Palaeontology |volume=4 |issue=1 |pages=85–100 |doi=10.1002/spp2.1098 |s2cid=90158754 }}

|

Nom. et sp. nov

|

Valid

|

Geyer

|

Cambrian

|

Jbel Wawrmast Formation

Tannenknock Formation

|

{{Flag|Germany}}

{{Flag|Morocco}}

|

A member of Hyolitha; a replacement name for Oxyprymna Kiderlen (1933). Genus includes A. schloppensis (Wurm, 1925) and a new species A. ougnatensis.

|

Allonnia erjiensis{{Cite journal|author1=Hao Yun |author2=Xingliang Zhang |author3=Luoyang Li |year=2017 |title=Chancelloriid Allonnia erjiensis sp. nov. from the Chengjiang Lagerstätte of South China |journal=Journal of Systematic Palaeontology |volume=16 |issue=5 |pages=435–444 |doi=10.1080/14772019.2017.1311380 |s2cid=90908751 }}

|

Sp. nov

|

Valid

|

Yun, Zhang & Li

|

Cambrian

|

Chengjiang Lagerstätte

|

{{Flag|China}}

|

A chancelloriid.

|

Andiprion{{Cite journal|author1=Olle Hints |author2=Petra Tonarová |author3=Mats E. Eriksson |author4=Claudia V. Rubinstein |author5=G. Susana de la Puente |year=2017 |title=Early Middle Ordovician scolecodonts from north-western Argentina and the emergence of labidognath polychaete jaw apparatuses |journal=Palaeontology |volume=60 |issue=4 |pages=583–593 |doi=10.1111/pala.12303 |bibcode=2017Palgy..60..583H |s2cid=90358332 |url=https://lup.lub.lu.se/record/c7ff9a1d-708a-4631-8bab-b09cec35cbc1 |hdl=11336/96614 |hdl-access=free }}

|

Gen. et sp. nov

|

Valid

|

Hints et al.

|

Ordovician (Dapingian)

|

|

{{Flag|Argentina}}

|

A polychaete described on the basis of scolecodonts. Genus includes new species A. paxtonae.

|

Angulosuspongia{{Cite journal|author1=Xinglian Yang |author2=Yuanlong Zhao |author3=Loren E. Babcock |author4=Jin Peng |year=2017 |title=A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China |journal=Geological Magazine |volume=154 |issue=6 |pages=1334–1343 |doi=10.1017/S0016756816001229 |bibcode=2017GeoM..154.1334Y |s2cid=133251786 }}{{Cite journal|author1=X.-L. Yang |author2=Y.-L. Zhao |author3=L. E. Babcock |author4=J. Peng |year=2017 |title=Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota (Cambrian Stage 5), Guizhou, South China |journal=Scientific Reports |volume=7 |pages=Article number 42945 |doi=10.1038/srep42945 |pmid=28220860 |pmc=5318851 |bibcode=2017NatSR...742945Y }}

|

Gen. et sp. nov

|

Valid

|

Yang et al.

|

Cambrian Stage 5

|

Kaili Formation

|

{{Flag|China}}

|

A sponge belonging to the order Verongida and the family Vauxiidae. Genus includes new species A. sinensis.

|

Ankalodous{{Cite journal|author1=Degan Shu |author2=Simon Conway Morris |author3=Jian Han |author4=Jennifer F. Hoyal Cuthill |author5=Zhifei Zhang |author6=Meirong Cheng |author7=Hai Huang |year=2017 |title=Multi-jawed chaetognaths from the Chengjiang Lagerstätte (Cambrian, Series 2, Stage 3) of Yunnan, China |journal=Palaeontology |volume=60 |issue=6 |pages=763–772 |doi=10.1111/pala.12325 |bibcode=2017Palgy..60..763S |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Shu et al.

|

Cambrian Series 3

|

Qiongzhusi (Chiungchussu) Formation

|

{{Flag|China}}

|

An arrow worm. The type species is A. sericus.

|

Archaeochionelasmus{{cite journal |author1=Tomáš Kočí |author2=Martina Kočová Veselská |author3=William A. Newman |author4=John S. Buckeridge |author5=Jan Sklenář |year=2017 |title=Archaeochionelasmus nekvasilovae gen. et sp. nov. (Cirripedia, Balanomorpha, Chionelasmatoidea) from the Bohemian Cretaceous Basin (Czech Republic): the first bona fide Cretaceous neobalanoform |journal=Zootaxa |volume=4294 |issue=2 |pages=181–196 |doi=10.11646/zootaxa.4294.2.3 }}

|

Gen. et sp. nov

|

Valid

|

Kočí et al.

|

Late Cretaceous (Cenomanian)

|

Bohemian Cretaceous Basin

|

{{Flag|Czech Republic}}

|

An animal of uncertain phylogenetic placement. Originally interpreted as a barnacle belonging to the group Balanomorpha and the superfamily Chionelasmatoidea; Gale & Skelton (2018) considered it to be a rudist bivalve instead.{{cite journal |author1=Andy S. Gale |author2=Peter W. Skelton |year=2018 |title=The Cretaceous acorn barnacle Archaeochionelasmus nekvasilovae Kočí, Newman and Buckeridge, 2017 (Cirripedia, Neobalanomorpha) is a fragmentary rudist (Bivalvia, Mollusca) |journal=Cretaceous Research |volume=91 |pages=251–256 |doi=10.1016/j.cretres.2018.05.017 |bibcode=2018CrRes..91..251G |s2cid=133677479 |url=http://oro.open.ac.uk/55454/1/cretaceousacornbarnacle.pdf }} Genus includes new species A. nekvasilovae.

|

Biskolites{{cite journal |author1=Martin Valent |author2=Oldřich Fatka |author3=Ladislav Marek |year=2017 |title=Biskolites iactans gen. et sp. nov. from the Cambrian of the Czech Republic (Hyolitha, Skryje-Týřovice Basin) |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=285 |issue=2 |pages=227–233 |doi=10.1127/njgpa/2017/0679 }}

|

Gen. et sp. nov

|

Valid

|

Valent, Fatka & Marek

|

Cambrian (Drumian)

|

Buchava Formation

|

{{Flag|Czech Republic}}

|

A member of Hyolitha. Genus includes new species B. iactans.

|

Capinatator{{Cite journal|author1=Derek E.G. Briggs |author2=Jean-Bernard Caron |year=2017 |title=A large Cambrian chaetognath with supernumerary grasping spines |journal=Current Biology |volume=27 |issue=16 |pages=2536–2543.e1 |doi=10.1016/j.cub.2017.07.003 |pmid=28781052 |s2cid=13291198 |doi-access=free |bibcode=2017CBio...27E2536B }}

|

Gen. et sp. nov

|

Valid

|

Briggs & Caron

|

Cambrian

|

Burgess Shale

|

{{Flag|Canada}}
({{Flag|British Columbia}})

|

An arrow worm. The type species is C. praetermissus.

|File:Capinatator_praetermissus.jpg

Caryosyntrips camurus

|

Sp. nov

|

Valid

|

Pates & Daley

|

Cambrian

|

Burgess Shale

Langston Formation

Valdemiedes Formation?

|

{{Flag|Canada}}
({{Flag|British Columbia}})

{{Flag|United States}}
({{Flag|Utah}})

{{Flag|Spain}}?

|

A member of Radiodonta.

|File:20191221_Radiodonta_frontal_appendage_Caryosyntrips_camurus.png

Caryosyntrips durus

|

Sp. nov

|

Valid

|

Pates & Daley

|

Cambrian

|

Wheeler Shale

|

{{Flag|United States}}
({{Flag|Utah}})

|

A member of Radiodonta.

|File:20191221_Radiodonta_frontal_appendage_Caryosyntrips_durus.png

Cloudina ningqiangensis{{Cite journal|author1=Yaoping Cai |author2=Iván Cortijo |author3=James D. Schiffbauer |author4=Hong Hua |year=2017 |title=Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China |journal=Precambrian Research |volume=298 |pages=146–156 |doi=10.1016/j.precamres.2017.05.016 |bibcode=2017PreR..298..146C }}

|

Sp. nov

|

Valid

|

Cai et al.

|

Late Ediacaran

|

|

{{Flag|China}}

|

|

Cloudina xuanjiangpingensis

|

Sp. nov

|

Valid

|

Cai et al.

|

Late Ediacaran

|

|

{{Flag|China}}

|

|

Conchicolites rossicus{{Cite journal |author1=Olev Vinn |author2=Anna Madison |year=2017 |title=Cornulitids from the Upper Ordovician of northwestern Russia |journal=Carnets de Géologie |volume=17 |issue=12 |pages=235–241 |doi=10.4267/2042/64289 |doi-access=free }}

|

Sp. nov

|

Valid

|

Vinn & Madison

|

Ordovician (Katian)

|

|

{{Flag|Russia}}

|

A member of Cornulitida belonging to the family Cornulitidae.

|

Conciliospongia{{Cite journal|author1=Joseph P. Botting |author2=Yuandong Zhang |author3=Lucy A. Muir |year=2017 |title=Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 5286 |doi=10.1038/s41598-017-05604-6 |pmid=28706211 |pmc=5509731 |bibcode=2017NatSR...7.5286B }}

|

Gen. et sp. nov

|

|

Botting, Zhang & Muir

|

Late Ordovician

|

Wenchang Formation

|

{{Flag|China}}

|

A stem-demosponge of uncertain phylogenetic placement. The type species is C. anjiensis.

|

Corallistes campanensis{{Cite journal|author=Ewa Świerczewska-Gładysz |year=2017 |title=Early Campanian Corallistidae (lithistid Demospongiae) from the Miechów and Mogilno-Łódź synclinoria, southern and central Poland |journal=Cretaceous Research |volume=71 |pages=40–62 |doi=10.1016/j.cretres.2016.11.007 |bibcode=2017CrRes..71...40S }}

|

Sp. nov

|

Valid

|

Świerczewska-Gładysz

|

Late Cretaceous (early Campanian)

|

|

{{Flag|Poland}}

|

A lithistid demosponge belonging to the family Corallistidae.

|

Cretacimermis aphidophilus{{Cite journal|author=George O. Poinar |year=2017 |title=A mermithid nematode, Cretacimermis aphidophilus sp. n. (Nematoda: Mermithidae), parasitising an aphid (Hemiptera: Burmitaphididae) in Myanmar amber: a 100 million year association |journal=Nematology |volume=19 |issue=5 |pages=509–513 |doi=10.1163/15685411-00003063 }}

|

Sp. nov

|

Valid

|

Poinar

|

Late Cretaceous (Cenomanian)

|

Burmese amber

|

{{Flag|Myanmar}}

|

A nematode belonging to the family Mermithidae.

|

Eolorica{{Cite journal |author1=Thomas H. P. Harvey |author2=Nicholas J. Butterfield |year=2017 |title=Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos |journal=Nature Ecology & Evolution |volume=1 |issue=3 |pages=Article number 0022 |doi=10.1038/s41559-016-0022 |pmid=28812727 |url=http://eprints.esc.cam.ac.uk/3810/2/s41559-016-0022-s1.pdf |hdl=2381/38658 |s2cid=22874770 |access-date=2019-08-16 |archive-date=2021-11-29 |archive-url=https://web.archive.org/web/20211129083851/http://eprints.esc.cam.ac.uk/3810/2/s41559-016-0022-s1.pdf |url-status=dead }}

|

Gen. et sp. nov

|

Valid

|

Harvey & Butterfield

|

Cambrian (Furongian)

|

Deadwood Formation

|

{{Flag|Canada}}
({{Flag|Saskatchewan}})

|

A member of the total group of Loricifera. The type species is E. deadwoodensis.

|

Eorograptus spirifer

|

Sp. nov

|

Valid

|

Melchin, Lenz & Kozłowska

|

Silurian

|

|

{{Flag|Canada}}

|

A graptolite.

|

Feiyanella{{Cite journal|author1=Jian Han |author2=Yaoping Cai |author3=James D. Schiffbauer |author4=Hong Hua |author5=Xing Wang |author6=Xiaoguang Yang |author7=Kentaro Uesugi |author8=Tsuyoshi Komiya |author9=Jie Sun |year=2017 |title=A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China |journal=Geological Magazine |volume=154 |issue=6 |pages=1294–1305 |doi=10.1017/S0016756816001187 |bibcode=2017GeoM..154.1294H |s2cid=133366862 }}

|

Gen. et sp. nov

|

Valid

|

Han et al.

|

Earliest Cambrian

|

Kuanchuanpu Formation

|

{{Flag|China}}

|

A Cloudina-like tubular microfossil. The type species is F. manica.

|

Geoditesia jordaniensis{{Cite journal|author1=Daniel Ungureanu |author2=Fayez Ahmad |author3=Sherif Farouk |year=2017 |title=A Callovian (Middle Jurassic) poriferan fauna from northwestern Jordan: taxonomy, palaeoecology and palaeobiogeography |journal=Historical Biology: An International Journal of Paleobiology |volume=30 |issue=5 |pages=577–592 |doi=10.1080/08912963.2017.1304935 |s2cid=90874394 }}

|

Sp. nov

|

Valid

|

Ungureanu, Ahmad & Farouk

|

Middle Jurassic (Callovian)

|

|

{{Flag|Jordan}}

|

A sponge.

|

Glomerula gemmellaroi{{Cite journal|author1=Rossana Sanfilippo |author2=Antonietta Rosso |author3=Agatino Reitano |author4=Gianni Insacco |year=2017 |title=First record of sabellid and serpulid polychaetes from the Permian of Sicily |journal=Acta Palaeontologica Polonica |volume=62 |issue=1 |pages=25–38 |doi=10.4202/app.00288.2016 |doi-access=free }}

|

Sp. nov

|

Valid

|

Sanfilippo in Sanfilippo et al.

|

Permian

|

"Pietra di Salomone" Limestone

|

{{Flag|Italy}}

|

A polychaete belonging to the family Sabellidae, a species of Glomerula.

|

Guettardiscyphia zitti{{Cite journal|author=Radek Vodrážka |year=2017 |title=Guettardiscyphia zitti sp. n. - a remarkable hexactinellid sponge from the Lower Turonian of the Bohemian Cretaceous Basin |journal=Geological Quarterly |volume=61 |issue=3 |pages=632–640 |doi=10.7306/gq.1373 |doi-access=free }}

|

Sp. nov

|

Valid

|

Vodrážka

|

Late Cretaceous (Turonian)

|

Bílá Hora Formation

|

{{Flag|Czech Republic}}

|

A hexactinellid sponge belonging to the family Cribrospongiidae.

|

Inquicus{{Cite journal|author1=Peiyun Cong |author2=Xiaoya Ma |author3=Mark Williams |author4=David J. Siveter |author5=Derek J. Siveter |author6=Sarah E. Gabbott |author7=Dayou Zhai |author8=Tomasz Goral |author9=Gregory D. Edgecombe |author10=Xianguang Hou |year=2017 |title=Host-specific infestation in early Cambrian worms |journal=Nature Ecology & Evolution |volume=1 |issue=10 |pages=1465–1469 |doi=10.1038/s41559-017-0278-4 |pmid=29185506 |bibcode=2017NatEE...1.1465C |hdl=2381/41401 |s2cid=5564867 |url=https://figshare.com/articles/journal_contribution/10203803 |hdl-access=free }}

|

Gen. et sp. nov

|

Valid

|

Cong et al.

|

Early Cambrian

|

Chengjiang Lagerstätte

|

{{Flag|China}}

|

A tiny worm infecting members of the genera Cricocosmia and Mafangscolex. Genus includes new species I. fellatus.

|File:Inquicus_fellatus.jpg

Keretsa{{Cite journal|author=A.Yu. Ivantsov |year=2017 |title=The most probable Eumetazoa among late Precambrian macrofossils |journal=Invertebrate Zoology |volume=14 |issue=2 |pages=127–133 |doi=10.15298/invertzool.14.2.05 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Ivantsov

|

Late Precambrian

|

Zimnie Gory Formation

|

{{Flag|Russia}}
({{Flag|Arkhangelsk Oblast}})

|

An early eumetazoan, showing similarities to the arthropod species Naraoia longicaudata. The type species is K. brutoni.

|File:Keretsa_brutoni.jpg

Labechia yeongwolense{{Cite journal|author1=Juwan Jeon |author2=Jino Park |author3=Suk-Joo Choh |author4=Dong-Jin Lee |year=2017 |title=Early labechiid stromatoporoids of the Yeongheung Formation (Middle Ordovician), Yeongwol Group, mideastern Korean Peninsula: Part II. Systematic paleontology and paleogeographic implications |journal=Geosciences Journal |volume=21 |issue=3 |pages=331–340 |doi=10.1007/s12303-016-0055-4 |bibcode=2017GescJ..21..331J |s2cid=133559557 }}

|

Sp. nov

|

Valid

|

Jeon et al.

|

Ordovician (Darriwilian)

|

Yeongheung Formation

|

{{Flag|South Korea}}

|

A stromatoporoid.

|

Lepidocoleus kuangguoduni{{Cite journal|author1=Benjamin Gügel |author2=Kenneth De Baets |author3=Iwan Jerjen |author4=Philipp Schuetz |author5=Christian Klug |year=2017 |title=A new subdisarticulated machaeridian from the Middle Devonian of China: Insights into taphonomy and taxonomy using X-ray microtomography and 3D-analysis |journal=Acta Palaeontologica Polonica |volume=62 |issue=2 |pages=237–247 |doi=10.4202/app.00346.2017 |doi-access=free |hdl=20.500.11850/191018 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Gügel et al.

|

Devonian (Eifelian)

|

Nandan Formation

|

{{Flag|China}}

|

A machaeridian.

|

'Linevitus' guizhouensis{{Cite journal|author1=Haijing Sun |author2=Loren E. Babcock |author3=Jin Peng |author4=Jessica M. Kastigar |year=2017 |title=Systematics and palaeobiology of some Cambrian hyoliths from Guizhou, China, and Nevada, USA |journal=Alcheringa: An Australasian Journal of Palaeontology |volume=41 |issue=1 |pages=79–100 |doi=10.1080/03115518.2016.1184426 |bibcode=2017Alch...41...79S |s2cid=131837609 }}

|

Sp. nov

|

Valid

|

Sun et al.

|

Cambrian Stage 4

|

Balang Formation

|

{{Flag|China}}

|

A member of Hyolitha.

|

Microdictyon cuneum{{Cite journal|author1=Thomas Wotte |author2=Frederick A. Sundberg |year=2017 |title=Small shelly fossils from the Montezuman–Delamaran of the Great Basin in Nevada and California |journal=Journal of Paleontology |volume=91 |issue=5 |pages=883–901 |doi=10.1017/jpa.2017.8 |bibcode=2017JPal...91..883W |s2cid=135177034 |doi-access=free }}

|

Sp. nov

|

Valid

|

Wotte & Sundberg

|

Cambrian

|

|

{{Flag|United States}}
({{Flag|Nevada}})

|

A lobopodian.

|

Microdictyon montezumaensis

|

Sp. nov

|

Valid

|

Wotte & Sundberg

|

Cambrian

|

|

{{Flag|United States}}
({{Flag|Nevada}})

|

A lobopodian.

|

Mughanniyyum

|

Gen. et sp. nov

|

Valid

|

Ungureanu, Ahmad & Farouk

|

Middle Jurassic (Callovian)

|

|

{{Flag|Jordan}}

|

A sponge. Genus includes new species M. hanium.

|

Multiconotubus

|

Gen. et sp. nov

|

Valid

|

Cai et al.

|

Late Ediacaran

|

|

{{Flag|China}}

|

A Cloudina-like fossil. Genus includes new species M. chinensis.

|

Neophrissospongia kacperskii

|

Sp. nov

|

Valid

|

Świerczewska-Gładysz

|

Late Cretaceous (early Campanian)

|

|

{{Flag|Poland}}

|

A lithistid demosponge belonging to the family Corallistidae.

|

Orthrozanclus elongata{{Cite journal|author1=Fangchen Zhao |author2=Martin R. Smith |author3=Zongjun Yin |author4=Han Zeng |author5=Guoxiang Li |author6=Maoyan Zhu |year=2017 |title=Orthrozanclus elongata n. sp. and the significance of sclerite-covered taxa for early trochozoan evolution |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 16232 |doi=10.1038/s41598-017-16304-6 |pmid=29176685 |pmc=5701144 |bibcode=2017NatSR...716232Z }}

|

Sp. nov

|

|

Zhao & Smith in Zhao et al.

|

Cambrian Stage 3

|

Maotianshan Shales

|

{{Flag|China}}

|

|File:Orthrozanclus_elongata_reconstruction.jpg

Ovatiovermis{{Cite journal|author1=Jean-Bernard Caron |author2=Cédric Aria |year=2017 |title=Cambrian suspension-feeding lobopodians and the early radiation of panarthropods |journal=BMC Evolutionary Biology |volume=17 |issue=1 |pages=29 |doi=10.1186/s12862-016-0858-y |pmid=28137244 |pmc=5282736 |doi-access=free |bibcode=2017BMCEE..17...29C }}

|

Gen. et sp. nov

|

Valid

|

Caron & Aria

|

Cambrian

|

Burgess Shale

|

{{Flag|Canada}}
({{Flag|British Columbia}})

|

A lobopodian belonging to the family Luolishaniidae. The type species is O. cribratus.

|File:12862_2016_858_MOESM2_ESM.jpg

Pachinion canaliculatum

|

Sp. nov

|

Valid

|

Świerczewska-Gładysz

|

Late Cretaceous (early Campanian)

|

|

{{Flag|Poland}}

|

A lithistid demosponge belonging to the family Corallistidae.

|

Paratetragraptus cooperi{{Cite journal|author=Alfons H.M. VandenBerg |year=2017 |title=Revision of zonal and related graptolites of the topmost Lancefieldian and Bendigonian (early Floian) graptolite sequence in Victoria, Australia |journal=Proceedings of the Royal Society of Victoria |volume=129 |issue=2 |pages=39–74 |doi=10.1071/rs17007 |doi-access=free }}

|

Sp. nov

|

Valid

|

VandenBerg

|

Ordovician (early Floian)

|

|

{{Flag|Australia}}

|

A graptolite belonging to the group Dichograptina and the family Phyllograptidae.

|

Paratetragraptus? henrywilliamsi

|

Sp. nov

|

Valid

|

VandenBerg

|

Ordovician (early Floian)

|

|

{{Flag|Australia}}

|

A graptolite belonging to the group Dichograptina and the family Phyllograptidae.

|

Paratetragraptus thomassmithi

|

Sp. nov

|

Valid

|

VandenBerg

|

Ordovician (early Floian)

|

|

{{Flag|Australia}}

|

A graptolite belonging to the group Dichograptina and the family Phyllograptidae.

|

Plumulites lamonti{{Cite journal|author1=Y. Candela |author2= W. R. B. Crighton |year=2017 |title=Addenda to the record of machaeridian shell plates in the Wether Law Linn Formation (Late Llandovery), Pentland Hills, Scotland |journal=Scottish Journal of Geology |volume=53 |issue=1 |pages=35–39 |doi=10.1144/sjg2016-006 |bibcode= 2017ScJG...53...35C |s2cid= 132750137 }}

|

Sp. nov

|

Valid

|

Candela & Crighton

|

Silurian (Telychian)

|

Wether Law Linn Formation

|

{{Flag|United Kingdom}}

|

A machaeridian.

|

Propomatoceros permianus

|

Sp. nov

|

Valid

|

Sanfilippo in Sanfilippo et al.

|

Permian

|

"Pietra di Salomone" Limestone

|

{{Flag|Italy}}

|

A polychaete belonging to the family Serpulidae, a species of Propomatoceros.

|

Pseudoretiolites hyrichus

|

Sp. nov

|

Valid

|

Melchin, Lenz & Kozłowska

|

Silurian

|

|

{{Flag|Canada}}

|

A graptolite.

|

Pyrgopolon (Septenaria) cenomanensis{{Cite journal|author1=Tomáš Kočí |author2=Manfred Jäger |author3=Nicolas Morel |year=2017 |title=Sabellid and serpulid worm tubes (Polychaeta, Canalipalpata, Sabellida) from the historical stratotype of the Cenomanian (Late Cretaceous; Le Mans region, Sarthe, France) |journal=Annales de Paléontologie |volume=103 |issue=1 |pages=45–80 |doi=10.1016/j.annpal.2016.11.004 |bibcode=2017AnPal.103...45K }}

|

Sp. nov

|

Valid

|

Kočí, Jäger & Morel

|

Late Cretaceous (Cenomanian)

|

|

{{Flag|France}}

|

A polychaete belonging to the family Serpulidae.

|

Pyrgopolon (Turbinia?) gaiae

|

Sp. nov

|

Valid

|

Sanfilippo in Sanfilippo et al.

|

Permian

|

"Pietra di Salomone" Limestone

|

{{Flag|Italy}}

|

A polychaete belonging to the family Serpulidae, a species of Pyrgopolon.

|

Radiofibrosclera

|

Gen. et sp. nov

|

Valid

|

Wu

|

Permian (Changhsingian)

|

|

{{Flag|China}}

|

A sclerosponge. The type species is R. laibinensis.

|

Ratcliffespongia arivechensis{{Cite journal|author1=Matilde Sylvia Beresi |author2=Joseph P. Botting |author3=Juan J. Palafox |author4=Blanca E. Buitrón Sánchez |year=2017 |title=New reticulosan sponges from the middle Cambrian of Sonora, Mexico |journal=Acta Palaeontologica Polonica |volume=62 |issue=4 |pages=691–703 |doi=10.4202/app.00378.2017 |doi-access=free |hdl=11336/64224 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Beresi et al.

|

Cambrian Series 3

|

|

{{Flag|Mexico}}

|

A reticulosan sponge of uncertain phylogenetic placement.

|

Saccorhytus{{Cite journal|author1=Jian Han |author2=Simon Conway Morris |author3=Qiang Ou |author4=Degan Shu |author5=Hai Huang |year=2017 |title=Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China) |journal=Nature |volume=542 |issue=7640 |pages=228–231 |doi=10.1038/nature21072 |pmid=28135722 |bibcode=2017Natur.542..228H |s2cid=353780 }}

|

Gen. et sp. nov

|

Valid

|

Han et al.

|

Earliest Cambrian

|

|

{{Flag|China}}

|

An animal of uncertain phylogenetic placement. Originally described as an early deuterostome related to vetulicolians and vetulocystids, but subsequently argued to be an ecdysozoan.{{Cite journal|author1=Yunhuan Liu |author2=Emily Carlisle |author3=Huaqiao Zhang |author4=Ben Yang |author5=Michael Steiner |author6=Tiequan Shao |author7=Baichuan Duan |author8=Federica Marone |author9=Shuhai Xiao |author10=Philip C. J. Donoghue |year=2022 |title=Saccorhytus is an early ecdysozoan and not the earliest deuterostome |journal=Nature |volume=609 |issue=7927 |pages=541–546 |doi=10.1038/s41586-022-05107-z |pmid=35978194 |bibcode=2022Natur.609..541L |s2cid=251646316 |url=https://research-information.bris.ac.uk/en/publications/454e7bec-4cd4-4121-933e-abeab69e96c1 |hdl=1983/454e7bec-4cd4-4121-933e-abeab69e96c1 |hdl-access=free }}{{cite journal |author=Jean Vannier |year=2024 |title=The early Cambrian Saccorhytus is a non-feeding larva of a scalidophoran worm |journal=Proceedings of the Royal Society B: Biological Sciences |volume=291 |issue=2036 |at=20241256 |doi=10.1098/rspb.2024.1256 |pmid=39626753 }} The type species is S. coronarius.

|File:Saccorhytus.png

"Serpula" distefanoi

|

Sp. nov

|

Valid

|

Sanfilippo in Sanfilippo et al.

|

Permian

|

"Pietra di Salomone" Limestone

|

{{Flag|Italy}}

|

A polychaete belonging to the family Serpulidae.

|

Serpula? pseudoserpentina

|

Sp. nov

|

Valid

|

Kočí, Jäger & Morel

|

Late Cretaceous (Cenomanian)

|

|

{{Flag|France}}

|

A polychaete belonging to the family Serpulidae.

|

Silicunculus saaqqutit{{Cite journal|author=John S. Peel |year=2017 |title=First records from Laurentia of some middle Cambrian (Series 3) sponge spicules |journal=Alcheringa: An Australasian Journal of Palaeontology |volume=41 |issue=3 |pages=306–314 |doi=10.1080/03115518.2017.1282983 |bibcode=2017Alch...41..306P |s2cid=132042906 }}

|

Sp. nov

|

Valid

|

Peel

|

Cambrian Series 3

|

|

{{Flag|Greenland}}

|

A sponge.

|

Singuuriqia{{Cite journal|author=John S. Peel |year=2017 |title=Feeding behaviour of a new worm (Priapulida) from the Sirius Passet Lagerstätte (Cambrian Series 2, Stage 3) of North Greenland (Laurentia) |journal=Palaeontology |volume=60 |issue=6 |pages=795–805 |doi=10.1111/pala.12316 |bibcode=2017Palgy..60..795P |s2cid=134180194 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Peel

|

Cambrian Stage 3

|

Sirius Passet Lagerstätte

|

{{Flag|Greenland}}

|

A member of Priapulida. Genus includes new species S. simoni.

|

Siphusauctum lloydguntheri{{Cite journal|author1=Julien Kimmig |author2=Luke C. Strotz |author3=Bruce S. Lieberman |year=2017 |title=The stalked filter feeder Siphusauctum lloydguntheri n. sp. from the middle Cambrian (Series 3, Stage 5) Spence Shale of Utah: its biological affinities and taphonomy |journal=Journal of Paleontology |volume=91 |issue=5 |pages=902–910 |doi=10.1017/jpa.2017.57 |bibcode=2017JPal...91..902K |s2cid=135082143 |doi-access=free }}

|

Sp. nov

|

Valid

|

Kimmig, Strotz & Lieberman

|

Cambrian Stage 5

|

Spence Shale

|

{{Flag|United States}}
({{Flag|Utah}})

|

|File:Siphusauctum_lloydguntheri.jpg

Tauricornicaris{{Cite journal|author1=Han Zeng |author2=Fangchen Zhao |author3=Zongjun Yin |author4=Maoyan Zhu |year=2017 |title=Morphology of diverse radiodontan head sclerites from the early Cambrian Chengjiang Lagerstätte, south-west China |journal=Journal of Systematic Palaeontology |volume=16 |issue=1 |pages=1–37 |doi=10.1080/14772019.2016.1263685 |s2cid=133549817 |url=https://figshare.com/articles/dataset/Morphology_of_diverse_radiodontan_head_sclerites_from_the_early_Cambrian_Chengjiang_Lagerst_tte_south-west_China/4516751 }}

|

Gen. et 2 sp. nov

|

Valid

|

Zeng et al.

|

Early Cambrian

|

Chengjiang Lagerstätte

|

{{Flag|China}}

|

Originally considered as member of Radiodonta, possibly a member of Hurdiidae, but denied in 2018.{{Cite journal |last1=Cong |first1=Pei-Yun |last2=Edgecombe |first2=Gregory D. |last3=Daley |first3=Allison C. |last4=Guo |first4=Jin |last5=Pates |first5=Stephen |last6=Hou |first6=Xian-Guang |date=2018-06-23 |title=New radiodonts with gnathobase-like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta |journal=Papers in Palaeontology |volume=4 |issue=4 |pages=605–621 |doi=10.1002/spp2.1219 |s2cid=90258934 |issn=2056-2802|doi-access=free |bibcode=2018PPal....4..605C }}{{Cite journal |last1=Guo |first1=J. |last2=Pates |first2=S. |last3=Cong |first3=P. |last4=Daley |first4=A. C. |last5=Edgecombe |first5=G. D. |last6=Chen |first6=T. |last7=Hou |first7=X. |date=2018 |title=A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota |url=https://ora.ox.ac.uk/objects/uuid:a2d090f6-c0cb-4603-8d89-a4894fe55f02 |journal=Papers in Palaeontology |language=en |volume=5 |issue=1 |page=99 |doi=10.1002/spp2.1231 |bibcode=2019PPal....5...99G |issn=2056-2799}} Genus includes new species T. latizonae and T. oxygonae.

|

Thoracospongia lacrimiformis

|

Sp. nov

|

Valid

|

Peel

|

Cambrian Series 3

|

|

{{Flag|Greenland}}

|

A sponge.

|

Tianzhushanella tolli{{Cite journal|author1=Artem Kouchinsky |author2=Stefan Bengtson |author3=Ed Landing |author4=Michael Steiner |author5=Michael Vendrasco |author6=Karen Ziegler |year=2017 |title=Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia |journal=Acta Palaeontologica Polonica |volume=62 |issue=2 |pages=311–440 |doi=10.4202/app.00289.2016 |doi-access=free }}

|

Sp. nov

|

Valid

|

Kouchinsky et al.

|

Cambrian

|

Medvezhya Formation

|

{{Flag|Russia}}

|

A member of Tianzhushanellidae (a group of animals of uncertain phylogenetic placement, possibly stem-brachiopods).

|

Tshallograptus

|

Gen. et comb. et 3 sp. nov

|

Valid

|

VandenBerg

|

Ordovician (early Floian)

|

|

{{Flag|Australia}}

{{Flag|Canada}}

|

A graptolite belonging to the group Dichograptina and the family Phyllograptidae. The type species is "Graptolithus" fruticosus Hall (1858); genus also includes new species T. tridens, T. cymulus and T. furcillatus.

|

Valospongia sonorensis

|

Sp. nov

|

Valid

|

Beresi et al.

|

Cambrian Series 3

|

|

{{Flag|Mexico}}

|

A reticulosan sponge of uncertain phylogenetic placement.

|

Vittatusivermis{{cite journal |author1=Xingliang Zhang |author2=Wei Liu |author3=Yukio Isozaki |author4=Tomohiko Sato |year=2017 |title=Centimeter-wide worm-like fossils from the lowest Cambrian of South China |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 14504 |doi=10.1038/s41598-017-15089-y |pmid=29109509 |pmc=5674079 |bibcode=2017NatSR...714504Z }}

|

Gen. et sp. nov

|

|

Zhang et al.

|

Cambrian (Fortunian)

|

Yuhucun Formation

|

{{Flag|China}}

|

A worm-like organism, possibly a member of Bilateria of uncertain phylogenetic placement. The type species is V. annularius.

|

Websteroprion{{Cite journal|author1=Mats E. Eriksson |author2=Luke A. Parry |author3=David M. Rudkin |year=2017 |title=Earth's oldest 'Bobbit worm' – gigantism in a Devonian eunicidan polychaete |journal=Scientific Reports |volume=7 |pages=Article number 43061 |doi=10.1038/srep43061 |pmid=28220886 |pmc=5318920 |bibcode=2017NatSR...743061E }}

|

Gen. et sp. nov

|

Valid

|

Eriksson, Parry & Rudkin

|

Devonian (late Emsian-early Eifelian)

|

Kwataboahegan Formation

|

{{Flag|Canada}}
({{Flag|Ontario}})

|

A eunicidan polychaete of uncertain phylogenetic placement. The type species is W. armstrongi.

|File:Photographs_of_Websteroprion_armstrongi_-_Srep43061-f1.jpg

Other organisms

=Research=

  • Eoarchean (over 3,700 million years old) organic residues are reported from Isua, West Greenland by Hassenkam et al. (2017).{{Cite journal|author1=T. Hassenkam |author2=M. P. Andersson |author3=K. N. Dalby |author4=D. M. A. Mackenzie |author5=M. T. Rosing |year=2017 |title=Elements of Eoarchean life trapped in mineral inclusions |journal=Nature |volume=548 |issue=7665 |pages=78–81 |doi=10.1038/nature23261 |pmid=28738409 |bibcode=2017Natur.548...78H |s2cid=205257931 }}
  • Putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old are described from the Nuvvuagittuq belt (Quebec, Canada) by Dodd et al. (2017).{{cite journal |author=Dodd, Matthew S. |author2=Papineau, Dominic |author3=Grenne, Tor |author4=slack, John F. |author5=Rittner, Martin |author6=Pirajno, Franco |author7=O'Neil, Jonathan |author8=Little, Crispin T. S. |title=Evidence for early life in Earth's oldest hydrothermal vent precipitates|journal=Nature |volume=543 |issue=7643 |pages=60–64 |date=2 March 2017 | doi=10.1038/nature21377 |pmid=28252057 |bibcode=2017Natur.543...60D |s2cid=2420384 |url=http://eprints.whiterose.ac.uk/112179/1/ppnature21377_Dodd_for%20Symplectic.pdf }}
  • Organic carbon contents are reported from the oldest metasedimentary rocks from northern Labrador (Canada) by Tashiro et al. (2017), who interpret the finding as the oldest evidence of organisms greater than 3.95 Ga;{{Cite journal|author1=Takayuki Tashiro |author2=Akizumi Ishida |author3=Masako Hori |author4=Motoko Igisu |author5=Mizuho Koike |author6=Pauline Méjean |author7=Naoto Takahata |author8=Yuji Sano |author9=Tsuyoshi Komiya |year=2017 |title=Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada |journal=Nature |volume=549 |issue=7673 |pages=516–518 |doi=10.1038/nature24019 |pmid=28959955 |bibcode=2017Natur.549..516T |s2cid=4470796 }} the study is subsequently criticized by Whitehouse et al. (2019).{{Cite journal|author1=Martin J. Whitehouse |author2=Daniel J. Dunkley |author3=Monika A. Kusiak |author4=Simon A. Wilde |year=2019 |title=On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador |journal=Precambrian Research |volume=323 |pages=70–81 |doi=10.1016/j.precamres.2019.01.001 |bibcode=2019PreR..323...70W |s2cid=134499370 |url=https://zenodo.org/record/3871628 }}
  • Potential biosignatures, including stromatolites, are reported from the newly discovered rocks recovered from ca. 3.48 billion years old Dresser Formation (Pilbara Craton, Australia) by Djokic et al. (2017).{{Cite journal|author1=Tara Djokic |author2=Martin J. Van Kranendonk |author3=Kathleen A. Campbell |author4=Malcolm R. Walter |author5=Colin R. Ward |year=2017 |title=Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits |journal=Nature Communications |volume=8 |pages=Article number 15263 |doi=10.1038/ncomms15263 |pmid=28486437 |pmc=5436104 |bibcode=2017NatCo...815263D }}
  • Lenticular structures known from the ~3.4 Ga Kromberg Formation (Kaapvaal craton, South Africa) are interpreted as organic Archean microfossils by Oehler et al. (2017).{{cite journal |author1=Dorothy Z. Oehler |author2=Maud M. Walsh |author3=Kenichiro Sugitani |author4=Ming-Chang Liu |author5=Christopher H. House |year=2017 |title=Large and robust lenticular microorganisms on the young Earth |journal=Precambrian Research |volume=296 |pages=112–119 |doi=10.1016/j.precamres.2017.04.031 |bibcode=2017PreR..296..112O |doi-access=free }}
  • Fossils of early eukaryotes Tappania plana, Dictyosphaera macroreticulata and Valeria lophostriata are described from the early Mesoproterozoic Greyson Formation (Belt Supergroup, Montana, United States) by Adam et al. (2017).{{cite journal |author1=Zachary R. Adam |author2=Mark L. Skidmore |author3=David W. Mogk |author4=Nicholas J. Butterfield |year=2017 |title=A Laurentian record of the earliest fossil eukaryotes |journal=Geology |volume=45 |issue=5 |pages=387–390 |doi=10.1130/G38749.1 |bibcode=2017Geo....45..387A |doi-access=free }}
  • 2.4-billion-year-old filamentous fossils forming mycelium-like structures, considered to be either the oldest known fungi or members of an unknown branch of fungus-like mycelial organisms, are described from the Ongeluk Formation (South Africa) by Bengtson et al. (2017).{{cite journal |author1=Stefan Bengtson |author2=Birger Rasmussen |author3=Magnus Ivarsson |author4=Janet Muhling |author5=Curt Broman |author6=Federica Marone |author7=Marco Stampanoni |author8=Andrey Bekker |year=2017 |title=Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt |journal=Nature Ecology & Evolution |volume=1 |issue=6 |pages=Article number 0141 |doi=10.1038/s41559-017-0141 |pmid=28812648 |hdl=20.500.11937/67718 |s2cid=25586788 |url=http://www.escholarship.org/uc/item/4883d4qh |hdl-access=free }}
  • A study on the anatomy of the fossils of Chuaria circularis recovered from the Tonian Liulaobei Formation (China) is published by Tang et al. (2017), who interpret Chuaria as most likely a simple multicellular organism (a colonial organism without cell differentiation).{{cite journal |author1=Qing Tang |author2=Ke Pang |author3=Xunlai Yuan |author4=Shuhai Xiao |year=2017 |title=Electron microscopy reveals evidence for simple multicellularity in the Proterozoic fossil Chuaria |journal=Geology |volume=45 |issue=1 |pages=75–78 |doi=10.1130/G38680.1 |bibcode=2017Geo....45...75T }}
  • A study on the apatitic scale microfossils from the Fifteenmile Group (Yukon, Canada), indicating that the fossils document the existence of eukaryotic biomineralizing organisms approximately 810 million years ago, is published by Cohen et al. (2017).{{cite journal |author1=Phoebe A. Cohen |author2=Justin V. Strauss |author3=Alan D. Rooney |author4=Mukul Sharma |author5=Nicholas Tosca |year=2017 |title=Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote |journal=Science Advances |volume=3 |issue=6 |pages=e1700095 |doi=10.1126/sciadv.1700095 |pmid=28782008 |pmc=5489269 |bibcode=2017SciA....3E0095C }}
  • A study on the structure, morphology, and development of the large intracellular structures preserved in embryo-like microfossils from the Ediacaran Weng'an Biota (China) is published by Yin et al. (2017), who interpret these structures as likely cell nuclei.{{Cite journal|author1=Zongjun Yin |author2=John A. Cunningham |author3=Kelly Vargas |author4=Stefan Bengtson |author5=Maoyan Zhu |author6=Philip C.J. Donoghue |year=2017 |title=Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng'an Biota |journal=Precambrian Research |volume=301 |pages=145–151 |doi=10.1016/j.precamres.2017.08.009 |hdl=1983/b9709cfd-7d3b-42c4-a86a-fa8657ac548d |bibcode=2017PreR..301..145Y |url=https://research-information.bristol.ac.uk/en/publications/nuclei-and-nucleoli-in-embryolike-fossils-from-the-ediacaran-wengan-biota(b9709cfd-7d3b-42c4-a86a-fa8657ac548d).html |doi-access=free }}
  • A study testing the suggested link between the appearance of large body size in rangeomorphs (organisms of uncertain phylogenetic placement, likely animals) in the Ediacaran and postulated regional increases in environmental nutrient levels is published by Hoyal Cuthill & Conway Morris (2017).{{cite journal |author1=Jennifer F. Hoyal Cuthill |author2=Simon Conway Morris |year=2017 |title=Nutrient-dependent growth underpinned the Ediacaran transition to large body size |journal=Nature Ecology & Evolution |volume=1 |issue=8 |pages=1201–1204 |doi=10.1038/s41559-017-0222-7 |pmid=29046572 |bibcode=2017NatEE...1.1201H |s2cid=3639850 |url=http://repository.essex.ac.uk/25759/1/Hoyal_Cuthill_Conway_Morris_2017_Accepted%2520Version.pdf }}
  • A study on the internal morphology of Rangea from the Nama Group (Namibia), based on data obtained using X-ray micro-computed tomography, is published by Sharp et al. (2017).{{cite journal |author1=Alana C. Sharp |author2=Alistair R. Evans |author3=Siobhan A. Wilson |author4=Patricia Vickers-Rich |year=2017 |title=First non-destructive internal imaging of Rangea, an icon of complex Ediacaran life |journal=Precambrian Research |volume=299 |pages=303–308 |doi=10.1016/j.precamres.2017.07.023 |url=http://discovery.ucl.ac.uk/10044253/ |bibcode=2017PreR..299..303S }}
  • Smith et al. (2017) report the discovery of fossils of Gaojiashania from the Ediacaran strata of the Nama Group (Namibia) and a new fossil assemblage from the Ediacaran strata of the Wood Canyon Formation (Nevada, United States), including erniettomorphs and a variety of tubular body fossils.{{Cite journal|author1=E. F. Smith |author2=L. L. Nelson |author3=S. M. Tweedt |author4=H. Zeng |author5=J. B. Workman |year=2017 |title=A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1858 |pages=20170934 |doi=10.1098/rspb.2017.0934 |pmid=28701565 |pmc=5524506 }}
  • A study on the well-preserved Devonian calcareous nanicellid foraminiferans from the Świętokrzyskie Mountains (Poland) and their implications for the biomineralization style and affinities of Paleozoic fusulinid foraminiferans is published by Dubicka & Gorzelak (2017).{{cite journal |author1=Zofia Dubicka |author2=Przemysław Gorzelak |year=2017 |title=Unlocking the biomineralization style and affinity of Paleozoic fusulinid foraminifera |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 15218 |doi=10.1038/s41598-017-15666-1 |pmid=29123221 |pmc=5680253 |bibcode=2017NatSR...715218D }}
  • Four forms of modern-looking gilled mushrooms, including two taxa belonging to the family Marasmiaceae, are described from the Cretaceous Burmese amber by Cai et al. (2017).{{cite journal |author1=Chenyang Cai |author2=Richard A. B. Leschen |author3=David S. Hibbett |author4=Fangyuan Xia |author5=Diying Huang |year=2017 |title=Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous |journal=Nature Communications |volume=8 |pages=Article number 14894 |doi=10.1038/ncomms14894 |pmid=28300055 |pmc=5357310 |bibcode=2017NatCo...814894C }}

=New taxa=

class="wikitable sortable" align="center" width="100%"
Name

! Novelty

! Status

! Authors

! Age

! Unit

! Location

! Notes

! Images

Acadialithus{{Cite journal|author=R. W. Howe |year=2017 |title=Acadialithus, a new nannofossil genus from offshore Eastern Newfoundland, Canada |journal=Journal of Nannoplankton Research |volume=37 |issue=1 |pages=61–66 |doi=10.58998/jnr2123 }}

|

Gen. et 2 sp. nov

|

Valid

|

Howe

|

Late Jurassic (Tithonian)

|

|

{{Flag|Bulgaria}}

Offshore eastern Newfoundland, Canada

Offshore in the eastern Gulf of Mexico

Offshore of the northeast coast of the United States

|

A nannofossil. Genus includes new species A. dennei and A. valentinei.

|

Adendorfia{{Cite journal|author1=Grzegorz Worobiec |author2=Frank Harald Neumann |author3=Elżbieta Worobiec |author4=Verena Nitz |author5=Christoph Hartkopf-Fröder |year=2017 |title=New fungal cephalothecoid-like fructifications from central European Neogene deposits |journal=Fungal Biology |volume=121 |issue=3 |pages=285–292 |doi=10.1016/j.funbio.2016.12.005 |pmid=28215354 |bibcode=2017FunB..121..285W }}

|

Gen. et sp. nov

|

Valid

|

Worobiec et al.

|

Miocene

|

|

{{Flag|Germany}}

|

A fungus, probably a member of Chaetomiaceae. Genus includes new species A. miocenica.

|

Algites philippoviensis{{Cite journal|author=Serge V. Naugolnykh |year=2017 |title=Lower Kungurian shallow-water lagoon biota of Middle Cis-Urals, Russia: towards paleoecological reconstruction |journal=Global Geology (English Edition) |volume=20 |issue=1 |pages=1–13 |doi=10.3969/j.issn.1673-9736.2017.01.01 |url=http://sjdz.jlu.edu.cn/Jwk_sjdz_en/EN/abstract/abstract8632.shtml }}

|

Sp. nov

|

Valid

|

Naugolnykh

|

Permian (Kungurian)

|

Philippovian Formation

|

{{Flag|Russia}}

|

A brown alga.

|

Algites shurtanensis

|

Sp. nov

|

Valid

|

Naugolnykh

|

Permian (Kungurian)

|

Shurtan Formation

|

{{Flag|Russia}}

|

A brown alga.

|

Alpinoschwagerina nagatoensis{{cite journal |author=Fumio Kobayashi |year=2017 |title=Late Carboniferous and Early Permian fusulines of the Akiyoshi Limestone Group in the Wakatakeyama area, Akiyoshi (Japan) – Biostratigraphy, biogeography, and biodiversity |journal=Revue de Paléobiologie, Genève |volume=36 |issue=1 |pages=1–155 |doi=10.5281/zenodo.814077 }}

|

Sp. nov

|

Valid

|

Kobayashi

|

Permian (Asselian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Amsassia argentina{{Cite journal|author1=Marcelo G. Carrera |author2=Ricardo A. Astini |author3=Fernando J. Gomez |year=2017 |title=A lowermost Ordovician tabulate-like coralomorph from the Precordillera of western Argentina: a main component of a reef-framework consortium |journal=Journal of Paleontology |volume=91 |issue=1 |pages=73–85 |doi=10.1017/jpa.2016.145 |bibcode=2017JPal...91...73C |s2cid=131902454 |doi-access=free |hdl=11336/45885 |hdl-access=free }}

|

Sp. nov

|

Valid

|

Carrera, Astini & Gomez

|

Early Ordovician

|

La Silla Formation

|

{{Flag|Argentina}}

|

A coral-like organism of uncertain phylogenetic placement.

|

Asterina indodeightonii{{Cite journal|author1=Arkamitra Vishnu (née Mandal) |author2=Mahasin Ali Khan |author3=Meghma Bera |author4=David L. Dilcher |author5=Subir Bera |year=2017 |title=Fossil Asterinaceae in the phyllosphere of the eastern Himalayan Neogene Siwalik forest and their palaeoecological significance |journal=Botanical Journal of the Linnean Society |volume=185 |issue=2 |pages=147–167 |doi=10.1093/botlinnean/box050 }}

|

Sp. nov

|

Valid

|

Vishnu et al.

|

Mid-Miocene to early Pleistocene

|

|

{{Flag|India}}

|

A fungus, a species of Asterina.

|

Asterina mioconsobrina

|

Sp. nov

|

Valid

|

Vishnu et al.

|

Mid-Miocene to early Pleistocene

|

|

{{Flag|India}}

|

A fungus, a species of Asterina.

|

Asterina miosphaerelloides

|

Sp. nov

|

Valid

|

Vishnu et al.

|

Mid-Miocene to early Pleistocene

|

|

{{Flag|India}}

|

A fungus, a species of Asterina.

|

Asterina neocombreticola

|

Sp. nov

|

Valid

|

Vishnu et al.

|

Mid-Miocene to early Pleistocene

|

|

{{Flag|India}}

|

A fungus, a species of Asterina.

|

Asterina neoelaeocarpi

|

Sp. nov

|

Valid

|

Vishnu et al.

|

Mid-Miocene to early Pleistocene

|

|

{{Flag|India}}

|

A fungus, a species of Asterina.

|

Asterina presaracae

|

Sp. nov

|

Valid

|

Vishnu et al.

|

Mid-Miocene to early Pleistocene

|

|

{{Flag|India}}

|

A fungus, a species of Asterina.

|

Baculogypsinella{{cite journal |author=Kuniteru Matsumaru |year=2017 |title=Larger Foraminifera from the Philippine Archipelago |journal=Micropaleontology |volume=63 |issue=2–4 |pages=77–253 |doi=10.47894/mpal.63.2.01 }}

|

Gen. et sp. nov

|

Valid

|

Matsumaru

|

Eocene

|

|

{{Flag|Philippines}}

|

A foraminifer. Genus includes new species B. eocenica.

|

Blastanosphaira{{Cite journal|author1=Emmanuelle J. Javaux |author2=Andrew H. Knoll |year=2017 |title=Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution |journal=Journal of Paleontology |volume=91 |issue=2 |pages=199–229 |doi=10.1017/jpa.2016.124 |bibcode=2017JPal...91..199J |s2cid=15086503 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Javaux & Knoll

|

Mesoproterozoic

|

Mainoru Formation

|

{{Flag|Australia}}

|

A possible eukaryotic microorganism of uncertain phylogenetic placement. The type species is B. kokkoda.

|

Bonniea makrokurtos{{Cite journal|author1=Phoebe A. Cohen |author2=Spencer W. Irvine |author3=Justin V. Strauss |year=2017 |title=Vase-shaped microfossils from the Tonian Callison Lake Formation of Yukon, Canada: taxonomy, taphonomy and stratigraphic palaeobiology |journal=Palaeontology |volume=60 |issue=5 |pages=683–701 |doi=10.1111/pala.12315 |s2cid=134894899 |doi-access=free |bibcode=2017Palgy..60..683C }}

|

Sp. nov

|

Valid

|

Cohen, Irvine & Strauss

|

Tonian

|

Callison Lake Formation

|

{{Flag|Canada}}
({{Flag|Yukon}})

|

A vase-shaped microfossil.

|

Braarudosphaera pseudobatilliformis{{Cite journal|author1=Cleber F. Alves |author2=Francisco Henrique de Oliveira Lima |author3=Seirin Shimabukuro |year=2017 |title=New Aptian calcareous nannofossil species from Brazil |journal=Journal of Nannoplankton Research |volume=37 |issue=1 |pages=15–24 |doi=10.58998/jnr2004 }}

|

Sp. nov

|

Valid

|

Alves, Lima & Shimabukuro

|

Early Cretaceous (Aptian)

|

|

{{Flag|Brazil}}

|

A haptophyte belonging to the family Braarudosphaeraceae.

|

Carbonoschwagerina nipponica

|

Sp. nov

|

Valid

|

Kobayashi

|

Carboniferous (Kasimovian and Gzhelian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Cephalothecoidomyces

|

Gen. et sp. nov

|

Valid

|

Worobiec et al.

|

Neogene

|

|

{{Flag|Germany}}

{{Flag|Poland}}

|

A fungus, probably a member of Cephalothecaceae. Genus includes new species C. neogenicus.

|

Chiphragmalithus muzylevii{{Cite journal|author=Vladimir A. Musatov |year=2017 |title=A new species of the genus Chiphragmalithus from the Ypresian stage (early Eocene) in the northern part of the Caspian Depression (Russia) |journal=Journal of Nannoplankton Research |volume=37 |issue=1 |pages=67–76 |doi=10.58998/jnr2183 }}

|

Sp. nov

|

Valid

|

Musatov

|

Eocene (Ypresian)

|

|

{{Flag|Russia}}

|

A haptophyte.

|

Cobios{{Cite journal|author1=Wei Du |author2=Xun Lian Wang |author3=Tsuyoshi Komiya |author4=Ran Zhao |author5=Yue Wang |year=2017 |title=Dendroid multicellular thallophytes preserved in a Neoproterozoic black phosphorite in southern China |journal=Alcheringa: An Australasian Journal of Palaeontology |volume=41 |issue=1 |pages=1–11 |doi=10.1080/03115518.2016.1159408 |bibcode=2017Alch...41....1D |s2cid=130894232 }}

|

Gen. et sp. nov

|

Valid

|

Du et al.

|

Ediacaran

|

Doushantuo Formation

|

{{Flag|China}}

|

A red alga. The type species is Cobios rubo.

|

Curviacus{{Cite journal|author1=Bing Shen |author2=Shuhai Xiao |author3=Chuanming Zhou |author4=Lin Dong |author5=Jieqiong Chang |author6=Zhe Chen |year=2017 |title=A new modular palaeopascichnid fossil Curviacus ediacaranus new genus and species from the Ediacaran Dengying Formation in the Yangtze Gorges area of South China |journal=Geological Magazine |volume=154 |issue=6 |pages=1257–1268 |doi=10.1017/S001675681700036X |bibcode=2017GeoM..154.1257S |s2cid=131980880 }}

|

Gen. et sp. nov

|

Valid

|

Shen et al.

|

Ediacaran

|

Dengying Formation

|

{{Flag|China}}

|

A benthic modular organism consisting of serially arranged and crescent-shaped chambers. Genus includes new species C. ediacaranus.

|

Cyanonema grandis{{cite journal |author1=Min Shi |author2=Qinglai Feng |author3=Maliha Zareen Khan |author4=Shixing Zhu |year=2017 |title=An eukaryote-bearing microbiota from the early mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and its significance |journal=Precambrian Research |volume=303 |pages=709–726 |doi=10.1016/j.precamres.2017.09.013 |bibcode=2017PreR..303..709S }}

|

Sp. nov

|

Valid

|

Shi & Feng in Shi et al.

|

Early Mesoproterozoic

|

Gaoyuzhuang Formation

|

{{Flag|China}}

|

A member of Cyanobacteria belonging to the group Nostocales.

|

Cycliocyrillium rootsi

|

Sp. nov

|

Valid

|

Cohen, Irvine & Strauss

|

Tonian

|

Callison Lake Formation

Chuar Group
(Kwagunt Formation)

|

{{Flag|Canada}}
({{Flag|Yukon}})

{{Flag|United States}}

|

A vase-shaped microfossil. Originally described as a species of Cycliocyrillium, but subsequently transferred to the genus Obelix.{{cite journal |author1=L. Morais |author2=D.J.G. Lahr |author3=I.D. Rudnitzki |author4=B.T. Freitas |author5=G.R. Romero |author6=S.M. Porter |author7=A.H. Knoll |author8=T.R. Fairchild |year=2019 |title=Insights into vase-shaped microfossil diversity and Neoproterozoic biostratigraphy in light of recent Brazilian discoveries |journal=Journal of Paleontology |volume=93 |issue= 4|pages= 612–627|doi=10.1017/jpa.2019.6 |bibcode=2019JPal...93..612M |s2cid=189991021 |doi-access=free }} Morais et al. (2019) corrected the suffix for the specific epithet to rootsii.

|

Dalongicaepa{{Cite journal|author1=Yifan Xiao |author2=Noritoshi Suzuki |author3=Weihong He |year=2017 |title=Applications and limitations of micro-XCT imaging in the studies of Permian radiolarians: A new genus with bi-polar main spines |journal=Acta Palaeontologica Polonica |volume=62 |issue=3 |pages=647–656 |doi=10.4202/app.00367.2017 |doi-access=free }}

|

Gen. et sp. et comb. nov

|

Valid

|

Xiao & Suzuki in Xiao, Suzuki & He

|

Late Permian

|

Upper Dalong Formation

|

{{Flag|China}}

{{Flag|Thailand}}

|

A radiolarian belonging to the group Spumellaria and the family Spongotortilispinidae. The type species is D. bipolaris; genus also includes "Pseudospongoprunum" fontainei Sashida in Sashida et al. (2000).

|

Denaricion{{Cite journal|author1=Stefan Bengtson |author2=Therese Sallstedt |author3=Veneta Belivanova |author4=Martin Whitehouse |year=2017 |title=Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae |journal=PLOS Biology |volume=15 |issue=3 |pages=e2000735 |doi=10.1371/journal.pbio.2000735 |pmid=28291791 |pmc=5349422 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Bengtson in Bengtson et al.

|

~1.6 billion years ago

|

|

{{Flag|India}}

|

An organism of uncertain phylogenetic placement, might be an alga or prokaryote. Genus includes new species D. mendax.

|

Devisphaera{{Cite journal|author1=Qing Tang |author2=Nigel C. Hughes |author3=N. Ryan McKenzie |author4=Paul M. Myrow |author5=Shuhai Xiao |year=2017 |title=Late Mesoproterozoic – early Neoproterozoic organic-walled microfossils from the Madhubani Group of the Ganga Valley, northern India |journal=Palaeontology |volume=60 |issue=6 |pages=869–891 |doi=10.1111/pala.12323 |doi-access=free |bibcode=2017Palgy..60..869T }}

|

Gen. et sp. nov

|

Valid

|

Tang et al.

|

Late Mesoproterozoic – early Neoproterozoic

|

Madhubani Group

|

{{Flag|India}}

|

An organic-walled microfossil. Genus includes new species D. corallis.

|

Discusphyton{{Cite journal|author1=Ye Wang |author2=Yue Wang |author3=Wei Du |year=2017 |title=A rare disc-like holdfast of the Ediacaran macroalga from South China |journal=Journal of Paleontology |volume=91 |issue=6 |pages=1091–1101 |doi=10.1017/jpa.2017.43 |bibcode=2017JPal...91.1091W |s2cid=90112117 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Wang, Wang & Du

|

Ediacaran

|

Doushantuo Formation

|

{{Flag|China}}

|

A macroalga of uncertain phylogenetic placement. Genus includes new species D. whenghuiensis.

|

Fissumella{{Cite journal|author1=E. Cruz-Abad |author2=L. Consorti |author3=M. Di Lucia |author4=M. Parente |author5=E. Caus |year=2017 |title=Fissumella motolae n. gen. n. sp., a new soritoidean (Foraminifera) from the lowermost Albian carbonate platform facies of central and southern Italy |journal=Cretaceous Research |volume=78 |pages=1–7 |doi=10.1016/j.cretres.2017.05.024 |bibcode=2017CrRes..78....1C }}

|

Gen. et sp. nov

|

Valid

|

Cruz-Abad et al.

|

Early Cretaceous (Albian)

|

|

{{Flag|Italy}}

|

A foraminifer. Genus includes new species F. motolae.

|

Flabelloperforata{{Cite journal |author1=Felix Schlagintweit |author2=Koorosh Rashidi |year=2017 |title=Persiella pseudolituus n. gen., n. sp., and Flabelloperforata tarburensis n. gen., n. sp., two new larger benthic foraminifera from the Upper Maastrichtian of Iran |journal=Acta Palaeontologica Romaniae |volume=13 |issue=2 |pages=3–19 |url=http://www.geo-paleontologica.org/actapalrom/APR_v_13_2/Schlagintweit_Rashidi_Persiella_Iran1.pdf |access-date=2018-03-20 |archive-url=https://web.archive.org/web/20180321065041/http://www.geo-paleontologica.org/actapalrom/APR_v_13_2/Schlagintweit_Rashidi_Persiella_Iran1.pdf |archive-date=2018-03-21 |url-status=dead }}

|

Gen. et sp. nov

|

Valid

|

Schlagintweit & Rashidi

|

Late Cretaceous (Maastrichtian)

|

Tarbur Formation

|

{{Flag|Iran}}

|

A foraminifer belonging to the group Loftusiida, possibly a member of the family Biokovinidae. Genus includes new species F. tarburensis.

|

Gigadiacrodium{{Cite journal|author1=Zbigniew Szczepanik |author2=Thomas Servais |author3=Anna Żylińska |year=2017 |title=Very large acritarchs from the Furongian (upper Cambrian) rocks of the Holy Cross Mountains, central Poland |journal=Palynology |volume=41 |issue=sup1 |pages=10–22 |doi=10.1080/01916122.2017.1366205 |bibcode=2017Paly...41S..10S |s2cid=134279617 }}

|

Gen. et comb. et sp. nov

|

Valid

|

Szczepanik, Servais & Żylińska

|

Cambrian (Furongian)

|

Alum Shale Formation

Elliott's Cove Formation

|

{{Flag|Canada}}

{{Flag|Iran}}

{{Flag|Italy}}

{{Flag|Poland}}

{{Flag|Sweden}}

|

An acritarch. The type species is "Veryhachium" martinum Pittau (1985); genus also includes new species G. vidalii.

|

Gigantosphaeridium floccosum{{Cite journal|author1=Heda Agić |author2=Małgorzata Moczydłowska |author3=Leiming Yin |year=2017 |title=Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton - a window into the early eukaryote evolution |journal=Precambrian Research |volume=297 |pages=101–130 |doi=10.1016/j.precamres.2017.04.042 |bibcode=2017PreR..297..101A }}

|

Sp. nov

|

Valid

|

Agić, Moczydłowska & Yin

|

Early Mesoproterozoic

|

Ruyang Group

|

{{Flag|China}}

|

A microfossil.

|

Gondwanagaricites{{Cite journal|author1=Sam W. Heads |author2=Andrew N. Miller |author3=J. Leland Crane |author4=M. Jared Thomas |author5=Danielle M. Ruffatto |author6=Andrew S. Methven |author7=Daniel B. Raudabaugh |author8=Yinan Wang |year=2017 |title=The oldest fossil mushroom |journal=PLOS ONE |volume=12 |issue=6 |pages=e0178327 |doi=10.1371/journal.pone.0178327 |pmid=28591180 |pmc=5462346 |bibcode=2017PLoSO..1278327H |doi-access=free }}{{Cite journal|author1=Sam W. Heads |author2=Andrew N. Miller |author3=J. Leland Crane |year=2017 |title=On the name of the oldest fossil mushroom |journal=Mycological Progress |volume=16 |issue=11–12 |pages=1071–1072 |doi=10.1007/s11557-017-1355-4 |bibcode=2017MycPr..16.1071H |s2cid=36044870 }}

|

Gen. et sp. nov

|

Valid

|

Heads, Miller & Crane

|

Early Cretaceous (Aptian)

|

Crato Formation

|

{{Flag|Brazil}}

|

A gilled mushroom. Genus includes new species G. magnificus.

|File:Gondwanagaricites_magnificus.png

Hagenococcus{{Cite journal|author1=Michael Krings |author2=Hans Kerp |author3=Edith L. Taylor |author4=Carla J. Harper |year=2017 |title=Hagenococcus aggregatus nov. gen. et sp., a microscopic, colony-forming alga from the 410-million-yr-old Rhynie chert |journal=Nova Hedwigia |volume=105 |issue=1–2 |pages=205–217 |doi=10.1127/nova_hedwigia/2017/0406 }}

|

Gen. et sp. nov

|

Valid

|

Krings et al.

|

Early Devonian

|

Rhynie chert

|

{{Flag|United Kingdom}}

|

A microorganism of uncertain phylogenetic placement, most likely an alga with affinities to the Chlorophyta or Streptophyta. Genus includes new species H. aggregatus.

|

Haplophragmoides arcticus{{Cite journal|author1=Michael A. Kaminski |author2=Anna Waskowska |author3=Septriandi Chan |year=2017 |title=Haplophragmoides arcticus, n. sp., a new species from the Pleistocene of the Central Arctic Ocean |journal=Micropaleontology |volume=62 |issue=6 |pages=509–513 |doi=10.47894/mpal.62.6.05 |bibcode=2017MiPal..62..509K |url=http://www.micropress.org/microaccess/micropaleontology/issue-332/article-2015 }}

|

Sp. nov

|

Valid

|

Kaminski, Waskowska & Chan

|

Middle Pleistocene

|

|

Arctic Ocean
(Lomonosov Ridge)

|

A foraminifer.

|

Jigulites titanicus

|

Sp. nov

|

Valid

|

Kobayashi

|

Carboniferous (Gzhelian) and Permian (Asselian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Limeta{{Cite journal|author1=Luana Morais |author2=Thomas Rich Fairchild |author3=Daniel J.G. Lahr |author4=Isaac D. Rudnitzki |author5=J. William Schopf |author6=Amanda K. Garcia |author7=Anatoliy B. Kudryavtsev |author8=Guilherme R. Romero |year=2017 |title=Carbonaceous and siliceous Neoproterozoic vase-shaped microfossils (Urucum Formation, Brazil) and the question of early protistan biomineralization |journal=Journal of Paleontology |volume=91 |issue=3 |pages=393–406 |doi=10.1017/jpa.2017.16 |bibcode=2017JPal...91..393M |s2cid=54530838 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Morais, Fairchild & Lahr in Morais et al.

|

Neoproterozoic

|

Urucum Formation

|

{{Flag|Brazil}}

|

A vase-shaped microfossil. Genus includes new species L. lageniformis.

|

Montiparus minensis

|

Sp. nov

|

Valid

|

Kobayashi

|

Carboniferous (Kasimovian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Nannoconus troelsenii

|

Sp. nov

|

Valid

|

Alves, Lima & Shimabukuro

|

Early Cretaceous (Aptian)

|

|

{{Flag|Brazil}}

|

A haptophyte belonging to the family Nannoconaceae.

|

Oscillatoriopsis gigas

|

Sp. nov

|

Valid

|

Shi & Feng in Shi et al.

|

Early Mesoproterozoic

|

Gaoyuzhuang Formation

|

{{Flag|China}}

|

A member of Cyanobacteria belonging to the group Oscillatoriales.

|

Palaeoamphora

|

Gen. et sp. nov

|

Valid

|

Morais, Fairchild & Lahr in Morais et al.

|

Neoproterozoic

|

Urucum Formation

|

{{Flag|Brazil}}

|

A vase-shaped microfossil. Genus includes new species P. urucumense.

|

Palaeostromatus{{Cite journal|author1=Paula Dentzien-Dias |author2=George Poinar (Jr.) |author3=Heitor Francischini |year=2017 |title=A new actinomycete from a Guadalupian vertebrate coprolite from Brazil |journal=Historical Biology: An International Journal of Paleobiology |volume=29 |issue=6 |pages=770–776 |doi=10.1080/08912963.2016.1241247 |bibcode=2017HBio...29..770D |s2cid=89081153 }}

|

Gen. et sp. nov

|

Valid

|

Dentzien-Dias, Poinar & Francischini

|

Permian (Guadalupian)

|

Rio do Rasto Formation

|

{{Flag|Brazil}}

|

An actinomycete. Genus includes new species P. diairetus.

|

Paleohaimatus{{Cite journal|author=George Poinar, Jr. |year=2017 |title=Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms |journal=Journal of Medical Entomology |volume=54 |issue=4 |pages=895–900 |doi=10.1093/jme/tjw247 |pmid=28399212 |s2cid=205177122 }}

|

Gen. et sp. nov

|

Valid

|

Poinar

|

Eocene-Miocene

|

El Mamey Formation
(Dominican amber)

|

{{Flag|Dominican Republic}}

|

A member of Apicomplexa belonging to the group Piroplasmida. Genus includes new species P. calabresi.

|

Parastaffelloides kanmerai

|

Sp. nov

|

Valid

|

Kobayashi

|

Carboniferous (Moscovian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Pentadinium darmirae{{Cite journal|author1=Daniel Ţabără |author2=Hamid Slimani |author3=Silvia Mare |author4=Carmen Mariana Chira |year=2017 |title=Integrated biostratigraphy and palaeoenvironmental interpretation of the Upper Cretaceous to Paleocene succession in the northern Moldavidian Domain (Eastern Carpathians, Romania) |journal=Cretaceous Research |volume=77 |pages=102–123 |doi=10.1016/j.cretres.2017.04.021 |bibcode=2017CrRes..77..102T }}

|

Sp. nov

|

Valid

|

Slimani & Ţabără in Ţabără et al.

|

Paleocene (Danian)

|

Izvor Formation

Runcu Formation

|

{{Flag|Romania}}

|

A dinoflagellate belonging to the group Gonyaulacales and the family Gonyaulacaceae.

|

Persiella

|

Gen. et sp. nov

|

Valid

|

Schlagintweit & Rashidi

|

Late Cretaceous (Maastrichtian)

|

Tarbur Formation

|

{{Flag|Iran}}

|

A foraminifer belonging to the group Loftusiida, possibly a member of the family Spirocyclinidae. Genus includes new species P. pseudolituus.

|

Pocillithus crucifer{{Cite journal|author1=Paul R. Bown |author2=Jeremy R. Young |author3=Jacqueline A. Lees |year=2017 |title=On the Cretaceous origin of the Order Syracosphaerales and the genus Syracosphaera |journal=Journal of Micropalaeontology |volume=36 |issue=2 |pages=153–165 |doi=10.1144/jmpaleo2016-001 |bibcode=2017JMicP..36..153B |s2cid=53409780 |doi-access=free }}

|

Sp. nov

|

Valid

|

Lees, Bown & Young

|

Late Cretaceous (Turonian)

|

|

{{Flag|Tanzania}}

|

A haptophyte belonging to the family Papposphaeraceae.

|

Pocillithus macleodii

|

Sp. nov

|

Valid

|

Lees, Bown & Young

|

Late Cretaceous (Turonian)

|

|

{{Flag|Tanzania}}

|

A haptophyte belonging to the family Papposphaeraceae.

|

Quasifusulinoides grandis

|

Sp. nov

|

Valid

|

Kobayashi

|

Carboniferous (Kasimovian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Rafatazmia

|

Gen. et sp. nov

|

Valid

|

Bengtson in Bengtson et al.

|

~1.6 billion years ago

|

|

{{Flag|India}}

|

An alga of uncertain phylogenetic placement. Genus includes new species R. chitrakootensis.

|

Ramathallus

|

Gen. et sp. nov

|

Valid

|

Sallstedt in Bengtson et al.

|

~1.6 billion years ago

|

|

{{Flag|India}}

|

A possible stem-florideophycean red algae. Genus includes new species R. lobatus.

|File:Ramathallus_lobatus.png

Schwagerina wakatakeyamensis

|

Sp. nov

|

Valid

|

Kobayashi

|

Permian (Asselian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Schwagerina watanabei

|

Sp. nov

|

Valid

|

Kobayashi

|

Permian (Asselian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Spearlithus{{Cite journal|author=Rui O. B. P. da Gama |year=2017 |title=Spearlithus, a new Pleistocene calcareous nannofossil genus from shallow marine settings of the Dominican Republic |journal=Micropaleontology |volume=62 |issue=4 |pages=273–291 |doi=10.47894/mpal.62.4.01 |bibcode=2017MiPal..62..273D |s2cid=248380078 |url=http://www.micropress.org/microaccess/micropaleontology/issue-330/article-2001 }}

|

Gen. et 12 sp. nov

|

Valid

|

Da Gama

|

Pleistocene

|

|

{{Flag|Dominican Republic}}

|

A calcareous nannofossil of uncertain phylogenetic placement.

|

Staffella subsphaerica

|

Sp. nov

|

Valid

|

Kobayashi

|

Carboniferous (Kasimovian and Gzhelian)

|

Akiyoshi Limestone Group

|

{{Flag|Japan}}

|

A foraminifer belonging to the group Fusulinida.

|

Stradnerlithus? haynesiae

|

Sp. nov

|

Valid

|

Lees, Bown & Young

|

Late Cretaceous (Turonian)

|

|

{{Flag|Tanzania}}

|

A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae.

|

Stradnerlithus wendleri

|

Sp. nov

|

Valid

|

Lees, Bown & Young

|

Late Cretaceous (Turonian)

|

|

{{Flag|Tanzania}}

|

A haptophyte belonging to the order Stephanolithiales and the family Stephanolithiaceae.

|

Suraqalatia{{Cite journal|author1=M. Görmüş |author2=F. A. Ameen Lawa |author3=Q.A.M. Al Nuaimy |year=2017 |title=Suraqalatia brasieri n.gen., n.sp. (larger foraminifera) from the Maastrichtian of Sulaimani area in northern Iraq |journal=Arabian Journal of Geosciences |volume=10 |issue=16 |pages=Article 365 |doi=10.1007/s12517-017-3145-3 |bibcode=2017ArJG...10..365G |s2cid=133941214 }}

|

Gen. et sp. nov

|

Valid

|

Görmüş, Ameen Lawa & Al Nuaimy

|

Late Cretaceous (Maastrichtian)

|

|

{{Flag|Iraq}}

|

A foraminifer belonging to the family Dicyclinidae. Genus includes new species S. brasieri.

|

Synaptomitus{{Cite journal|author=George Poinar Jr. |year=2017 |title=Two new genera, Mycophoris gen. nov., (Orchidaceae) and Synaptomitus gen. nov. (Basidiomycota) based on a fossil seed with developing embryo and associated fungus in Dominican amber |journal=Botany |volume=95 |issue=1 |pages=1–8 |doi=10.1139/cjb-2016-0118 }}

|

Gen. et sp. nov

|

Valid

|

Poinar

|

Eocene to Miocene

|

Dominican amber

|

{{Flag|Dominican Republic}}

|

Originally described as a fungus belonging to the group Basidiomycota, but this interpretation was challenged by Selosse et al. (2017).{{Cite journal|author1=Marc-Andre Selosse |author2=Mark Brundrett |author3=John Dearnaley |author4=Vincent S.F.T. Merckx |author5=Finn Rasmussen |author6=Lawrence W. Zettler |author7=Hanne N. Rasmussen |year=2017 |title=Why Mycophoris is not an orchid seedling, and why Synaptomitus is not a fungal symbiont within this fossil |journal=Botany |volume=95 |issue=9 |pages=865–868 |doi=10.1139/cjb-2017-0038 }} Genus includes new species S. orchiphilus.

|

Syracosphaera antiqua

|

Sp. nov

|

Valid

|

Bown, Lees & Young

|

Late Cretaceous (Turonian)

|

|

{{Flag|Tanzania}}

|

A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae.

|

Syracosphaera repagula

|

Sp. nov

|

Valid

|

Bown, Lees & Young

|

Late Cretaceous (Turonian)

|

|

{{Flag|Tanzania}}

|

A haptophyte belonging to the order Syracosphaerales and the family Syracosphaeraceae.

|

Tarburina{{Cite journal|author1=Felix Schlagintweit |author2=Koorosh Rashidi |author3=Farzaneh Barani |year=2017 |title=Tarburina zagrosiana n. gen., n. sp., a new larger benthic porcelaneous foraminifer from the late Maastrichtian of Iran |journal=Journal of Micropalaeontology |volume=36 |issue=2 |pages=183–190 |doi=10.1144/jmpaleo2016-019 |s2cid=56370885 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Schlagintweit, Rashidi & Barani

|

Late Cretaceous (late Maastrichtian)

|

Tarbur Formation

|

{{Flag|Iran}}

|

A foraminifer. Genus includes new species T. zagrosiana.

|

Taruma

|

Gen. et sp. nov

|

Valid

|

Morais, Fairchild & Lahr in Morais et al.

|

Neoproterozoic

|

Urucum Formation

|

{{Flag|Brazil}}

|

A vase-shaped microfossil. Genus includes new species T. rata.

|

Tortolithus foramen

|

Sp. nov

|

Valid

|

Lees, Bown & Young

|

Late Cretaceous (Turonian)

|

|

{{Flag|Tanzania}}

|

A haptophyte of uncertain phylogenetic placement.

|

Veteronostocale grandis

|

Sp. nov

|

Valid

|

Shi & Feng in Shi et al.

|

Early Mesoproterozoic

|

Gaoyuzhuang Formation

|

{{Flag|China}}

|

A member of Cyanobacteria belonging to the group Nostocales.

|

Windipila{{cite journal |author1=Michael Krings |author2=Carla J. Harper |year=2017 |title=A mantled fungal reproductive unit from the Lower Devonian Windyfield chert, Scotland, with prominent spines and otherwise shaped projections extending out from the mantle |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=285 |issue=2 |pages=201–211 |doi=10.1127/njgpa/2017/0677 }}

|

Gen. et sp. nov

|

Valid

|

Krings & Harper

|

Early Devonian

|

Windyfield chert

|

{{Flag|United Kingdom}}

|

A fungus described on the basis of a reproductive unit. Genus includes new species W. spinifera.

|

Xiaohongyuia{{Cite journal|author1=Min Shi |author2=Qing-Lai Feng |author3=Maliha Zareen Khan |author4=Stanley Awramik |author5=Shi-Xing Zhu |year=2017 |title=Silicified microbiota from the Paleoproterozoic Dahongyu Formation, Tianjin, China |journal=Journal of Paleontology |volume=91 |issue=3 |pages=369–392 |doi=10.1017/jpa.2016.163 |bibcode=2017JPal...91..369S |s2cid=132359467 |doi-access=free }}

|

Gen. et sp. nov

|

Valid

|

Shi & Feng in Shi et al.

|

Late Paleoproterozoic

|

Dahongyu Formation

|

{{Flag|China}}

|

A probable eukaryotic microfossil. Genus includes new species X. sinica.

|

General paleontology

Research related to paleontology that either does not concern any of the groups of the organisms listed above, or concerns multiple groups.

  • A study on the links between changes in the composition of exposed continental crust and oxygenation of the atmosphere in the Precambrian is published by Smit & Mezger (2017).{{Cite journal|author1=Matthijs A. Smit |author2=Klaus Mezger |year=2017 |title=Earth's early O2 cycle suppressed by primitive continents |journal=Nature Geoscience |volume=10 |issue=10 |pages=788–792 |doi=10.1038/ngeo3030 |bibcode=2017NatGe..10..788S }}
  • A review of the progress in modeling the Snowball Earth atmosphere, cryosphere, hydrosphere and lithosphere, specifically as it pertains to Cryogenian geology and geobiology, is published by Hoffman et al. (2017).{{Cite journal|author1=Paul F. Hoffman |author2=Dorian S. Abbot |author3=Yosef Ashkenazy |author4=Douglas I. Benn |author5=Jochen J. Brocks |author6=Phoebe A. Cohen |author7=Grant M. Cox |author8=Jessica R. Creveling |author9=Yannick Donnadieu |author10=Douglas H. Erwin |author11=Ian J. Fairchild |author12=David Ferreira |author13=Jason C. Goodman |author14=Galen P. Halverson |author15=Malte F. Jansen |author16=Guillaume Le Hir |author17=Gordon D. Love |author18=Francis A. Macdonald |author19=Adam C. Maloof |author20=Camille A. Partin |author21=Gilles Ramstein |author22=Brian E. J. Rose |author23=Catherine V. Rose |author24=Peter M. Sadler |author25=Eli Tziperman |author26=Aiko Voigt |author27=Stephen G. Warren |year=2017 |title=Snowball Earth climate dynamics and Cryogenian geology-geobiology |journal=Science Advances |volume=3 |issue=11 |pages=e1600983 |doi=10.1126/sciadv.1600983 |pmid=29134193 |pmc=5677351 |bibcode=2017SciA....3E0983H }}
  • A revised record of fossil eukaryotic steroids during the Neoproterozoic is presented by Brocks et al. (2017), who argue that bacteria were the only notable primary producers in the oceans before the Cryogenian, and that rapid rise of marine planktonic algae to domination occurred in the narrow time interval between the Sturtian and Marinoan glaciations, 659–645 million years ago, likely driving the subsequent radiation of animals in the Ediacaran period.{{cite journal |author1=Jochen J. Brocks |author2=Amber J. M. Jarrett |author3=Eva Sirantoine |author4=Christian Hallmann |author5=Yosuke Hoshino |author6=Tharika Liyanage |year=2017 |title=The rise of algae in Cryogenian oceans and the emergence of animals |journal=Nature |volume=548 |issue=7669 |pages=578–581 |doi=10.1038/nature23457 |pmid=28813409 |bibcode=2017Natur.548..578B |s2cid=205258987 }}
  • A study evaluating whether mass extinction events over the last 500 million year were caused by astronomical phenomena is published by Erlykin et al. (2017).{{Cite journal|author1=Anatoly D. Erlykin |author2=David A. T. Harper |author3=Terry Sloan |author4=Arnold W. Wolfendale |year=2017 |title=Mass extinctions over the last 500 myr: an astronomical cause? |journal=Palaeontology |volume=60 |issue=2 |pages=159–167 |doi=10.1111/pala.12283 |bibcode=2017Palgy..60..159E |s2cid=133407217 |url=http://dro.dur.ac.uk/21275/1/21275.pdf }}
  • A study on the water column geochemistry of the Yangtze Sea during the Ediacaran-Cambrian transition and its implications for the relationship between ocean oxygenation and Early Cambrian animal diversification is published by Zhang et al. (2017).{{Cite journal|author1=Junpeng Zhang |author2=Tailiang Fan |author3=Yuandong Zhang |author4=Gary G. Lash |author5=Yifan Li |author6=Yue Wu |year=2017 |title=Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 8550 |doi=10.1038/s41598-017-07904-3 |pmid=28819268 |pmc=5561082 |bibcode=2017NatSR...7.8550Z }}
  • A study on the links between the expansion of siliceous sponges and seawater oxygenation during the Ediacaran–Cambrian transition is published by Tatzel et al. (2017).{{Cite journal|author1=Michael Tatzel |author2=Friedhelm von Blanckenburg |author3=Marcus Oelze |author4=Julien Bouchez |author5=Dorothee Hippler |year=2017 |title=Late Neoproterozoic seawater oxygenation by siliceous sponges |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 621 |doi=10.1038/s41467-017-00586-5 |pmid=28931817 |pmc=5606986 |bibcode=2017NatCo...8..621T }}
  • A study on the factors influencing marine invertebrate diversity dynamics through the Phanerozoic is published by Cermeño et al. (2017).{{Cite journal|author1=Pedro Cermeño |author2=Michael J. Benton |author3=Óscar Paz |author4=Christian Vérard |year=2017 |title=Trophic and tectonic limits to the global increase of marine invertebrate diversity |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 15969 |doi=10.1038/s41598-017-16257-w |pmid=29162866 |pmc=5698323 |bibcode=2017NatSR...715969C }}
  • Edwards et al. (2017) identify a strong temporal link between the rising atmospheric oxygen levels and the Great Ordovician Biodiversification Event.{{Cite journal|author1=Cole T. Edwards |author2=Matthew R. Saltzman |author3=Dana L. Royer |author4=David A. Fike |year=2017 |title=Oxygenation as a driver of the Great Ordovician Biodiversification Event |journal=Nature Geoscience |volume=10 |issue=12 |pages=925–929 |doi=10.1038/s41561-017-0006-3 |bibcode=2017NatGe..10..925E |s2cid=134884032 }}
  • A study on the impact of the drawdown of atmospheric carbon dioxide (caused by burial of organic carbon leading to the formation of coal) on the climate around the Carboniferous/Permian boundary is published by Feulner (2017).{{Cite journal|author=Georg Feulner |year=2017 |title=Formation of most of our coal brought Earth close to global glaciation |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=43 |pages=11333–11337 |doi=10.1073/pnas.1712062114 |pmid=29073052 |pmc=5664543 |bibcode=2017PNAS..11411333F |doi-access=free }}
  • A comprehensive reconstruction of the Permian (Lopingian) Bletterbach Biota (Italy) and a review of other best-known Lopingian terrestrial associations containing both vertebrate and plant remains is published by Bernardi et al. (2017).{{Cite journal|author1=Massimo Bernardi |author2=Fabio Massimo Petti |author3=Evelyn Kustatscher |author4=Matthias Franz |author5=Christoph Hartkopf-Fröder |author6=Conrad C. Labandeira |author7=Torsten Wappler |author8=Johanna H.A. van Konijnenburg-van Cittert |author9=Brandon R. Peecook |author10=Kenneth D. Angielczyk |year=2017 |title=Late Permian (Lopingian) terrestrial ecosystems: A global comparison with new data from the low-latitude Bletterbach Biota |journal=Earth-Science Reviews |volume=175 |pages=18–43 |doi=10.1016/j.earscirev.2017.10.002 |bibcode=2017ESRv..175...18B |doi-access=free }}
  • A study on the causal connection between the Siberian Traps large igneous province magmatism and Permian–Triassic extinction event, identifying the initial emplacement pulse as likely to have triggered mass extinction, is published by Burgess, Muirhead & Bowring (2017).{{Cite journal|author1=S. D. Burgess |author2=J. D. Muirhead |author3=S. A. Bowring |year=2017 |title=Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 164 |doi=10.1038/s41467-017-00083-9 |pmid=28761160 |pmc=5537227 |bibcode=2017NatCo...8..164B }}
  • Viglietti, Rubidge & Smith (2017) review the tectonic setting of the Late Permian Karoo Basin (South Africa), provide an updated basin development model, and interpret their findings as indicating that the climatic changes associated with the Permian–Triassic extinction event were occurring much lower in the stratigraphy (and thus earlier) than previously documented.{{Cite journal|author1=Pia A. Viglietti |author2=Bruce S. Rubidge |author3=Roger M. H. Smith |year=2017 |title=New Late Permian tectonic model for South Africa's Karoo Basin: foreland tectonics and climate change before the end-Permian crisis |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 10861 |doi=10.1038/s41598-017-09853-3 |pmid=28883403 |pmc=5589945 |bibcode=2017NatSR...710861V }}
  • A summary of knowledge of the impact of Permian-Triassic mass extinction on reef ecosystems, and on their recovery after this extinction, is presented by Martindale, Foster & Velledits (2017).{{Cite journal|author1=Rowan C. Martindale |author2=William J. Foster |author3=Felicitász Velledits |year=2017 |title=The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=513 |pages=100–115 |doi=10.1016/j.palaeo.2017.08.014 |bibcode=2019PPP...513..100M |s2cid=135338869 }}
  • A study on benthic invertebrate communities from the Lower Triassic Werfen Formation (Italy), aiming to test whether carbon isotope perturbations during the Early Triassic were associated with biotic crises that impeded benthic recovery after the Permian–Triassic extinction event, is published by Foster et al. (2017).{{Cite journal|author1=William J. Foster |author2=Silvia Danise |author3=Gregory D. Price |author4=Richard J. Twitchett |year=2017 |title=Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy |journal=PLOS ONE |volume=12 |issue=3 |pages=e0172321 |doi=10.1371/journal.pone.0172321 |pmid=28296886 |pmc=5351997 |bibcode=2017PLoSO..1272321F |doi-access=free }}
  • A study on the impact of the magmatic activity associated with the Central Atlantic magmatic province on the Triassic–Jurassic extinction event is published by Davies et al. (2017).{{Cite journal|author1=J.H.F.L. Davies |author2=A. Marzoli |author3=H. Bertrand |author4=N. Youbi |author5=M. Ernesto |author6=U. Schaltegger |year=2017 |title=End-Triassic mass extinction started by intrusive CAMP activity |journal=Nature Communications |volume=8 |pages=Article number 15596 |doi=10.1038/ncomms15596 |pmid=28561025 |pmc=5460029 |bibcode=2017NatCo...815596D }}
  • A study on the volcanic activity at the end of the Triassic as indicated by mercury concentrations in sediments from around the world is published by Percival et al. (2017).{{Cite journal|author1=Lawrence M. E. Percival |author2=Micha Ruhl |author3=Stephen P. Hesselbo |author4=Hugh C. Jenkyns |author5=Tamsin A. Mather |author6=Jessica H. Whiteside |year=2017 |title=Mercury evidence for pulsed volcanism during the end-Triassic mass extinction |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=30 |pages=7929–7934 |doi=10.1073/pnas.1705378114 |pmid=28630294 |pmc=5544315 |bibcode=2017PNAS..114.7929P |doi-access=free }}
  • A study on the oxygen levels in Earth's oceans during and after the Triassic–Jurassic extinction event as indicated by uranium isotopes in shallow-marine limestones in the Lombardy Basin (northern Italy) is published by Jost et al. (2017).{{Cite journal|author1=Adam B. Jost |author2=Aviv Bachan |author3=Bas van de Schootbrugge |author4=Kimberly V. Lau |author5=Karrie L. Weaver |author6=Kate Maher |author7=Jonathan L. Payne |year=2017 |title=Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction |journal=Geochemistry, Geophysics, Geosystems |volume=18 |issue=8 |pages=3093–3108 |doi=10.1002/2017GC006941 |bibcode=2017GGG....18.3093J |hdl=1874/362214 |s2cid=133679444 |hdl-access=free }}
  • A high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America and a study on the stratigraphic ranges of North American dinosaurs is published by Fowler (2017).{{Cite journal|author=Denver Warwick Fowler |year=2017 |title=Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America |journal=PLOS ONE |volume=12 |issue=11 |pages=e0188426 |doi=10.1371/journal.pone.0188426 |pmid=29166406 |pmc=5699823 |bibcode=2017PLoSO..1288426F |doi-access=free }}
  • A study on the impact that large amounts of soot injected into the atmosphere during the Cretaceous–Paleogene extinction event (probably caused by global wildfires) had on the climate is published by Bardeen et al. (2017).{{Cite journal|author1=Charles G. Bardeen |author2=Rolando R. Garcia |author3=Owen B. Toon |author4=Andrew J. Conley |year=2017 |title=On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=36 |pages=E7415–E7424 |doi=10.1073/pnas.1708980114 |pmid=28827324 |pmc=5594694 |bibcode=2017PNAS..114E7415B |doi-access=free }}
  • A study estimating the decrease of the air temperature and the duration of the climate cooling caused by Chicxulub impact at the end of the Cretaceous is published by Brugger, Feulner & Petri (2017).{{Cite journal|author1=Julia Brugger |author2=Georg Feulner |author3=Stefan Petri |year=2017 |title=Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous |journal=Geophysical Research Letters |volume=44 |issue=1 |pages=419–427 |doi=10.1002/2016GL072241 |bibcode=2017GeoRL..44..419B |s2cid=53631053 |url=https://publications.pik-potsdam.de/pubman/item/item_21282_1/component/file_21283/7402oa.pdf }}
  • A study on the volume of the climate-active gases released from sedimentary rocks as a result of the Chicxulub impact, as well as on their effect on the global climate, is published by Artemieva, Morgan & Expedition 364 Science Party (2017).{{Cite journal|author1=Natalia Artemieva|author1-link=Natalia Artemieva |author2=Joanna Morgan |author3=Expedition 364 Science Party |year=2017 |title=Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub |journal=Geophysical Research Letters |volume=44 |issue=20 |pages=10,180–10,188 |doi=10.1002/2017GL074879 |bibcode=2017GeoRL..4410180A |hdl=10044/1/51225 |doi-access=free }}
  • Kaiho & Oshima (2017) calculate the amounts of stratospheric soot and sulfate formed by a virtual asteroid impact at various global locations, and conclude that the Cretaceous–Paleogene extinction event was caused by the Chicxulub impact happening at the hydrocarbon-rich, sulfate-dominated area on the Earth's surface, and that an impact at a low–medium hydrocarbon area on Earth would be unlikely to cause mass extinction.{{Cite journal|author1=Kunio Kaiho |author2=Naga Oshima |year=2017 |title=Site of asteroid impact changed the history of life on Earth: the low probability of mass extinction |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 14855 |doi=10.1038/s41598-017-14199-x |pmid=29123110 |pmc=5680197 |bibcode=2017NatSR...714855K }}
  • A study on the data sets of molluscan fossils from the Cretaceous–Paleogene of the Seymour Island (Antarctica) is published by Tobin (2017), who identifies possible evidence of two separate extinction events, one prior to the Cretaceous–Paleogene boundary, and one simultaneous with the bolide impact at the Cretaceous–Paleogene boundary.{{Cite journal|author=Thomas S. Tobin |year=2017 |title=Recognition of a likely two phased extinction at the K-Pg boundary in Antarctica |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 16317 |doi=10.1038/s41598-017-16515-x |pmid=29176556 |pmc=5701184 |bibcode=2017NatSR...716317T }}
  • A study on the behavioral and ecological diversification of animals that colonized land as indicated by trace fossils is published by Minter et al. (2017).{{Cite journal|author1=Nicholas J. Minter |author2=Luis A. Buatois |author3=M. Gabriela Mángano |author4=Neil S. Davies |author5=Martin R. Gibling |author6=Robert B. MacNaughton |author7=Conrad C. Labandeira |year=2017 |title=Early bursts of diversification defined the faunal colonization of land |journal=Nature Ecology & Evolution |volume=1 |issue=7 |pages=Article number 0175 |doi=10.1038/s41559-017-0175 |s2cid=59988716 |url=https://www.repository.cam.ac.uk/handle/1810/266362 }}
  • A study on the age of the Cowie Harbour Fish Bed (Scotland, United Kingdom), containing fish and arthropod fossils (including the millipede Pneumodesmus newmani), is published by Suarez et al. (2017).{{Cite journal|author1=Stephanie E. Suarez |author2=Michael E. Brookfield |author3=Elizabeth J. Catlos |author4=Daniel F. Stöckli |year=2017 |title=A U-Pb zircon age constraint on the oldest-recorded air-breathing land animal |journal=PLOS ONE |volume=12 |issue=6 |pages=e0179262 |doi=10.1371/journal.pone.0179262 |pmid=28658320 |pmc=5489152 |bibcode=2017PLoSO..1279262S |doi-access=free }}
  • A study on the preservation of skin and keratinous integumentary structures in tetrapod fossils through time is published by Eliason et al. (2017).{{Cite journal|author1=Chad M. Eliason |author2=Leah Hudson |author3=Taylor Watts |author4=Hector Garza |author5=Julia A. Clarke |year=2017 |title=Exceptional preservation and the fossil record of tetrapod integument |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1862 |pages=20170556 |doi=10.1098/rspb.2017.0556 |pmid=28878057 |pmc=5597822 }}
  • A study on the differences between the tetrapod faunas at different latitudes during the early and middle Permian, as well as their implications for establishing whether the Olson's Extinction was a genuine event, is published by Brocklehurst et al. (2017).{{Cite journal|author1=Neil Brocklehurst |author2=Michael O. Day |author3=Bruce S. Rubidge |author4=Jörg Fröbisch |year=2017 |title=Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1852 |pages=20170231 |doi=10.1098/rspb.2017.0231 |pmid=28381616 |pmc=5394676 }}
  • A study on the non-flying terrestrial tetrapod species richness through the Mesozoic and early Palaeogene is published by Close et al. (2017).{{Cite journal|author1=Roger A. Close |author2=Roger B.J. Benson |author3=Paul Upchurch |author4=Richard J. Butler |year=2017 |title=Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification |journal=Nature Communications |volume=8 |pages=Article number 15381 |doi=10.1038/ncomms15381 |pmid=28530240 |pmc=5458146 |bibcode=2017NatCo...815381C }}
  • A study on the evolution of the shape of brain and skull roof during the transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds is published by Fabbri et al. (2017).{{Cite journal|author1=Matteo Fabbri |author2=Nicolás Mongiardino Koch |author3=Adam C. Pritchard |author4=Michael Hanson |author5=Eva Hoffman |author6=Gabriel S. Bever |author7=Amy M. Balanoff |author8=Zachary S. Morris |author9=Daniel J. Field |author10=Jasmin Camacho |author11=Timothy B. Rowe |author12=Mark A. Norell |author13=Roger M. Smith |author14=Arhat Abzhanov |author15=Bhart-Anjan S. Bhullar |year=2017 |title=The skull roof tracks the brain during the evolution and development of reptiles including birds |journal=Nature Ecology & Evolution |volume=1 |issue=10 |pages=1543–1550 |doi=10.1038/s41559-017-0288-2 |pmid=29185519 |bibcode=2017NatEE...1.1543F |s2cid=3326766 |url=http://opus.bath.ac.uk/57283/1/Fabbri_et_al._final_proof.pdf }}
  • A study on the structure and vulnerability of the food web in marine vertebrate assemblages prior to the Cretaceous–Paleogene extinction event as indicated by calcium isotope data from plesiosaurs and mosasaurs is published by Martin et al. (2017).{{Cite journal|author1=Jeremy E. Martin |author2=Peggy Vincent |author3=Théo Tacail |author4=Fatima Khaldoune |author5=Essaid Jourani |author6=Nathalie Bardet |author7=Vincent Balter |year=2017 |title=Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction |journal=Current Biology |volume=27 |issue=11 |pages=1641–1644.e2 |doi=10.1016/j.cub.2017.04.043 |pmid=28552352 |s2cid=4161031 |doi-access=free |bibcode=2017CBio...27E1641M }}
  • Qvarnström et al. (2017) reconstruct fossil inclusions in two coprolites (produced by an insectivorous animal and a large aquatic predator) from the Late Triassic locality of Krasiejów (Poland) using propagation phase-contrast synchrotron microtomography.{{Cite journal|author1=Martin Qvarnström |author2=Grzegorz Niedźwiedzki |author3=Paul Tafforeau |author4=Živil Žigaitė |author5=Per E. Ahlberg |year=2017 |title=Synchrotron phase-contrast microtomography of coprolites generates novel palaeobiological data |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 2723 |doi=10.1038/s41598-017-02893-9 |pmid=28578409 |pmc=5457397 |bibcode=2017NatSR...7.2723Q }}
  • A study on the fossil inclusions in coprolite fragments (produced by medium to large-sized carnivores, possibly therocephalian therapsids or early archosauriforms) recovered from the Late Permian locality of Vyazniki (Russia) is published by Bajdek et al. (2017).{{Cite journal|author1=Piotr Bajdek |author2=Krzysztof Owocki |author3=Andrey G. Sennikov |author4=Valeriy K. Golubev |author5=Grzegorz Niedźwiedzki |year=2017 |title=Residues from the Upper Permian carnivore coprolites from Vyazniki in Russia - key questions in reconstruction of feeding habits |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=482 |pages=70–82 |doi=10.1016/j.palaeo.2017.05.033 |bibcode=2017PPP...482...70B }}
  • A new tetrapod assemblage from the lowermost levels of the Triassic Chañares Formation (Argentina), dominated by fossils of Tarjadia ruthae, dicynodonts and cynodonts, and also including fossils of other pseudosuchians and rhynchosaurs, is described by Ezcurra et al. (2017), who also reinterpret Tarjadia ruthae and Archeopelta arborensis as erpetosuchid archosaurs.{{Cite journal|author1=Martín D. Ezcurra |author2=Lucas E. Fiorelli |author3=Agustín G. Martinelli |author4=Sebastián Rocher |author5=M. Belén von Baczko |author6=Miguel Ezpeleta |author7=Jeremías R. A. Taborda |author8=E. Martín Hechenleitner |author9=M. Jimena Trotteyn |author10=Julia B. Desojo |year=2017 |title=Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea |journal=Nature Ecology & Evolution |volume=1 |issue=10 |pages=1477–1483 |doi=10.1038/s41559-017-0305-5 |pmid=29185518 |bibcode=2017NatEE...1.1477E |hdl=11336/41466 |s2cid=10007967 |hdl-access=free }}
  • A study on the cosmopolitanism of terrestrial amniote faunas in the aftermath of the Permian–Triassic extinction event and Triassic–Jurassic extinction event is published by Button et al. (2017).{{Cite journal|author1=David J. Button |author2=Graeme T. Lloyd |author3=Martín D. Ezcurra |author4=Richard J. Butler |year=2017 |title=Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 733 |doi=10.1038/s41467-017-00827-7 |pmid=29018290 |pmc=5635108 |bibcode=2017NatCo...8..733B }}
  • Frese et al. (2017) determine the mineral and elemental composition of a range of fossils from the Talbragar fossil site (Australia) and their rock matrices using ultraviolet light-induced fluorescence/photoluminescence, X-ray fluorescence and X-ray diffractometry, and use those techniques to reveal anatomical details of animals and plants fossils that weren't discernible otherwise.{{Cite journal|author1=Michael Frese |author2=Gerda Gloy |author3=Rolf G. Oberprieler |author4=Damian B. Gore |year=2017 |title=Imaging of Jurassic fossils from the Talbragar Fish Bed using fluorescence, photoluminescence, and elemental and mineralogical mapping |journal=PLOS ONE |volume=12 |issue=6 |pages=e0179029 |doi=10.1371/journal.pone.0179029 |pmid=28582427 |pmc=5459505 |bibcode=2017PLoSO..1279029F |doi-access=free }}
  • A study on changes of the size of fossil marine shells and predatory drill holes in those shells during the Phanerozoic, as well as their implications for changes of predator-prey size ratio throughout the Phanerozoic, is published by Klompmaker et al. (2017).{{Cite journal|author1=Adiël A. Klompmaker |author2=Michał Kowalewski |author3=John Warren Huntley |author4=Seth Finnegan |year=2017 |title=Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems |journal=Science |volume=356 |issue=6343 |pages=1178–1180 |doi=10.1126/science.aam7468 |pmid=28619943 |s2cid=206657244 |doi-access=free }}
  • A study evaluating the utility of oxygen-isotope compositions of fossilised foraminifera tests as proxies for surface- and deep-ocean paleotemperatures, and its implications for inferring Late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures, is published by Bernard et al. (2017).{{Cite journal|author1=S. Bernard |author2=D. Daval |author3=P. Ackerer |author4=S. Pont |author5=A. Meibom |year=2017 |title=Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 1134 |doi=10.1038/s41467-017-01225-9 |pmid=29070888 |pmc=5656689 |bibcode=2017NatCo...8.1134B }}{{Cite journal|author1=David Evans |author2=Marcus P. S. Badger |author3=Gavin L. Foster |author4=Michael J. Henehan |author5=Caroline H. Lear |author6=James C. Zachos |year=2018 |title=No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record |journal=Nature Communications |volume=9 |issue=1 |pages=Article number 2875 |doi=10.1038/s41467-018-05303-4 |pmid=30038330 |pmc=6056492 |bibcode=2018NatCo...9.2875E }}{{Cite journal|author1=S. Bernard |author2=D. Daval |author3=P. Ackerer |author4=S. Pont |author5=A. Meibom |year=2018 |title=Reply to 'No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record' |journal=Nature Communications |volume=9 |issue=1 |pages=Article number 2874 |doi=10.1038/s41467-018-05304-3 |pmid=30038223 |pmc=6056461 |bibcode=2018NatCo...9.2874B }}
  • A study on the glacial development and environmental changes in the Aurora Subglacial Basin (Antarctica) throughout the Cenozoic based on geophysical and geological evidence is published by Gulick et al. (2017).{{Cite journal|author1=Sean P. S. Gulick |author2=Amelia E. Shevenell |author-link2=Amelia E. Shevenell|author3=Aleksandr Montelli |author4=Rodrigo Fernandez |author5=Catherine Smith |author6=Sophie Warny |author7=Steven M. Bohaty |author8=Charlotte Sjunneskog |author9=Amy Leventer |author10=Bruce Frederick |author11=Donald D. Blankenship |year=2017 |title=Initiation and long-term instability of the East Antarctic Ice Sheet |journal=Nature |volume=552 |issue=7684 |pages=225–229 |doi=10.1038/nature25026 |pmid=29239353 |bibcode=2017Natur.552..225G |s2cid=4404071 |url=https://eprints.soton.ac.uk/417070/1/GulicketalMerged.pdf }}
  • A study on the onset duration of the Paleocene–Eocene Thermal Maximum is published by Kirtland Turner et al. (2017).{{Cite journal|author1=Sandra Kirtland Turner |author2=Pincelli M. Hull |author3=Lee R. Kump |author4=Andy Ridgwell |year=2017 |title=A probabilistic assessment of the rapidity of PETM onset |journal=Nature Communications |volume=8 |issue=1 |pages=Article number 353 |doi=10.1038/s41467-017-00292-2 |pmid=28842564 |pmc=5572461 |bibcode=2017NatCo...8..353K }}
  • A study on the relationship between volcanic activity in the North Atlantic Igneous Province and the Paleocene–Eocene Thermal Maximum is published by Gutjahr et al. (2017).{{Cite journal|author1=Marcus Gutjahr |author2=Andy Ridgwell |author3=Philip F. Sexton |author4=Eleni Anagnostou |author5=Paul N. Pearson |author6=Heiko Pälike |author7=Richard D. Norris |author8=Ellen Thomas |author9=Gavin L. Foster |year=2017 |title=Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum |journal=Nature |volume=548 |issue=7669 |pages=573–577 |doi=10.1038/nature23646 |pmid=28858305 |pmc=5582631 |bibcode=2017Natur.548..573G }}
  • A study on the environment in the area corresponding to the present-day Amazon basin in the Miocene as indicated by data from the shark and ray fossils from the Pirabas Formation (Brazil) is published by Aguilera et al. (2017).{{Cite journal|author1=Orangel Aguilera |author2=Zoneibe Luz |author3=Jorge D. Carrillo-Briceño |author4=László Kocsis |author5=Torsten W. Vennemann |author6=Peter Mann de Toledo |author7=Afonso Nogueira |author8=Kamilla Borges Amorim |author9=Heloísa Moraes-Santos |author10=Marcia Reis Polck |author11=Maria de Lourdes Ruivo |author12=Ana Paula Linhares |author13=Cassiano Monteiro-Neto |year=2017 |title=Neogene sharks and rays from the Brazilian 'Blue Amazon' |journal=PLOS ONE |volume=12 |issue=8 |pages=e0182740 |doi=10.1371/journal.pone.0182740 |pmid=28832664 |pmc=5568136 |bibcode=2017PLoSO..1282740A |doi-access=free }}
  • A study on the impact of the Messinian salinity crisis on Mediterranean magmatism is published by Sternai et al. (2017).{{Cite journal|author1=Pietro Sternai |author2=Luca Caricchi |author3=Daniel Garcia-Castellanos |author4=Laurent Jolivet |author5=Tom E. Sheldrake |author6=Sébastien Castelltort |year=2017 |title=Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis |journal=Nature Geoscience |volume=10 |issue=10 |pages=783–787 |doi=10.1038/ngeo3032 |pmid=29081834 |pmc=5654511 |bibcode=2017NatGe..10..783S }}
  • A study on the changes of ice sheets volume and sea level during the late Pliocene is published by de Boer et al. (2017).{{Cite journal|author1=Bas de Boer |author2=Alan M. Haywood |author3=Aisling M. Dolan |author4=Stephen J. Hunter |author5=Caroline L. Prescott |year=2017 |title=The transient response of ice volume to orbital forcing during the warm late Pliocene |journal=Geophysical Research Letters |volume=44 |issue=20 |pages=10,486–10,494 |doi=10.1002/2017GL073535 |bibcode=2017GeoRL..4410486D |doi-access=free }}
  • Pimiento et al. (2017) identify a previously unrecognized extinction event among marine megafauna at the end of the Pliocene.{{Cite journal|author1=Catalina Pimiento |author2=John N. Griffin |author3=Christopher F. Clements |author4=Daniele Silvestro |author5=Sara Varela |author6=Mark D. Uhen |author7=Carlos Jaramillo |year=2017 |title=The Pliocene marine megafauna extinction and its impact on functional diversity |journal=Nature Ecology & Evolution |volume=1 |issue=8 |pages=1100–1106 |doi=10.1038/s41559-017-0223-6 |pmid=29046566 |bibcode=2017NatEE...1.1100P |s2cid=3639394 |url=https://cronfa.swan.ac.uk/Record/cronfa34515/Download/0034515-28062017151736.pdf }}
  • A study on the aridity in eastern Africa over the past 4.4 million years as indicated by oxygen isotope ratios in fossil herbivore tooth enamel, and on its implications for inferring the role of climate in shaping early hominin environments, is published by Blumenthal et al. (2017).{{Cite journal|author1=Scott A. Blumenthal |author2=Naomi E. Levin |author3=Francis H. Brown |author4=Jean-Philip Brugal |author5=Kendra L. Chritz |author6=John M. Harris |author7=Glynis E. Jehle |author8=Thure E. Cerling |year=2017 |title=Aridity and hominin environments |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=28 |pages=7331–7336 |doi=10.1073/pnas.1700597114 |pmid=28652366 |pmc=5514716 |bibcode=2017PNAS..114.7331B |doi-access=free }}
  • Tierney, deMenocal & Zander (2017) reconstruct temperature and aridity in the Horn of Africa region spanning the past 200,000 years.{{Cite journal|author1=Jessica E. Tierney |author2=Peter B. deMenocal |author3=Paul D. Zander |year=2017 |title=A climatic context for the out-of-Africa migration |journal=Geology |volume=45 |issue=11 |pages=1023–1026 |doi=10.1130/G39457.1 |bibcode=2017Geo....45.1023T |doi-access=free }}
  • A vertebrate fauna from the Pleistocene and Holocene of Sumba (Indonesia) is described by Turvey et al. (2017).{{Cite journal|author1=Samuel T. Turvey |author2=Jennifer J. Crees |author3=James Hansford |author4=Timothy E. Jeffree |author5=Nick Crumpton |author6=Iwan Kurniawan |author7=Erick Setiyabudi |author8=Thomas Guillerme |author9=Umbu Paranggarimu |author10=Anthony Dosseto |author11=Gerrit D. van den Bergh |year=2017 |title=Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution |journal=Proceedings of the Royal Society B: Biological Sciences |volume=284 |issue=1861 |pages=20171278 |doi=10.1098/rspb.2017.1278 |pmid=28855367 |pmc=5577490 }}
  • A study on the modified mammalian bones from the Plio–Pleistocene of Ethiopia is published by Sahle, El Zaatari & White (2017), who interpret the marks on some of these bones as more likely to be produced by crocodiles than by hominids using stone tools.{{Cite journal|author1=Yonatan Sahle |author2=Sireen El Zaatari |author3=Tim D. White |year=2017 |title=Hominid butchers and biting crocodiles in the African Plio–Pleistocene |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=114 |issue=50 |pages=13164–13169 |doi=10.1073/pnas.1716317114 |pmid=29109249 |pmc=5740633 |bibcode=2017PNAS..11413164S |doi-access=free }}
  • Hagstrum et al. (2017) report impact-related microspherules and elevated platinum concentrations found in fine-grained sediments retained within Late Pleistocene bison and mammoth skull fragments from Alaska and Yukon, and interpret the findings as evidence of repeated airbursts and ground/ice impacts associated with multiple episodes of cosmic impact.{{Cite journal|author1=Jonathan T. Hagstrum |author2=Richard B. Firestone |author3=Allen West |author4=James C. Weaver |author5=Ted E. Bunch |year=2017 |title=Impact-related microspherules in Late Pleistocene Alaskan and Yukon "muck" deposits signify recurrent episodes of catastrophic emplacement |journal=Scientific Reports |volume=7 |issue=1 |pages=Article number 16620 |doi=10.1038/s41598-017-16958-2 |pmid=29192242 |pmc=5709379 |bibcode=2017NatSR...716620H }}
  • A study on changes in landscape moisture in the rangelands in Europe, Siberia and the Americas during the late Pleistocene as indicated by data from the bones of megaherbivores is published by Rabanus-Wallace et al. (2017).{{Cite journal|author1=M. Timothy Rabanus-Wallace |author2=Matthew J. Wooller |author3=Grant D. Zazula |author4=Elen Shute |author5=A. Hope Jahren |author6=Pavel Kosintsev |author7=James A. Burns |author8=James Breen |author9=Bastien Llamas |author10=Alan Cooper |year=2017 |title=Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions |journal=Nature Ecology & Evolution |volume=1 |issue=5 |pages=Article number 0125 |doi=10.1038/s41559-017-0125 |pmid=28812683 |s2cid=4473573 }}

References