Geologic time scale#Proposed Precambrian timeline

{{Short description|System that relates geologic strata to time}}

{{Use dmy dates|date=July 2016}}

{{Use British English|date=October 2023}}

File:Geologic time scale - spiral - ICS colours (light) - path text.svg with some major events in Earth's history. A megaannus (Ma) represents one million (106) years.]]

The geologic time scale or geological time scale (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardised international units of geological time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective{{Cite web |title=Statues & Guidelines |url=https://stratigraphy.org/statutes |access-date=2022-04-05 |website= |publisher=International Commission on Stratigraphy}} is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC){{Cite journal |last1=Cohen |first1=K.M. |last2=Finney |first2=S.C. |last3=Gibbard |first3=P.L. |last4=Fan |first4=J.-X. |date=2013-09-01 |title=The ICS International Chronostratigraphic Chart |journal=Episodes |language=en |edition=updated |volume=36 |issue=3 |pages=199–204 |doi=10.18814/epiiugs/2013/v36i3/002 |s2cid=51819600 |issn=0705-3797|doi-access=free }} that are used to define divisions of geological time. The chronostratigraphic divisions are in turn used to define geochronologic units.

Principles

{{See also|Age of Earth|History of Earth|Geological history of Earth}}

The geologic time scale is a way of representing deep time based on events that have occurred throughout Earth's history, a time span of about 4.54 ± 0.05 Ga (4.54 billion years).{{cite journal |last=Dalrymple |first=G. Brent |date=2001 |title=The age of the Earth in the twentieth century: a problem (mostly) solved |journal=Special Publications, Geological Society of London |volume=190 |issue=1 |pages=205–221 |bibcode=2001GSLSP.190..205D |doi=10.1144/GSL.SP.2001.190.01.14 |s2cid=130092094}}

It chronologically organises strata, and subsequently time, by observing fundamental changes in stratigraphy that correspond to major geological or paleontological events. For example, the Cretaceous–Paleogene extinction event, marks the lower boundary of the Paleogene System/Period and thus the boundary between the Cretaceous and Paleogene systems/periods. For divisions prior to the Cryogenian, arbitrary numeric boundary definitions (Global Standard Stratigraphic Ages, GSSAs) are used to divide geologic time. Proposals have been made to better reconcile these divisions with the rock record.{{Cite journal |last1=Shields |first1=Graham A. |last2=Strachan |first2=Robin A. |last3=Porter |first3=Susannah M. |last4=Halverson |first4=Galen P. |last5=Macdonald |first5=Francis A. |last6=Plumb |first6=Kenneth A. |last7=de Alvarenga |first7=Carlos J. |last8=Banerjee |first8=Dhiraj M. |last9=Bekker |first9=Andrey |last10=Bleeker |first10=Wouter |last11=Brasier |first11=Alexander |date=2022 |title=A template for an improved rock-based subdivision of the pre-Cryogenian timescale |journal=Journal of the Geological Society |language=en |volume=179 |issue=1 |pages=jgs2020–222 |doi=10.1144/jgs2020-222 |bibcode=2022JGSoc.179..222S |s2cid=236285974 |issn=0016-7649|doi-access=free }}{{Citation |last1=Van Kranendonk |first1=Martin J. |title=A Chronostratigraphic Division of the Precambrian |date=2012 |work=The Geologic Time Scale |pages=299–392 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780444594259000160 |access-date=2022-04-05 |publisher=Elsevier |language=en |doi=10.1016/b978-0-444-59425-9.00016-0 |isbn=978-0-444-59425-9 |last2=Altermann |first2=Wladyslaw |last3=Beard |first3=Brian L. |last4=Hoffman |first4=Paul F. |last5=Johnson |first5=Clark M. |last6=Kasting |first6=James F. |last7=Melezhik |first7=Victor A. |last8=Nutman |first8=Allen P.}}

Historically, regional geologic time scales were used due to the litho- and biostratigraphic differences around the world in time equivalent rocks. The ICS has long worked to reconcile conflicting terminology by standardising globally significant and identifiable stratigraphic horizons that can be used to define the lower boundaries of chronostratigraphic units. Defining chronostratigraphic units in such a manner allows for the use of global, standardised nomenclature. The International Chronostratigraphic Chart represents this ongoing effort.

Several key principles are used to determine the relative relationships of rocks and thus their chronostratigraphic position.{{Cite web |title=International Commission on Stratigraphy - Stratigraphic Guide - Chapter 9. Chronostratigraphic Units |url=https://stratigraphy.org/guide/chron |access-date=2024-04-16 |website=stratigraphy.org}}{{Cite book |last=Boggs |first=Sam |title=Principles of sedimentology and stratigraphy |date=2011 |publisher=Prentice Hall |isbn=978-0-321-74576-7 |edition=5th |location=Boston, Munich}}

The law of superposition that states that in undeformed stratigraphic sequences the oldest strata will lie at the bottom of the sequence, while newer material stacks upon the surface. In practice, this means a younger rock will lie on top of an older rock unless there is evidence to suggest otherwise.

The principle of original horizontality that states layers of sediments will originally be deposited horizontally under the action of gravity. However, it is now known that not all sedimentary layers are deposited purely horizontally,{{Cite journal |last1=Mehta |first1=A |last2=Barker |first2=G C |date=1994-04-01 |title=The dynamics of sand |url=https://iopscience.iop.org/article/10.1088/0034-4885/57/4/002 |journal=Reports on Progress in Physics |volume=57 |issue=4 |pages=383–416 |doi=10.1088/0034-4885/57/4/002 |issn=0034-4885}} but this principle is still a useful concept.

The principle of lateral continuity that states layers of sediments extend laterally in all directions until either thinning out or being cut off by a different rock layer, i.e. they are laterally continuous. Layers do not extend indefinitely; their limits are controlled by the amount and type of sediment in a sedimentary basin, and the geometry of that basin.

The principle of cross-cutting relationships that states a rock that cuts across another rock must be younger than the rock it cuts across.

The law of included fragments that states small fragments of one type of rock that are embedded in a second type of rock must have formed first, and were included when the second rock was forming.

The relationships of unconformities which are geologic features representing a gap in the geologic record. Unconformities are formed during periods of erosion or non-deposition, indicating non-continuous sediment deposition. Observing the type and relationships of unconformities in strata allows geologist to understand the relative timing of the strata.

The principle of faunal succession (where applicable) that states rock strata contain distinctive sets of fossils that succeed each other vertically in a specific and reliable order.{{Cite book |last=Smith |first=William |url=http://www.biodiversitylibrary.org/bibliography/106808 |title=Strata identified by organized fossils, containing prints on colored paper of the most characteristic specimens in each stratum |date=1816-06-01 |publisher=W. Arding |location=London |doi=10.5962/bhl.title.106808}} This allows for a correlation of strata even when the horizon between them is not continuous.

Divisions of geologic time

{{See also|Stratigraphy|Chronostratigraphy|Biostratigraphy|Magnetostratigraphy|Lithostratigraphy|Geochronology}}

The geologic time scale is divided into chronostratigraphic units and their corresponding geochronologic units.

  • An {{visible anchor|eon}} is the largest geochronologic time unit and is equivalent to a chronostratigraphic eonothem.{{Cite book |url=https://www.worldcat.org/oclc/1137380460 |title=A dictionary of geology and earth sciences |date=2020 |author=Michael Allaby |isbn=978-0-19-187490-1 |edition=Fifth |location=Oxford |oclc=1137380460}} There are four formally defined eons: the Hadean, Archean, Proterozoic and Phanerozoic.
  • An {{visible anchor|era}} is the second largest geochronologic time unit and is equivalent to a chronostratigraphic erathem. There are ten defined eras: the Eoarchean, Paleoarchean, Mesoarchean, Neoarchean, Paleoproterozoic, Mesoproterozoic, Neoproterozoic, Paleozoic, Mesozoic and Cenozoic, with none from the Hadean eon.
  • A {{visible anchor|period}} is equivalent to a chronostratigraphic system. There are 22 defined periods, with the current being the Quaternary period. As an exception, two subperiods are used for the Carboniferous Period.
  • An {{visible anchor|epoch}} is the second smallest geochronologic unit. It is equivalent to a chronostratigraphic series. There are 37 defined epochs and one informal one. The current epoch is the Holocene. There are also 11 subepochs which are all within the Neogene and Quaternary. The use of subepochs as formal units in international chronostratigraphy was ratified in 2022.{{Cite journal |last1=Aubry |first1=Marie-Pierre |last2=Piller |first2=Werner E. |last3=Gibbard |first3=Philip L. |last4=Harper |first4=David A. T. |last5=Finney |first5=Stanley C. |date=2022-03-01 |title=Ratification of subseries/subepochs as formal rank/units in international chronostratigraphy |journal=Episodes |language=en |volume=45 |issue=1 |pages=97–99 |doi=10.18814/epiiugs/2021/021016 |s2cid=240772165 |issn=0705-3797|doi-access=free }}
  • An {{visible anchor|age}} is the smallest hierarchical geochronologic unit. It is equivalent to a chronostratigraphic stage. There are 96 formal and five informal ages. The current age is the Meghalayan.
  • A {{visible anchor|chron}} is a non-hierarchical formal geochronology unit of unspecified rank and is equivalent to a chronostratigraphic chronozone. These correlate with magnetostratigraphic, lithostratigraphic, or biostratigraphic units as they are based on previously defined stratigraphic units or geologic features.

class="wikitable mw-collapsible" style = "margin-left: auto; margin-right: auto; border: none;"

|+Formal, hierarchical units of the geologic time scale (largest to smallest)

!Chronostratigraphic unit (strata)

!Geochronologic unit (time)

!Time span{{Efn|Time spans of geologic time units vary broadly, and there is no numeric limitation on the time span they can represent. They are limited by the time span of the higher rank unit they belong to, and to the chronostratigraphic boundaries they are defined by.|group=note|name=timespan}}

Eonothem

|Eon

|Several hundred million years to two billion years

Erathem

|Era

|Tens to hundreds of millions of years

System

|Period

|Millions of years to tens of millions of years

Series

|Epoch

|Hundreds of thousands of years to tens of millions of years

Subseries

|Subepoch

|Thousands of years to millions of years

Stage

|Age

|Thousands of years to millions of years

The subdivisions {{em|Early}} and {{em|Late}} are used as the geochronologic equivalents of the chronostratigraphic {{em|Lower}} and {{em|Upper}}, e.g., Early Triassic Period (geochronologic unit) is used in place of Lower Triassic System (chronostratigraphic unit).

Rocks representing a given chronostratigraphic unit are that chronostratigraphic unit, and the time they were laid down in is the geochronologic unit, e.g., the rocks that represent the Silurian System {{em|are}} the Silurian System and they were deposited {{em|during}} the Silurian Period. This definition means the numeric age of a geochronologic unit can be changed (and is more often subject to change) when refined by geochronometry while the equivalent chronostratigraphic unit (the revision of which is less frequent) remains unchanged. For example, in early 2022, the boundary between the Ediacaran and Cambrian periods (geochronologic units) was revised from 541 Ma to 538.8 Ma but the rock definition of the boundary (GSSP) at the base of the Cambrian, and thus the boundary between the Ediacaran and Cambrian systems (chronostratigraphic units) has not been changed; rather, the absolute age has merely been refined.

= Terminology =

{{em|Chronostratigraphy}} is the element of stratigraphy that deals with the relation between rock bodies and the relative measurement of geological time.{{Cite web |title=Chapter 9. Chronostratigraphic Units |url=https://stratigraphy.org/guide/chron |access-date=2022-04-02 |website=stratigraphy.org |publisher=International Commission on Stratigraphy}} It is the process where distinct strata between defined stratigraphic horizons are assigned to represent a relative interval of geologic time.

A {{em|chronostratigraphic unit}}{{Anchor|Chronostratigraphic unit}} is a body of rock, layered or unlayered, that is defined between specified stratigraphic horizons which represent specified intervals of geologic time. They include all rocks representative of a specific interval of geologic time, and only this time span. Eonothem, erathem, system, series, subseries, stage, and substage are the hierarchical chronostratigraphic units.

A {{em|geochronologic unit}}{{Anchor|Geochronologic unit}} is a subdivision of geologic time. It is a numeric representation of an intangible property (time).{{Cite web |title=Chapter 3. Definitions and Procedures |url=https://stratigraphy.org/guide/defs |access-date=2022-04-02 |website=stratigraphy.org |publisher=International Commission on Stratigraphy}} These units are arranged in a hierarchy: eon, era, period, epoch, subepoch, age, and subage.

{{em|Geochronology}} is the scientific branch of geology that aims to determine the age of rocks, fossils, and sediments either through absolute (e.g., radiometric dating) or relative means (e.g., stratigraphic position, paleomagnetism, stable isotope ratios).

{{em|Geochronometry}} is the field of geochronology that numerically quantifies geologic time.

A {{em|Global Boundary Stratotype Section and Point}} (GSSP) is an internationally agreed-upon reference point on a stratigraphic section that defines the lower boundaries of stages on the geologic time scale.{{Cite web |title=Global Boundary Stratotype Section and Points |url=https://stratigraphy.org/gssps/ |access-date=2022-04-02 |website=stratigraphy.org |publisher=International Commission on Stratigraphy}} (Recently this has been used to define the base of a system){{Cite journal |last1=Knoll |first1=Andrew |last2=Walter |first2=Malcolm |last3=Narbonne |first3=Guy |last4=Christie-Blick |first4=Nicholas |date=2006 |title=The Ediacaran Period: a new addition to the geologic time scale |url=http://doi.wiley.com/10.1080/00241160500409223 |journal=Lethaia |language=en |volume=39 |issue=1 |pages=13–30 |doi=10.1080/00241160500409223|bibcode=2006Letha..39...13K }}

A {{em|Global Standard Stratigraphic Age}} (GSSA){{Cite journal |last1=Remane |first1=Jürgen |last2=Bassett |first2=Michael G |last3=Cowie |first3=John W |last4=Gohrbandt |first4=Klaus H |last5=Lane |first5=H Richard |last6=Michelsen |first6=Olaf |last7=Naiwen |first7=Wang |last8=the cooperation of members of ICS |date=1996-09-01 |title=Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS) |journal=Episodes |language=en |volume=19 |issue=3 |pages=77–81 |doi=10.18814/epiiugs/1996/v19i3/007 |issn=0705-3797|doi-access=free }} is a numeric-only, chronologic reference point used to define the base of geochronologic units prior to the Cryogenian. These points are arbitrarily defined. They are used where GSSPs have not yet been established. Research is ongoing to define GSSPs for the base of all units that are currently defined by GSSAs.

The standard international units of the geologic time scale are published by the International Commission on Stratigraphy on the International Chronostratigraphic Chart; however, regional terms are still in use in some areas. The numeric values on the International Chronostratigrahpic Chart are represented by the unit Ma (megaannum, for 'million years'). For example, {{Period start|Jurassic}} {{Period start error|Jurassic}} Ma, the lower boundary of the Jurassic Period, is defined as 201,400,000 years old with an uncertainty of 200,000 years. Other SI prefix units commonly used by geologists are Ga (gigaannum, billion years), and ka (kiloannum, thousand years), with the latter often represented in calibrated units (before present).

Naming of geologic time

The names of geologic time units are defined for chronostratigraphic units with the corresponding geochronologic unit sharing the same name with a change to the suffix (e.g. Phanerozoic Eonothem becomes the Phanerozoic Eon). Names of erathems in the Phanerozoic were chosen to reflect major changes in the history of life on Earth: Paleozoic (old life), Mesozoic (middle life), and Cenozoic (new life). Names of systems are diverse in origin, with some indicating chronologic position (e.g., Paleogene), while others are named for lithology (e.g., Cretaceous), geography (e.g., Permian), or are tribal (e.g., Ordovician) in origin. Most currently recognised series and subseries are named for their position within a system/series (early/middle/late); however, the International Commission on Stratigraphy advocates for all new series and subseries to be named for a geographic feature in the vicinity of its stratotype or type locality. The name of stages should also be derived from a geographic feature in the locality of its stratotype or type locality.

Informally, the time before the Cambrian is often referred to as the Precambrian or pre-Cambrian (Supereon).{{efn|Precambrian or pre-Cambrian is an informal geological term for time before the Cambrian period|name=Precam|group=note}}

class="wikitable mw-collapsible" style = "margin-left: auto; margin-right: auto; border: none;"

|+Time span and etymology of geologic eonothem/eon names

!Name

!Time span

!Duration (million years)

!Etymology of name

Phanerozoic

|{{Period span/brief|Phanerozoic|1}}

|{{#expr:{{Period start|Phanerozoic}}-{{Period end|Phanerozoic}}}}

|From Greek φανερός (phanerós) 'visible' or 'abundant' and ζωή (zoē) 'life'.

Proterozoic

|{{Period span/brief|Proterozoic|1}}

|{{#expr:{{Period start|Proterozoic}}-{{Period end|Proterozoic}}}}

|From Greek πρότερος (próteros) 'former' or 'earlier' and ζωή (zoē) 'life'.

Archean

|{{Period span/brief|Archean|1}}

|{{#expr:{{Period start|Archean}}-{{Period end|Archean}}}}

|From Greek ἀρχή (archē) 'beginning, origin'.

Hadean

|{{Period span/brief|Hadean|1}}

|{{#expr:{{Period start|Hadean}}-{{Period end|Hadean}}}}

|From Hades, {{langx|grc|ᾍδης|Háidēs}}, the god of the underworld (hell, the inferno) in Greek mythology.

class="wikitable mw-collapsible" style = "margin-left: auto; margin-right: auto; border: none;"

|+Time span and etymology of geologic erathem/era names

!Name

!Time span

!Duration (million years)

!Etymology of name

Cenozoic

|{{Period span/brief|Cenozoic|1}}

|{{#expr:{{Period start|Cenozoic}}-{{Period end|Cenozoic}}}}

|From Greek καινός (kainós) 'new' and ζωή (zōḗ) 'life'.

Mesozoic

|{{Period span/brief|Mesozoic|1}}

|{{#expr:{{Period start|Mesozoic}}-{{Period end|Mesozoic}}}}

|From Greek μέσο (méso) 'middle' and ζωή (zōḗ) 'life'.

Paleozoic

|{{Period span/brief|Paleozoic|1}}

|{{#expr:{{Period start|Paleozoic}}-{{Period end|Paleozoic}}}}

|From Greek παλιός (palaiós) 'old' and ζωή (zōḗ) 'life'.

Neoproterozoic

|{{Period span/brief|Neoproterozoic|1}}

|{{#expr:{{Period start|Neoproterozoic}}-{{Period end|Neoproterozoic}}}}

|From Greek νέος (néos) 'new' or 'young', πρότερος (próteros) 'former' or 'earlier', and ζωή (zōḗ) 'life'.

Mesoproterozoic

|{{Period span/brief|Mesoproterozoic|1}}

|{{#expr:{{Period start|Mesoproterozoic}}-{{Period end|Mesoproterozoic}}}}

|From Greek μέσο (méso) 'middle', πρότερος (próteros) 'former' or 'earlier', and ζωή (zōḗ) 'life'.

Paleoproterozoic

|{{Period span/brief|Paleoproterozoic|1}}

|{{#expr:{{Period start|Paleoproterozoic}}-{{Period end|Paleoproterozoic}}}}

|From Greek παλιός (palaiós) 'old', πρότερος (próteros) 'former' or 'earlier', and ζωή (zōḗ) 'life'.

Neoarchean

|{{Period span/brief|Neoarchean|1}}

|{{#expr:{{Period start|Neoarchean}}-{{Period end|Neoarchean}}}}

|From Greek νέος (néos) 'new' or 'young' and ἀρχαῖος (arkhaîos) 'ancient'.

Mesoarchean

|{{Period span/brief|Mesoarchean|1}}

|{{#expr:{{Period start|Mesoarchean}}-{{Period end|Mesoarchean}}}}

|From Greek μέσο (méso) 'middle' and ἀρχαῖος (arkhaîos) 'ancient'.

Paleoarchean

|{{Period span/brief|Paleoarchean|1}}

|{{#expr:{{Period start|Paleoarchean}}-{{Period end|Paleoarchean}}}}

|From Greek παλιός (palaiós) 'old' and ἀρχαῖος (arkhaîos) 'ancient'.

Eoarchean

|{{Period span/brief|Eoarchean|1}}

|{{#expr:{{Period start|Eoarchean}}-{{Period end|Eoarchean}}}}

|From Greek ἠώς (ēōs) 'dawn' and ἀρχαῖος (arkhaîos) 'ancient'.

class="wikitable mw-collapsible" style = "margin-left: auto; margin-right: auto; border: none;"

|+Time span and etymology of geologic system/period names

!Name

!Time span

!Duration (million years)

!Etymology of name

Quaternary

|{{Period span/brief|Quaternary|1}}

|{{#expr:{{Period start|Quaternary}}-{{Period end|Quaternary}}}}

|First introduced by Jules Desnoyers in 1829 for sediments in France's Seine Basin that appeared to be younger than Tertiary{{efn|The Tertiary is a now obsolete geologic system/period spanning from 66 Ma to 2.6 Ma. It has no exact equivalent in the modern ICC, but is approximately equivalent to the merged Palaeogene and Neogene systems/periods.{{Cite journal |last1=Head |first1=Martin J. |last2=Gibbard |first2=Philip |last3=Salvador |first3=Amos |date=2008-06-01 |title=The Quaternary: its character and definition |journal=Episodes |language=en |volume=31 |issue=2 |pages=234–238 |doi=10.18814/epiiugs/2008/v31i2/009 |doi-access=free |issn=0705-3797}}{{Cite journal |last1=Gibbard |first1=Philip L. |last2=Head |first2=Martin J. |last3=Walker |first3=Michael J. C. |last4=the Subcommission on Quaternary Stratigraphy |date=2010-01-20 |title=Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma |url=https://onlinelibrary.wiley.com/doi/10.1002/jqs.1338 |journal=Journal of Quaternary Science |language=en |volume=25 |issue=2 |pages=96–102 |doi=10.1002/jqs.1338 |bibcode=2010JQS....25...96G |issn=0267-8179}}|name=Tertiary|group=note}} rocks.{{cite journal |last1=Desnoyers |first1=J. |title=Observations sur un ensemble de dépôts marins plus récents que les terrains tertiaires du bassin de la Seine, et constituant une formation géologique distincte; précédées d'un aperçu de la nonsimultanéité des bassins tertiares |journal=Annales des Sciences Naturelles |date=1829 |volume=16 |pages=171–214, 402–491 |url=https://www.biodiversitylibrary.org/item/29350#page/177/mode/1up |trans-title=Observations on a set of marine deposits [that are] more recent than the tertiary terrains of the Seine basin and [that] constitute a distinct geological formation; preceded by an outline of the non-simultaneity of tertiary basins |language=fr}} [https://www.biodiversitylibrary.org/item/29350#page/199/mode/1up From p. 193:] "Ce que je désirerais ... dont il faut également les distinguer." (What I would desire to prove above all is that the series of tertiary deposits continued – and even began in the more recent basins – for a long time, perhaps after that of the Seine had been completely filled, and that these later formations – Quaternary (1), so to say – should not retain the name of alluvial deposits any more than the true and ancient tertiary deposits, from which they must also be distinguished.) However, on the very same page, Desnoyers abandoned the use of the term "Quaternary" because the distinction between Quaternary and Tertiary deposits wasn't clear. From p. 193: "La crainte de voir mal comprise ... que ceux du bassin de la Seine." (The fear of seeing my opinion in this regard be misunderstood or exaggerated, has made me abandon the word "quaternary", which at first I had wanted to apply to all deposits more recent than those of the Seine basin.)

Neogene

|{{Period span/brief|Neogene|1}}

|{{#expr:{{Period start|Neogene}}-{{Period end|Neogene}}}}

|Derived from Greek νέος (néos) 'new' and γενεά (geneá) 'genesis' or 'birth'.

Paleogene

|{{Period span/brief|Paleogene|1}}

|{{#expr:{{Period start|Paleogene}}-{{Period end|Paleogene}}}}

|Derived from Greek παλιός (palaiós) 'old' and γενεά (geneá) 'genesis' or 'birth'.

Cretaceous

|~{{Period span/brief|Cretaceous|1}}

|~{{#expr:{{Period start|Cretaceous}}-{{Period end|Cretaceous}}}}

|Derived from Terrain Crétacé used in 1822 by Jean d'Omalius d'Halloy in reference to extensive beds of chalk within the Paris Basin.{{cite journal | author = d'Halloy, d'O., J.-J. | year = 1822 | title = Observations sur un essai de carte géologique de la France, des Pays-Bas, et des contrées voisines |trans-title=Observations on a trial geological map of France, the Low Countries, and neighboring countries | journal = Annales des Mines | volume = 7 | pages = 353–376 | url = https://books.google.com/books?id=c-ocAQAAIAAJ&pg=PA353}} From page 373: "La troisième, qui correspond à ce qu'on a déja appelé formation de la craie, sera désigné par le nom de terrain crétacé." (The third, which corresponds to what was already called the "chalk formation", will be designated by the name "chalky terrain".) Ultimately derived from Latin crēta 'chalk'.

Jurassic

|{{Period span/brief|Jurassic|1}}

|~{{#expr:{{Period start|Jurassic}}-{{Period end|Jurassic}}}}

|Named after the Jura Mountains. Originally used by Alexander von Humboldt as 'Jura Kalkstein' (Jura limestone) in 1799.{{Cite book |last=Humboldt |first=Alexander von |url=https://books.google.com/books?id=oZ5PAAAAcAAJ |title=Ueber die unterirdischen Gasarten und die Mittel ihren Nachtheil zu vermindern: ein Beytrag zur Physik der praktischen Bergbaukunde |date=1799 |publisher=Vieweg |language=de}} Alexandre Brongniart was the first to publish the term Jurassic in 1829.{{Cite book |last=Brongniart |first=Alexandre (1770-1847) Auteur du texte |url=https://gallica.bnf.fr/ark:/12148/bpt6k255061 |title=Tableau des terrains qui composent l'écorce du globe ou Essai sur la structure de la partie connue de la terre . Par Alexandre Brongniart,... |date=1829 |language=fr}}{{Citation |last1=Ogg |first1=J.G. |title=Jurassic |date=2012 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780444594259000263 |work=The Geologic Time Scale |pages=731–791 |publisher=Elsevier |language=en |doi=10.1016/b978-0-444-59425-9.00026-3 |isbn=978-0-444-59425-9 |access-date=2022-05-01 |last2=Hinnov |first2=L.A. |last3=Huang |first3=C.}}

Triassic

|{{Period span/brief|Triassic|1}}

|{{#expr:{{Period start|Triassic}}-{{Period end|Triassic}}}}

|From the Trias of Friedrich August von Alberti in reference to a trio of formations widespread in southern Germany.

Permian

|{{Period span/brief|Permian|1}}

|{{#expr:{{Period start|Permian}}-{{Period end|Permian}}}}

|Named after the historical region of Perm, Russian Empire.{{Cite book |last1=Murchison |url=https://books.google.com/books?id=MDoAAAAAQAAJ |title=On the Geological Structure of the Central and Southern Regions of Russia in Europe, and of the Ural Mountains |last2=Murchison |first2=Sir Roderick Impey |last3=Verneuil |last4=Keyserling |first4=Graf Alexander |date=1842 |publisher=Print. by R. and J.E. Taylor |language=en}}

Carboniferous

|{{Period span/brief|Carboniferous|1}}

|{{#expr:{{Period start|Carboniferous}}-{{Period end|Carboniferous}}}}

|Means 'coal-bearing', from the Latin carbō (coal) and ferō (to bear, carry).{{Cite book |last=Phillips |first=John |url=https://books.google.com/books?id=-7-ZqIkYBOMC&pg=PA1 |title=Illustrations of the Geology of Yorkshire: Or, A Description of the Strata and Organic Remains: Accompanied by a Geological Map, Sections and Plates of the Fossil Plants and Animals ... |date=1835 |publisher=J. Murray |language=en}}

Devonian

|{{Period span/brief|Devonian|1}}

|{{#expr:{{Period start|Devonian}}-{{Period end|Devonian}}}}

|Named after Devon, England.{{Cite journal |last1=Sedgwick |first1=A. |last2=Murchison |first2=R. I. |date=1840-01-01 |title=XLIII.--On the Physical Structure of Devonshire, and on the Subdivisions and Geological Relations of its older stratified Deposits, &c. |url=https://books.google.com/books?id=QknWzPRnVRQC&pg=PA701 |journal=Transactions of the Geological Society of London |language=en |volume=s2-5 |issue=3 |pages=633–703 |doi=10.1144/transgslb.5.3.633 |s2cid=128475487 |issn=2042-5295}}

Silurian

|{{Period span/brief|Silurian|1}}

|{{#expr:{{Period start|Silurian}}-{{Period end|Silurian}}}}

|Named after the Celtic tribe, the Silures.{{Cite journal |last=Murchison |first=Roderick Impey |date=1835 |title=VII. On the silurian system of rocks |url=https://www.tandfonline.com/doi/full/10.1080/14786443508648654 |journal=The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science |language=en |volume=7 |issue=37 |pages=46–52 |doi=10.1080/14786443508648654 |issn=1941-5966}}

Ordovician

|{{Period span/brief|Ordovician|1}}

|{{#expr:{{Period start|Ordovician}}-{{Period end|Ordovician}}}}

|Named after the Celtic tribe, Ordovices.{{Cite journal |last=Lapworth |first=Charles |date=1879 |title=I.—On the Tripartite Classification of the Lower Palæozoic Rocks |url=https://www.cambridge.org/core/product/identifier/S0016756800156560/type/journal_article |journal=Geological Magazine |language=en |volume=6 |issue=1 |pages=1–15 |doi=10.1017/S0016756800156560 |bibcode=1879GeoM....6....1L |s2cid=129165105 |issn=0016-7568}}{{Cite journal |last=Bassett |first=Michael G. |title=100 Years of Ordovician Geology |date=1979-06-01 |journal=Episodes |language=en |volume=2 |issue=2 |pages=18–21 |doi=10.18814/epiiugs/1979/v2i2/003 |issn=0705-3797|doi-access=free }}

Cambrian

|{{Period span/brief|Cambrian|1}}

|{{#expr:{{Period start|Cambrian}}-{{Period end|Cambrian}}}}

|Named for Cambria, a latinised form of the Welsh name for Wales, Cymru.{{cite EB1911|wstitle=Cambria}}

Ediacaran

|{{Period span/brief|Ediacaran|1}}

|~{{#expr:{{Period start|Ediacaran}}-{{Period end|Ediacaran}}}}

|Named for the Ediacara Hills. Ediacara is possibly a corruption of Kuyani 'Yata Takarra' 'hard or stony ground'.{{cite web |last=Butcher |first=Andy |date=26 May 2004 |title=Re: Ediacaran |url=http://listserv.linguistlist.org/cgi-bin/wa?A2=ind0405&L=australian-linguistics-l&D=1&P=264 |url-status=dead |archive-url=https://web.archive.org/web/20071023012434/http://listserv.linguistlist.org/cgi-bin/wa?A2=ind0405&L=australian-linguistics-l&D=1&P=264 |archive-date=23 October 2007 |access-date=19 July 2011 |work=LISTSERV 16.0 - AUSTRALIAN-LINGUISTICS-L Archives}}{{cite web |title=Place Details: Ediacara Fossil Site – Nilpena, Parachilna, SA, Australia |url=http://www.environment.gov.au/cgi-bin/ahdb/search.pl?mode=place_detail;place_id=105880 |url-status=live |archive-url=https://web.archive.org/web/20110603074010/http://www.environment.gov.au/cgi-bin/ahdb/search.pl?mode=place_detail;place_id=105880 |archive-date=3 June 2011 |access-date=19 July 2011 |work=Australian Heritage Database |publisher=Commonwealth of Australia |department=Department of Sustainability, Environment, Water, Population and Communities |df=dmy-all}}

Cryogenian

|{{Period span/brief|Cryogenian|1}}

|~{{#expr:{{Period start|Cryogenian}}-{{Period end|Cryogenian}}}}

|From Greek κρύος (krýos) 'cold' and γένεσις (génesis) 'birth'.

Tonian

|{{Period span/brief|Tonian|1}}

|~{{#expr:{{Period start|Tonian}}-{{Period end|Tonian}}}}

|From Greek τόνος (tónos) 'stretch'.

Stenian

|{{Period span/brief|Stenian|1}}

|{{#expr:{{Period start|Stenian}}-{{Period end|Stenian}}}}

|From Greek στενός (stenós) 'narrow'.

Ectasian

|{{Period span/brief|Ectasian|1}}

|{{#expr:{{Period start|Ectasian}}-{{Period end|Ectasian}}}}

|From Greek ἔκτᾰσῐς (éktasis) 'extension'.

Calymmian

|{{Period span/brief|Calymmian|1}}

|{{#expr:{{Period start|Calymmian}}-{{Period end|Calymmian}}}}

|From Greek κάλυμμᾰ (kálumma) 'cover'.

Statherian

|{{Period span/brief|Statherian|1}}

|{{#expr:{{Period start|Statherian}}-{{Period end|Statherian}}}}

|From Greek σταθερός (statherós) 'stable'.

Orosirian

|{{Period span/brief|Orosirian|1}}

|{{#expr:{{Period start|Orosirian}}-{{Period end|Orosirian}}}}

|From Greek ὀροσειρά (oroseirá) 'mountain range'.

Rhyacian

|{{Period span/brief|Rhyacian|1}}

|{{#expr:{{Period start|Rhyacian}}-{{Period end|Rhyacian}}}}

|From Greek ῥύαξ (rhýax) 'stream of lava'.

Siderian

|{{Period span/brief|Siderian|1}}

|{{#expr:{{Period start|Siderian}}-{{Period end|Siderian}}}}

|From Greek σίδηρος (sídēros) 'iron'.

class="wikitable mw-collapsible" style = "margin-left: auto; margin-right: auto; border: none;"

|+Time span and etymology of geologic series/epoch names

!Name

!Time span

!Duration (million years)

!Etymology of name

Holocene

|{{Period span/brief|Holocene|3}}

|{{#expr:{{Period start|Holocene}}-{{Period end|Holocene}}}}

|From Greek ὅλος (hólos) 'whole' and καινός (kainós) 'new'

Pleistocene

|{{Period span/brief|Pleistocene|3}}

|{{#expr:{{Period start|Pleistocene}}-{{Period end|Pleistocene}}}}

|Coined in the early 1830s from Greek πλεῖστος (pleîstos) 'most' and καινός (kainós) 'new'

Pliocene

|{{Period span/brief|Pliocene|2}}

|{{#expr:{{Period start|Pliocene}}-{{Period end|Pliocene}}}}

|Coined in the early 1830s from Greek πλείων (pleíōn) 'more' and καινός (kainós) 'new'

Miocene

|{{Period span/brief|Miocene|2}}

|{{#expr:{{Period start|Miocene}}-{{Period end|Miocene}}}}

|Coined in the early 1830s from Greek μείων (meíōn) 'less' and καινός (kainós) 'new'

Oligocene

|{{Period span/brief|Oligocene|2}}

|{{#expr:{{Period start|Oligocene}}-{{Period end|Oligocene}}}}

|Coined in the 1850s from Greek ὀλίγος (olígos) 'few' and καινός (kainós) 'new'

Eocene

|{{Period span/brief|Eocene|2}}

|{{#expr:{{Period start|Eocene}}-{{Period end|Eocene}}}}

|Coined in the early 1830s from Greek ἠώς (ēōs) 'dawn' and καινός (kainós) 'new', referring to the dawn of modern life during this epoch

Paleocene

|{{Period span/brief|Paleocene|2}}

|{{#expr:{{Period start|Paleocene}}-{{Period end|Paleocene}}}}

|Coined by Wilhelm Philippe Schimper in 1874 as a portmanteau of paleo- + Eocene, but on the surface from Greek παλαιός (palaios) 'old' and καινός (kainós) 'new'

Upper Cretaceous

|{{Period span/brief|Upper Cretaceous|2}}

|{{#expr:{{Period start|Upper Cretaceous}}-{{Period end|Upper Cretaceous}}}}

|rowspan="2" |See Cretaceous

Lower Cretaceous

|{{Period span/brief|Lower Cretaceous|2}}

|{{#expr:{{Period start|Lower Cretaceous}}-{{Period end|Lower Cretaceous}}}}

Upper Jurassic

|{{Period span/brief|Upper Jurassic|2}}

|{{#expr:{{Period start|Upper Jurassic}}-{{Period end|Upper Jurassic}}}}

|rowspan="3" |See Jurassic

Middle Jurassic

|{{Period span/brief|Middle Jurassic|2}}

|{{#expr:{{Period start|Middle Jurassic}}-{{Period end|Middle Jurassic}}}}

Lower Jurassic

|{{Period span/brief|Lower Jurassic|2}}

|{{#expr:{{Period start|Lower Jurassic}}-{{Period end|Lower Jurassic}}}}

Upper Triassic

|{{Period span/brief|Upper Triassic|2}}

|{{#expr:{{Period start|Upper Triassic}}-{{Period end|Upper Triassic}}}}

|rowspan="3" |See Triassic

Middle Triassic

|{{Period span/brief|Middle Triassic|2}}

|{{#expr:{{Period start|Middle Triassic}}-{{Period end|Middle Triassic}}}}

Lower Triassic

|{{Period span/brief|Lower Triassic|2}}

|{{#expr:{{Period start|Lower Triassic}}-{{Period end|Lower Triassic}}}}

Lopingian

|{{Period span/brief|Lopingian|2}}

|{{#expr:{{Period start|Lopingian}}-{{Period end|Lopingian}}}}

|Named for Loping, China, an anglicization of Mandarin 乐平 (lèpíng) 'peaceful music'

Guadalupian

|{{Period span/brief|Guadalupian|2}}

|{{#expr:{{Period start|Guadalupian}}-{{Period end|Guadalupian}}}}

|Named for the Guadalupe Mountains of the American Southwest, ultimately from Arabic وَادِي ٱل (wādī al) 'valley of the' and Latin lupus 'wolf' via Spanish

Cisuralian

|{{Period span/brief|Cisuralian|2}}

|{{#expr:{{Period start|Cisuralian}}-{{Period end|Cisuralian}}}}

|From Latin cis- (before) + Russian Урал (Ural), referring to the western slopes of the Ural Mountains

Upper Pennsylvanian

|{{Period span/brief|Upper Pennsylvanian|2}}

|{{#expr:{{Period start|Upper Pennsylvanian}}-{{Period end|Upper Pennsylvanian}}}}

|rowspan="3" |Named for the US state of Pennsylvania, from William Penn + Latin silvanus (forest) + -ia by analogy to Transylvania

Middle Pennsylvanian

|{{Period span/brief|Middle Pennsylvanian|2}}

|{{#expr:{{Period start|Middle Pennsylvanian}}-{{Period end|Middle Pennsylvanian}}}}

Lower Pennsylvanian

|{{Period span/brief|Lower Pennsylvanian|2}}

|{{#expr:{{Period start|Lower Pennsylvanian}}-{{Period end|Lower Pennsylvanian}}}}

Upper Mississippian

|{{Period span/brief|Upper Mississippian|2}}

|{{#expr:{{Period start|Upper Mississippian}}-{{Period end|Upper Mississippian}}}}

|rowspan="3" |Named for the Mississippi River, from Ojibwe ᒥᐦᓯᓰᐱ (misi-ziibi) 'great river'

Middle Mississippian

|{{Period span/brief|Middle Mississippian|2}}

|{{#expr:{{Period start|Middle Mississippian}}-{{Period end|Middle Mississippian}}}}

Lower Mississippian

|{{Period span/brief|Lower Mississippian|2}}

|{{#expr:{{Period start|Lower Mississippian}}-{{Period end|Lower Mississippian}}}}

Upper Devonian

|{{Period span/brief|Upper Devonian|2}}

|{{#expr:{{Period start|Upper Devonian}}-{{Period end|Upper Devonian}}}}

|rowspan="3" |See Devonian

Middle Devonian

|{{Period span/brief|Middle Devonian|2}}

|{{#expr:{{Period start|Middle Devonian}}-{{Period end|Middle Devonian}}}}

Lower Devonian

|{{Period span/brief|Lower Devonian|2}}

|{{#expr:{{Period start|Lower Devonian}}-{{Period end|Lower Devonian}}}}

Pridoli

|{{Period span/brief|Pridoli|2}}

|{{#expr:{{Period start|Pridoli}}-{{Period end|Pridoli}}}}

|Named for the Homolka a Přídolí nature reserve near Prague, Czechia

Ludlow

|{{Period span/brief|Ludlow|2}}

|{{#expr:{{Period start|Ludlow}}-{{Period end|Ludlow}}}}

|Named after Ludlow, England

Wenlock

|{{Period span/brief|Wenlock|2}}

|{{#expr:{{Period start|Wenlock}}-{{Period end|Wenlock}}}}

|Named for the Wenlock Edge in Shropshire, England

Llandovery

|{{Period span/brief|Llandovery|2}}

|{{#expr:{{Period start|Llandovery}}-{{Period end|Llandovery}}}}

|Named after Llandovery, Wales

Upper Ordovician

|{{Period span/brief|Upper Ordovician|2}}

|{{#expr:{{Period start|Upper Ordovician}}-{{Period end|Upper Ordovician}}}}

|rowspan="3" |See Ordovician

Middle Ordovician

|{{Period span/brief|Middle Ordovician|2}}

|{{#expr:{{Period start|Middle Ordovician}}-{{Period end|Middle Ordovician}}}}

Lower Ordovician

|{{Period span/brief|Lower Ordovician|2}}

|{{#expr:{{Period start|Lower Ordovician}}-{{Period end|Lower Ordovician}}}}

Furongian

|{{Period span/brief|Furongian|2}}

|{{#expr:{{Period start|Furongian}}-{{Period end|Furongian}}}}

|From Mandarin 芙蓉 (fúróng) 'lotus', referring to the state symbol of Hunan

Miaolingian

|{{Period span/brief|Cambrian series 3|2}}

|{{#expr:{{Period start|Cambrian series 3}}-{{Period end|Cambrian series 3}}}}

|Named for the {{ill|Miao Ling|zh|苗嶺山脈}} mountains of Guizhou, Mandarin for 'sprouting peaks'

Cambrian Series 2 (informal)

|{{Period span/brief|Cambrian series 2|2}}

|{{#expr:{{Period start|Cambrian series 2}}-{{Period end|Cambrian series 2}}}}

|See Cambrian

Terreneuvian

|{{Period span/brief|Terreneuvian|2}}

|{{#expr:{{Period start|Terreneuvian}}-{{Period end|Terreneuvian}}}}

|Named for Terre-Neuve, a French calque of Newfoundland

History of the geologic time scale

{{See also|History of geology|History of paleontology}}

= Early history =

The most modern geological time scale was not formulated until 1911{{Cite journal |last1=Holmes |first1=Arthur |date=1911-06-09 |title=The association of lead with uranium in rock-minerals, and its application to the measurement of geological time |journal=Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character |volume=85 |issue=578 |pages=248–256 |bibcode=1911RSPSA..85..248H |doi=10.1098/rspa.1911.0036 |issn=0950-1207 |doi-access=free}} by Arthur Holmes (1890 – 1965), who drew inspiration from James Hutton (1726–1797), a Scottish Geologist who presented the idea of uniformitarianism or the theory that changes to the Earth's crust resulted from continuous and uniform processes.{{Cite web |title=James Hutton {{!}} Father of Modern Geology, Scottish Naturalist {{!}} Britannica |url=https://www.britannica.com/biography/James-Hutton |access-date=2024-12-03 |website=www.britannica.com |language=en}} The broader concept of the relation between rocks and time can be traced back to (at least) the philosophers of Ancient Greece from 1200 BC to 600 AD. Xenophanes of Colophon (c. 570–487 BCE) observed rock beds with fossils of seashells located above the sea-level, viewed them as once living organisms, and used this to imply an unstable relationship in which the sea had at times transgressed over the land and at other times had regressed.{{Cite journal |last1=Fischer |first1=Alfred G. |last2=Garrison |first2=Robert E. |date=2009 |title=The role of the Mediterranean region in the development of sedimentary geology: a historical overview |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3091.2008.01009.x |journal=Sedimentology |language=en |volume=56 |issue=1 |pages=3–41 |bibcode=2009Sedim..56....3F |doi=10.1111/j.1365-3091.2008.01009.x |s2cid=128604255}} This view was shared by a few of Xenophanes's scholars and those that followed, including Aristotle (384–322 BC) who (with additional observations) reasoned that the positions of land and sea had changed over long periods of time. The concept of deep time was also recognized by Chinese naturalist Shen Kuo{{Cite book |last=Sivin |first=Nathan |url=http://worldcat.org/oclc/956775994 |title=Science in ancient China: researches and reflections |date=1995 |publisher=Variorum |isbn=0-86078-492-4 |oclc=956775994}} (1031–1095) and Islamic scientist-philosophers, notably the Brothers of Purity, who wrote on the processes of stratification over the passage of time in their treatises. Their work likely inspired that of the 11th-century Persian polymath Avicenna (Ibn Sînâ, 980–1037) who wrote in The Book of Healing (1027) on the concept of stratification and superposition, pre-dating Nicolas Steno by more than six centuries. Avicenna also recognized fossils as "petrifications of the bodies of plants and animals",{{Cite book |last=Adams |first=Frank D. |url=http://worldcat.org/oclc/165626104 |title=The Birth and Development of the Geological Sciences |date=1938 |publisher=Williams & Wilkins |isbn=0-486-26372-X |oclc=165626104}} with the 13th-century Dominican bishop Albertus Magnus (c. 1200–1280), who drew from Aristotle's natural philosophy, extending this into a theory of a petrifying fluid.{{Cite journal |last1=Johnson |first1=Chris |last2=Bentley |first2=Callan |last3=Panchuk |first3=Karla |last4=Affolter |first4=Matt |last5=Layou |first5=Karen |last6=Jaye |first6=Shelley |last7=Kohrs |first7=Russ |last8=Inkenbrandt |first8=Paul |last9=Mosher |first9=Cam |last10=Ricketts |first10=Brian |last11=Estrada |first11=Charlene |title=Geologic Time and Relative Dating |url=https://open.maricopa.edu/fallglg102/part/sedimentary-rocks-and-environments/ |journal=Maricopa Open Digital Press |language=en}} These works appeared to have little influence on scholars in Medieval Europe who looked to the Bible to explain the origins of fossils and sea-level changes, often attributing these to the 'Deluge', including Ristoro d'Arezzo in 1282. It was not until the Italian Renaissance when Leonardo da Vinci (1452–1519) would reinvigorate the relationships between stratification, relative sea-level change, and time, denouncing attribution of fossils to the 'Deluge':{{Cite book |last=McCurdy |first=Edward |url=https://www.worldcat.org/search?q=no:2233803&qt=advanced&dblist=638 |title=The notebooks of Leonardo da Vinci |date=1938 |publisher=Reynal & Hitchcock |location=New York |language=English |oclc=2233803}}

{{blockquote|text=Of the stupidity and ignorance of those who imagine that these creatures were carried to such places distant from the sea by the Deluge...Why do we find so many fragments and whole shells between the different layers of stone unless they had been upon the shore and had been covered over by earth newly thrown up by the sea which then became petrified? And if the above-mentioned Deluge had carried them to these places from the sea, you would find the shells at the edge of one layer of rock only, not at the edge of many where may be counted the winters of the years during which the sea multiplied the layers of sand and mud brought down by the neighboring rivers and spread them over its shores. And if you wish to say that there must have been many deluges in order to produce these layers and the shells among them it would then become necessary for you to affirm that such a deluge took place every year.}}

File:Sketch of the Succession pf Strata and their relative Altitudes.jpg

These views of da Vinci remained unpublished, and thus lacked influence at the time; however, questions of fossils and their significance were pursued and, while views against Genesis were not readily accepted and dissent from religious doctrine was in some places unwise, scholars such as Girolamo Fracastoro shared da Vinci's views, and found the attribution of fossils to the 'Deluge' absurd. Although many theories surrounding philosophy and concepts of rocks were developed in earlier years, "the first serious attempts to formulate a geological time scale that could be applied anywhere on Earth were made in the late 18th century." Later, in the 19th century, academics further developed theories on stratification. William Smith, often referred to as the "Father of Geology" developed theories through observations rather than drawing from the scholars that came before him. Smith's work was primarily based on his detailed study of rock layers and fossils during his time and he created "the first map to depict so many rock formations over such a large area”.{{Cite web |date=2008-05-08 |title=William Smith (1769-1839) |url=https://earthobservatory.nasa.gov/features/WilliamSmith |access-date=2024-12-02 |website=earthobservatory.nasa.gov |language=en}} After studying rock layers and the fossils they contained, Smith concluded that each layer of rock contained distinct material that could be used to identify and correlate rock layers across different regions of the world.{{Cite book |last1=Smith |first1=William |url=https://www.biodiversitylibrary.org/bibliography/106808 |title=Strata identified by organized fossils : containing prints on colored paper of the most characteristic specimens in each stratum |last2=Smith |first2=William |date=1816 |publisher=Printed by W. Arding ..., and sold by the author ..., J. Sowerby ..., Sherwood, Neely, and Jones, and Longman, Hurst, Rees, Orme, and Brown ..., and by all booksellers |location=London |doi=10.5962/bhl.title.106808}} Smith developed the concept of faunal succession or the idea that fossils can serve as a marker for the age of the strata they are found in and published his ideas in his 1816 book, "Strata identified by organized fossils."

= Establishment of primary principles =

Niels Stensen, more commonly known as Nicolas Steno (1638–1686), is credited with establishing four of the guiding principles of stratigraphy. In De solido intra solidum naturaliter contento dissertationis prodromus Steno states:{{Cite book |last=Steno |first=Nicolaus |url=https://books.google.com/books?id=xz28AAAAIAAJ |title=Nicolai Stenonis de solido intra solidvm natvraliter contento dissertationis prodromvs ad serenissimvm Ferdinandvm II ... |date=1669 |publisher=W. Junk |language=la}}{{Citation |last1=Kardel |first1=Troels |date=2018 |url=http://link.springer.com/10.1007/978-3-662-55047-2_38 |work=Nicolaus Steno |pages=763–825 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |language=en |doi=10.1007/978-3-662-55047-2_38 |isbn=978-3-662-55046-5 |access-date=2022-04-20 |last2=Maquet |first2=Paul|title=2.27 the Prodromus to a Dissertation on a Solid Naturally Contained within a Solid }}

  • When any given stratum was being formed, all the matter resting on it was fluid and, therefore, when the lowest stratum was being formed, none of the upper strata existed.
  • ... strata which are either perpendicular to the horizon or inclined to it were at one time parallel to the horizon.
  • When any given stratum was being formed, it was either encompassed at its edges by another solid substance or it covered the whole globe of the earth. Hence, it follows that wherever bared edges of strata are seen, either a continuation of the same strata must be looked for or another solid substance must be found that kept the material of the strata from being dispersed.
  • If a body or discontinuity cuts across a stratum, it must have formed after that stratum.

Respectively, these are the principles of superposition, original horizontality, lateral continuity, and cross-cutting relationships. From this Steno reasoned that strata were laid down in succession and inferred relative time (in Steno's belief, time from Creation). While Steno's principles were simple and attracted much attention, applying them proved challenging. These basic principles, albeit with improved and more nuanced interpretations, still form the foundational principles of determining the correlation of strata relative to geologic time.

Over the course of the 18th-century geologists realised that:

  • Sequences of strata often become eroded, distorted, tilted, or even inverted after deposition
  • Strata laid down at the same time in different areas could have entirely different appearances
  • The strata of any given area represented only part of Earth's long history

= Formulation of a modern geologic time scale =

The apparent, earliest formal division of the geologic record with respect to time was introduced during the era of Biblical models by Thomas Burnet who applied a two-fold terminology to mountains by identifying "montes primarii" for rock formed at the time of the 'Deluge', and younger "monticulos secundarios" formed later from the debris of the "primarii".{{Cite book |last=Burnet |first=Thomas |title=Telluris Theoria Sacra: orbis nostri originen et mutationes generales, quasi am subiit aut olim subiturus est, complectens. Libri duo priores de Diluvio & Paradiso |publisher=G. Kettiby |year=1681 |location=London |language=la}} Anton Moro (1687–1784) also used primary and secondary divisions for rock units but his mechanism was volcanic.{{Cite book |last=Moro |first=Anton Lazzaro |url=https://books.google.com/books?id=03RBAAAAYAAJ |title=De'crostacei e degli altri marini corpi che si truovano su'monti |date=1740 |publisher=Appresso Stefano Monti |language=it}} In this early version of the Plutonism theory, the interior of Earth was seen as hot, and this drove the creation of primary igneous and metamorphic rocks and secondary rocks formed contorted and fossiliferous sediments. These primary and secondary divisions were expanded on by Giovanni Targioni Tozzetti (1712–1783) and Giovanni Arduino (1713–1795) to include tertiary and quaternary divisions. These divisions were used to describe both the time during which the rocks were laid down, and the collection of rocks themselves (i.e., it was correct to say Tertiary rocks, and Tertiary Period). Only the Quaternary division is retained in the modern geologic time scale, while the Tertiary division was in use until the early 21st century. The Neptunism and Plutonism theories would compete into the early 19th century with a key driver for resolution of this debate being the work of James Hutton (1726–1797), in particular his Theory of the Earth, first presented before the Royal Society of Edinburgh in 1785.{{Cite journal |last=Hutton |first=James |date=1788 |title=X. Theory of the Earth; or an Investigation of the Laws observable in the Composition, Dissolution, and Restoration of Land upon the Globe . |url=https://www.cambridge.org/core/product/identifier/S0080456800029227/type/journal_article |journal=Transactions of the Royal Society of Edinburgh |language=en |volume=1 |issue=2 |pages=209–304 |doi=10.1017/S0080456800029227 |s2cid=251578886 |issn=0080-4568}}{{Cite book |last=Hutton |first=James |url=https://www.gutenberg.org/ebooks/12861 |title=Theory of the Earth |year=1795 |volume=1 |location=Edinburgh}}{{Cite book |last=Hutton |first=James |url=https://www.gutenberg.org/ebooks/14179 |title=Theory of the Earth |year=1795 |volume=2 |location=Edinburgh}} Hutton's theory would later become known as uniformitarianism, popularised by John Playfair{{Cite book |last=Playfair |first=John |url=http://archive.org/details/NHM104643 |title=Illustrations of the Huttonian theory of the earth |date=1802 |publisher=Neill & Co |others=Digitised by London Natural History Museum Library |location=Edinburgh}} (1748–1819) and later Charles Lyell (1797–1875) in his Principles of Geology.{{Cite book |last=Lyell |first=Sir Charles |url=https://books.google.com/books?id=mmIOAAAAQAAJ |title=Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation |date=1832 |publisher=John Murray |volume=1 |location=London |language=en}}{{Cite book |last=Lyell |first=Sir Charles |url=https://books.google.com/books?id=TlwPAAAAYAAJ |title=Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation |date=1832 |publisher=John Murray |volume=2 |location=London |language=en}}{{Cite book |last=Lyell |first=Sir Charles |url=https://books.google.com/books?id=UrIJAAAAIAAJ |title=Principles of Geology: Being an Inquiry how for the Former Changes of the Earth's Surface are Referrable to Causes Now in Operation |date=1834 |publisher=John Murray |volume=3 |location=London |language=en}} Their theories strongly contested the 6,000 year age of the Earth as suggested determined by James Ussher via Biblical chronology that was accepted at the time by western religion. Instead, using geological evidence, they contested Earth to be much older, cementing the concept of deep time.

During the early 19th century William Smith, Georges Cuvier, Jean d'Omalius d'Halloy, and Alexandre Brongniart pioneered the systematic division of rocks by stratigraphy and fossil assemblages. These geologists began to use the local names given to rock units in a wider sense, correlating strata across national and continental boundaries based on their similarity to each other. Many of the names below erathem/era rank in use on the modern ICC/GTS were determined during the early to mid-19th century.

= The advent of geochronometry =

During the 19th century, the debate regarding Earth's age was renewed, with geologists estimating ages based on denudation rates and sedimentary thicknesses or ocean chemistry, and physicists determining ages for the cooling of the Earth or the Sun using basic thermodynamics or orbital physics. These estimations varied from 15,000 million years to 0.075 million years depending on method and author, but the estimations of Lord Kelvin and Clarence King were held in high regard at the time due to their pre-eminence in physics and geology. All of these early geochronometric determinations would later prove to be incorrect.

The discovery of radioactive decay by Henri Becquerel, Marie Curie, and Pierre Curie laid the ground work for radiometric dating, but the knowledge and tools required for accurate determination of radiometric ages would not be in place until the mid-1950s. Early attempts at determining ages of uranium minerals and rocks by Ernest Rutherford, Bertram Boltwood, Robert Strutt, and Arthur Holmes, would culminate in what are considered the first international geological time scales by Holmes in 1911 and 1913.{{Cite book |last=Holmes |first=Arthur |url=http://archive.org/details/ageofearth00holmuoft |title=The age of the earth |date=1913 |publisher=London, Harper |others=Gerstein - University of Toronto}}{{Cite journal |last=Lewis |first=Cherry L. E. |date=2001 |title=Arthur Holmes' vision of a geological timescale |url=http://sp.lyellcollection.org/lookup/doi/10.1144/GSL.SP.2001.190.01.10 |journal=Geological Society, London, Special Publications |language=en |volume=190 |issue=1 |pages=121–138 |doi=10.1144/GSL.SP.2001.190.01.10 |bibcode=2001GSLSP.190..121L |s2cid=128686640 |issn=0305-8719}} The discovery of isotopes in 1913{{Cite journal |last=Soddy |first=Frederick |date=1913-12-04 |title=Intra-atomic Charge |url=https://www.nature.com/articles/092399c0 |journal=Nature |language=en |volume=92 |issue=2301 |pages=399–400 |doi=10.1038/092399c0 |bibcode=1913Natur..92..399S |s2cid=3965303 |issn=0028-0836}} by Frederick Soddy, and the developments in mass spectrometry pioneered by Francis William Aston, Arthur Jeffrey Dempster, and Alfred O. C. Nier during the early to mid-20th century would finally allow for the accurate determination of radiometric ages, with Holmes publishing several revisions to his geological time-scale with his final version in 1960.{{Cite journal |last=Holmes |first=A. |date=1959-01-01 |title=A revised geological time-scale |url=http://trned.lyellcollection.org/cgi/doi/10.1144/transed.17.3.183 |journal=Transactions of the Edinburgh Geological Society |language=en |volume=17 |issue=3 |pages=183–216 |doi=10.1144/transed.17.3.183 |s2cid=129166282 |issn=0371-6260}}{{Cite journal |date=1960 |title=A Revised Geological Time-Scale |journal=Nature |language=en |volume=187 |issue=4731 |pages=27–28 |doi=10.1038/187027d0 |bibcode=1960Natur.187T..27. |s2cid=4179334 |issn=0028-0836|doi-access=free }}

= Modern international geological time scale =

The establishment of the IUGS in 1961{{Cite journal |last=Harrison |first=James M. |title=The Roots of IUGS |date=1978-03-01 |journal=Episodes |volume=1 |issue=1 |pages=20–23 |doi=10.18814/epiiugs/1978/v1i1/005 |issn=0705-3797|doi-access=free }} and acceptance of the Commission on Stratigraphy (applied in 1965){{Cite book |author=International Union of Geological Sciences. Commission on Stratigraphy |url=https://www.worldcat.org/oclc/14352783 |title=Guidelines and statutes of the International Commission on Stratigraphy (ICS) |date=1986 |publisher=Herausgegeben von der Senckenbergischen Naturforschenden Gesellschaft |others=J. W. Cowie |isbn=3-924500-19-3 |location=Frankfurt a.M. |oclc=14352783}} to become a member commission of IUGS led to the founding of the ICS. One of the primary objectives of the ICS is "the establishment, publication and revision of the ICS International Chronostratigraphic Chart which is the standard, reference global Geological Time Scale to include the ratified Commission decisions".

Following on from Holmes, several A Geological Time Scale books were published in 1982,{{Cite book |url=https://www.worldcat.org/oclc/8387993 |title=A geologic time scale |date=1982 |publisher=Cambridge University Press |author=W. B. Harland |isbn=0-521-24728-4 |location=Cambridge [England] |oclc=8387993}} 1989,{{Cite book |url=https://www.worldcat.org/oclc/20930970 |title=A geologic time scale 1989 |date=1990 |publisher=Cambridge University Press |author=W. B. Harland |isbn=0-521-38361-7 |location=Cambridge |oclc=20930970}} 2004,{{Cite book |url=https://www.worldcat.org/oclc/60770922 |title=A geologic time scale 2004 |date=2004 |publisher=Cambridge University Press |author1=F. M. Gradstein |author2=James G. Ogg |author3=A. Gilbert Smith |isbn=0-511-08201-0 |location=Cambridge, UK |oclc=60770922}} 2008,{{Cite journal |last1=Gradstein |first1=Felix M. |last2=Ogg |first2=James G. |last3=van Kranendonk |first3=Martin |date=2008-07-23 |title=On the Geologic Time Scale 2008 |url=http://www.schweizerbart.de/papers/nos/detail/43/63825/On_the_Geologic_Time_Scale_2008?af=crossref |journal=Newsletters on Stratigraphy |language=en |volume=43 |issue=1 |pages=5–13 |doi=10.1127/0078-0421/2008/0043-0005 |issn=0078-0421}} 2012,{{Cite book |url=https://www.worldcat.org/oclc/808340848 |title=The geologic time scale 2012. Volume 2 |date=2012 |publisher=Elsevier |author=F. M. Gradstein |isbn=978-0-444-59448-8 |edition=1st |location=Amsterdam |oclc=808340848}} 2016,{{Cite book |last=Ogg |first=James G. |url=https://www.worldcat.org/oclc/949988705 |title=A concise geologic time scale 2016 |date=2016 |publisher=Elsevier |others=Gabi Ogg, F. M. Gradstein |isbn=978-0-444-59468-6 |location=Amsterdam, Netherlands |oclc=949988705}} and 2020.{{Cite book |url=https://www.worldcat.org/oclc/1224105111 |title=Geologic time scale 2020 |date=2020 |author1=F. M. Gradstein |author2=James G. Ogg |author3=Mark D. Schmitz |author4=Gabi Ogg |isbn=978-0-12-824361-9 |location=Amsterdam, Netherlands |oclc=1224105111}} However, since 2013, the ICS has taken responsibility for producing and distributing the ICC citing the commercial nature, independent creation, and lack of oversight by the ICS on the prior published GTS versions (GTS books prior to 2013) although these versions were published in close association with the ICS. Subsequent Geologic Time Scale books (2016 and 2020) are commercial publications with no oversight from the ICS, and do not entirely conform to the chart produced by the ICS. The ICS produced GTS charts are versioned (year/month) beginning at v2013/01. At least one new version is published each year incorporating any changes ratified by the ICS since the prior version.

{{Timeline geological timescale}}

Major proposed revisions to the ICC

= Proposed Anthropocene Series/Epoch =

{{Main|Anthropocene}}

First suggested in 2000,{{Citation |last1=Crutzen |first1=Paul J. |title=The 'Anthropocene' (2000) |date=2021 |url=https://link.springer.com/10.1007/978-3-030-82202-6_2 |work=Paul J. Crutzen and the Anthropocene: A New Epoch in Earth's History |volume=1 |pages=19–21 |editor-last=Benner |editor-first=Susanne |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-030-82202-6_2 |isbn=978-3-030-82201-9 |access-date=2022-04-15 |last2=Stoermer |first2=Eugene F. |series=The Anthropocene: Politik—Economics—Society—Science |s2cid=245639062 |editor2-last=Lax |editor2-first=Gregor |editor3-last=Crutzen |editor3-first=Paul J. |editor4-last=Pöschl |editor4-first=Ulrich}} the Anthropocene is a proposed epoch/series for the most recent time in Earth's history. While still informal, it is a widely used term to denote the present geologic time interval, in which many conditions and processes on Earth are profoundly altered by human impact.{{Cite web |title=Working Group on the 'Anthropocene' {{!}} Subcommission on Quaternary Stratigraphy |url=https://quaternary.stratigraphy.org/working-groups/anthropocene/ |archive-url=https://web.archive.org/web/20220407193255/https://quaternary.stratigraphy.org/working-groups/anthropocene/ |archive-date=2022-04-07 |access-date=2022-04-17 |language=en-US}} {{As of|2022|April}} the Anthropocene has not been ratified by the ICS; however, in May 2019 the Anthropocene Working Group voted in favour of submitting a formal proposal to the ICS for the establishment of the Anthropocene Series/Epoch.{{Cite journal |last=Subramanian |first=Meera |date=2019-05-21 |title=Anthropocene now: influential panel votes to recognise Earth's new epoch |url=http://www.nature.com/articles/d41586-019-01641-5 |journal=Nature |language=en |pages=d41586–019–01641–5 |doi=10.1038/d41586-019-01641-5 |pmid=32433629 |s2cid=182238145 |issn=0028-0836}} Nevertheless, the definition of the Anthropocene as a geologic time period rather than a geologic event remains controversial and difficult.{{Cite journal |last1=Gibbard |first1=Philip L. |last2=Bauer |first2=Andrew M. |last3=Edgeworth |first3=Matthew |last4=Ruddiman |first4=William F. |last5=Gill |first5=Jacquelyn L. |last6=Merritts |first6=Dorothy J. |last7=Finney |first7=Stanley C. |last8=Edwards |first8=Lucy E. |last9=Walker |first9=Michael J. C. |last10=Maslin |first10=Mark |last11=Ellis |first11=Erle C. |date=2021-11-15 |title=A practical solution: the Anthropocene is a geological event, not a formal epoch |journal=Episodes |volume=45 |issue=4 |pages=349–357 |language=en |doi=10.18814/epiiugs/2021/021029 |s2cid=244165877 |issn=0705-3797|doi-access=free }}{{Cite journal |last1=Head |first1=Martin J. |last2=Steffen |first2=Will |last3=Fagerlind |first3=David |last4=Waters |first4=Colin N. |last5=Poirier |first5=Clement |last6=Syvitski |first6=Jaia |last7=Zalasiewicz |first7=Jan A. |last8=Barnosky |first8=Anthony D. |last9=Cearreta |first9=Alejandro |last10=Jeandel |first10=Catherine |last11=Leinfelder |first11=Reinhold |date=2021-11-15 |title=The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch |journal=Episodes |volume=45 |issue=4 |pages=359–376 |language=en |doi=10.18814/epiiugs/2021/021031 |s2cid=244145710 |issn=0705-3797|doi-access=free }}{{Cite journal |last1=Zalasiewicz |first1=Jan |last2=Waters |first2=Colin N. |last3=Ellis |first3=Erle C. |last4=Head |first4=Martin J. |last5=Vidas |first5=Davor |last6=Steffen |first6=Will |last7=Thomas |first7=Julia Adeney |last8=Horn |first8=Eva |last9=Summerhayes |first9=Colin P. |last10=Leinfelder |first10=Reinhold |last11=McNeill |first11=J. R. |date=2021 |title=The Anthropocene: Comparing Its Meaning in Geology (Chronostratigraphy) with Conceptual Approaches Arising in Other Disciplines |journal=Earth's Future |language=en |volume=9 |issue=3 |doi=10.1029/2020EF001896 |bibcode=2021EaFut...901896Z |s2cid=233816527 |issn=2328-4277|doi-access=free }}{{Cite journal |last1=Bauer |first1=Andrew M. |last2=Edgeworth |first2=Matthew |last3=Edwards |first3=Lucy E. |last4=Ellis |first4=Erle C. |last5=Gibbard |first5=Philip |last6=Merritts |first6=Dorothy J. |date=2021-09-16 |title=Anthropocene: event or epoch? |url=https://www.nature.com/articles/d41586-021-02448-z |journal=Nature |language=en |volume=597 |issue=7876 |pages=332 |doi=10.1038/d41586-021-02448-z |pmid=34522014 |bibcode=2021Natur.597..332B |s2cid=237515330 |issn=0028-0836}}

= Proposals for revisions to pre-Cryogenian timeline =

== Shields et al. 2021 ==

An international working group of the ICS on pre-Cryogenian chronostratigraphic subdivision have outlined a template to improve the pre-Cryogenian geologic time scale based on the rock record to bring it in line with the post-Tonian geologic time scale. This work assessed the geologic history of the currently defined eons and eras of the pre-Cambrian,{{Efn|name=Precam|group=note}} and the proposals in the "Geological Time Scale" books 2004,{{Citation |last=Bleeker |first=W. |title=Toward a "natural" Precambrian time scale |date=2005-03-17 |url=https://www.cambridge.org/core/product/identifier/CBO9780511536045A067/type/book_part |work=A Geologic Time Scale 2004 |pages=141–146 |editor-last=Gradstein |editor-first=Felix M. |edition=1 |publisher=Cambridge University Press |doi=10.1017/cbo9780511536045.011 |isbn=978-0-521-78673-7 |access-date=2022-04-09 |editor2-last=Ogg |editor2-first=James G. |editor3-last=Smith |editor3-first=Alan G.}} 2012, and 2020.{{Citation |last1=Strachan |first1=R. |title=Precambrian (4.56–1 Ga) |date=2020 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780128243602000164 |work=Geologic Time Scale 2020 |pages=481–493 |publisher=Elsevier |language=en |doi=10.1016/b978-0-12-824360-2.00016-4 |isbn=978-0-12-824360-2 |access-date=2022-04-09 |last2=Murphy |first2=J.B. |last3=Darling |first3=J. |last4=Storey |first4=C. |last5=Shields |first5=G.|s2cid=229513433 }} Their recommend revisions of the pre-Cryogenian geologic time scale were (changes from the current scale [v2023/09] are italicised):

  • Three divisions of the Archean instead of four by dropping Eoarchean, and revisions to their geochronometric definition, along with the repositioning of the Siderian into the latest Neoarchean, and a potential Kratian division in the Neoarchean.
  • Archean (4000–2450 Ma)
  • Paleoarchean (4000–3500 Ma)
  • Mesoarchean (3500–3000 Ma)
  • Neoarchean (3000–2450 Ma)
  • Kratian (no fixed time given, prior to the Siderian) – from Greek κράτος (krátos) 'strength'.
  • Siderian (?–2450 Ma) – moved from Proterozoic to end of Archean, no start time given, base of Paleoproterozoic defines the end of the Siderian
  • Refinement of geochronometric divisions of the Proterozoic, Paleoproterozoic, repositioning of the Statherian into the Mesoproterozoic, new Skourian period/system in the Paleoproterozoic, new Kleisian or Syndian period/system in the Neoproterozoic.
  • Paleoproterozoic (2450–1800 Ma)
  • Skourian (2450–2300 Ma) – from Greek σκουριά (skouriá) 'rust'.
  • Rhyacian (2300–2050 Ma)
  • Orosirian (2050–1800 Ma)
  • Mesoproterozoic (1800–1000 Ma)
  • Statherian (1800–1600 Ma)
  • Calymmian (1600–1400 Ma)
  • Ectasian (1400–1200 Ma)
  • Stenian (1200–1000 Ma)
  • Neoproterozoic (1000–538.8 Ma){{Efn|Geochronometric date for the Ediacaran has been adjusted to reflect ICC v2023/09 as the formal definition for the base of the Cambrian has not changed.|name=EdiacaranDate|group=note}}
  • Kleisian or Syndian (1000–800 Ma) – respectively from Greek κλείσιμο (kleísimo) 'closure' and σύνδεση (sýndesi) 'connection'.
  • Tonian (800–720 Ma)
  • Cryogenian (720–635 Ma)
  • Ediacaran (635–538.8 Ma)

Proposed pre-Cambrian timeline (Shield et al. 2021, ICS working group on pre-Cryogenian chronostratigraphy), shown to scale:{{Efn|Kratian time span is not given in the article. It lies within the Neoarchean, and prior to the Siderian. The position shown here is an arbitrary division.|name=kratian|group=note}}

ImageSize = width:1300 height:100

PlotArea = left:80 right:20 bottom:20 top:5

AlignBars = justify

Colors =

id:proterozoic value:rgb(0.968,0.207,0.388)

id:neoproterozoic value:rgb(0.996,0.701,0.258)

id:ediacaran value:rgb(0.996,0.85,0.415)

id:cryogenian value:rgb(0.996,0.8,0.36)

id:tonian value:rgb(0.996,0.75,0.305)

id:kleisian value:rgb(0.996,0.773,0.431)

id:mesoproterozoic value:rgb(0.996,0.705,0.384)

id:stenian value:rgb(0.996,0.85,0.604)

id:ectasian value:rgb(0.996,0.8,0.541)

id:calymmian value:rgb(0.996,0.75,0.478)

id:paleoproterozoic value:rgb(0.968,0.263,0.44)

id:skourian value:rgb(0.949,0.439,0.545)

id:statherian value:rgb(0.968,0.459,0.655)

id:orosirian value:rgb(0.968,0.408,0.596)

id:rhyacian value:rgb(0.968,0.357,0.537)

id:archean value:rgb(0.996,0.157,0.498)

id:neoarchean value:rgb(0.976,0.608,0.757)

id:mesoarchean value:rgb(0.968,0.408,0.662)

id:paleoarchean value:rgb(0.96,0.266,0.624)

id:hadean value:rgb(0.717,0,0.494)

id:black value:black

id:white value:white

Period = from:-4600 till:-538.8

TimeAxis = orientation:horizontal

ScaleMajor = unit:year increment:500 start:-4500

ScaleMinor = unit:year increment:100 start:-4500

PlotData =

align:center textcolor:black fontsize:8 mark:(line,black) width:25 shift:(0,-5)

bar:Eonothem/Eon

from: -2450 till: -538.8 text:Proterozoic color:proterozoic

from: -4000 till: -2450 text:Archean color:archean

from: start till: -4000 text:Hadean color:hadean

bar:Erathem/Era

from: -1000 till: -538.8 text:Neoproterozoic color:neoproterozoic

from: -1800 till: -1000 text:Mesoproterozoic color:mesoproterozoic

from: -2450 till: -1800 text:Paleoproterozoic color:paleoproterozoic

from: -3000 till: -2450 text:Neoarchean color:neoarchean

from: -3300 till: -3000 text:Mesoarchean color:mesoarchean

from: -4000 till: -3300 text:Paleoarchean color:paleoarchean

from: start till: -4000 color:white

bar:System/Period fontsize:7

from: -635 till: -538.8 text:Ed. color:ediacaran

from: -720 till: -635 text:Cr. color:cryogenian

from: -800 till: -720 text:Tonian color:tonian

from: -1000 till: -800 text:?kleisian color:kleisian

from: -1200 till: -1000 text:Stenian color:stenian

from: -1400 till: -1200 text:Ectasian color:ectasian

from: -1600 till: -1400 text:Calymmian color:calymmian

from: -1800 till: -1600 text:Statherian color:statherian

from: -2050 till: -1800 text:Orosirian color:orosirian

from: -2300 till: -2050 text:Rhyacian color:rhyacian

from: -2450 till: -2300 text:?Skourian color:skourian

from: -2700 till: -2450 text:Siderian color:neoarchean

from: -3000 till: -2700 text:?Kratian color:neoarchean

from: start till: -3000 color:white

ICC pre-Cambrian timeline (v2024/12, current {{As of|2025|01|lc=y}}), shown to scale:

ImageSize = width:1300 height:100

PlotArea = left:80 right:20 bottom:20 top:5

AlignBars = justify

Colors =

id:proterozoic value:rgb(0.968,0.207,0.388)

id:neoproterozoic value:rgb(0.996,0.701,0.258)

id:ediacaran value:rgb(0.996,0.85,0.415)

id:cryogenian value:rgb(0.996,0.8,0.36)

id:tonian value:rgb(0.996,0.75,0.305)

id:mesoproterozoic value:rgb(0.996,0.705,0.384)

id:stenian value:rgb(0.996,0.85,0.604)

id:ectasian value:rgb(0.996,0.8,0.541)

id:calymmian value:rgb(0.996,0.75,0.478)

id:paleoproterozoic value:rgb(0.968,0.263,0.44)

id:statherian value:rgb(0.968,0.459,0.655)

id:orosirian value:rgb(0.968,0.408,0.596)

id:rhyacian value:rgb(0.968,0.357,0.537)

id:siderian value:rgb(0.968,0.306,0.478)

id:archean value:rgb(0.996,0.157,0.498)

id:neoarchean value:rgb(0.976,0.608,0.757)

id:mesoarchean value:rgb(0.968,0.408,0.662)

id:paleoarchean value:rgb(0.96,0.266,0.624)

id:eoarchean value:rgb(0.902,0.114,0.549)

id:hadean value:rgb(0.717,0,0.494)

id:black value:black

id:white value:white

Period = from:-4567 till:-538.8

TimeAxis = orientation:horizontal

ScaleMajor = unit:year increment:500 start:-4500

ScaleMinor = unit:year increment:100 start:-4500

PlotData =

align:center textcolor:black fontsize:8 mark:(line,black) width:25 shift:(0,-5)

bar:Eonothem/Eon

from: -2500 till: -538.8 text:Proterozoic color:proterozoic

from: -4031 till: -2500 text:Archean color:archean

from: start till: -4031 text:Hadean color:hadean

bar:Erathem/Era

from: -1000 till: -538.8 text:Neoproterozoic color:neoproterozoic

from: -1600 till: -1000 text:Mesoproterozoic color:mesoproterozoic

from: -2500 till: -1600 text:Paleoproterozoic color:paleoproterozoic

from: -2800 till: -2500 text:Neoarchean color:neoarchean

from: -3200 till: -2800 text:Mesoarchean color:mesoarchean

from: -3600 till: -3200 text:Paleoarchean color:paleoarchean

from: -4031 till: -3600 text:Eoarchean color:eoarchean

from: start till: -4031 color:white

bar:Sytem/Period fontsize:7

from: -635 till: -538.8 text:Ed. color:ediacaran

from: -720 till: -635 text:Cr. color:cryogenian

from: -1000 till: -720 text:Tonian color:tonian

from: -1200 till: -1000 text:Stenian color:stenian

from: -1400 till: -1200 text:Ectasian color:ectasian

from: -1600 till: -1400 text:Calymmian color:calymmian

from: -1800 till: -1600 text:Statherian color:statherian

from: -2050 till: -1800 text:Orosirian color:orosirian

from: -2300 till: -2050 text:Rhyacian color:rhyacian

from: -2500 till: -2300 text:Siderian color:siderian

from: start till: -2500 color:white

== Van Kranendonk et al. 2012 (GTS2012) ==

The book, Geologic Time Scale 2012, was the last commercial publication of an international chronostratigraphic chart that was closely associated with the ICS. It included a proposal to substantially revise the pre-Cryogenian time scale to reflect important events such as the formation of the Solar System and the Great Oxidation Event, among others, while at the same time maintaining most of the previous chronostratigraphic nomenclature for the pertinent time span.{{cite book |last=Van Kranendonk |first=Martin J. |chapter=A Chronostratigraphic Division of the Precambrian |title=The geologic time scale 2012 |date=2012 |publisher=Elsevier |isbn=978-0-44-459425-9 |editor=Felix M. Gradstein |edition=1st |location=Amsterdam |pages=359–365 |doi=10.1016/B978-0-444-59425-9.00016-0 |editor2=James G. Ogg |editor3=Mark D. Schmitz |editor4=abi M. Ogg}} {{As of|2022|April}} these proposed changes have not been accepted by the ICS. The proposed changes (changes from the current scale [v2023/09]) are italicised:

  • Hadean Eon (4567–4030 Ma)
  • Chaotian Era/Erathem (4567–4404 Ma) – the name alluding both to the mythological Chaos and the chaotic phase of planet formation.{{cite journal |last1=Goldblatt |first1=C. |last2=Zahnle |first2=K. J. |last3=Sleep |first3=N. H. |last4=Nisbet |first4=E. G. |date=2010 |title=The Eons of Chaos and Hades |journal=Solid Earth |volume=1 |issue=1 |pages=1–3 |bibcode=2010SolE....1....1G |doi=10.5194/se-1-1-2010 |doi-access=free}}{{cite journal |last=Chambers |first=John E. |date=July 2004 |title=Planetary accretion in the inner Solar System |url=http://www.astro.washington.edu/courses/astro321/Chambers_EPSL_04.pdf |archive-url=https://web.archive.org/web/20120419024812/http://www.astro.washington.edu/courses/astro321/Chambers_EPSL_04.pdf |archive-date=2012-04-19 |url-status=live |journal=Earth and Planetary Science Letters |volume=223 |issue=3–4 |pages=241–252 |bibcode=2004E&PSL.223..241C |doi=10.1016/j.epsl.2004.04.031}}
  • Jack Hillsian or Zirconian Era/Erathem (4404–4030 Ma) – both names allude to the Jack Hills Greenstone Belt which provided the oldest mineral grains on Earth, zircons.
  • Archean Eon/Eonothem (4030–2420 Ma)
  • Paleoarchean Era/Erathem (4030–3490 Ma)
  • Acastan Period/System (4030–3810 Ma) – named after the Acasta Gneiss, one of the oldest preserved pieces of continental crust.
  • Isuan Period/System (3810–3490 Ma) – named after the Isua Greenstone Belt.
  • Mesoarchean Era/Erathem (3490–2780 Ma)
  • Vaalbaran Period/System (3490–3020 Ma) – based on the names of the Kaapvaal (Southern Africa) and Pilbara (Western Australia) cratons, to reflect the growth of stable continental nuclei or proto-cratonic kernels.
  • Pongolan Period/System (3020–2780 Ma) – named after the Pongola Supergroup, in reference to the well preserved evidence of terrestrial microbial communities in those rocks.
  • Neoarchean Era/Erathem (2780–2420 Ma)
  • Methanian Period/System (2780–2630 Ma) – named for the inferred predominance of methanotrophic prokaryotes
  • Siderian Period/System (2630–2420 Ma) – named for the voluminous banded iron formations formed within its duration.
  • Proterozoic Eon/Eonothem (2420–538.8 Ma){{efn|name=EdiacaranDate|group=note}}
  • Paleoproterozoic Era/Erathem (2420–1780 Ma)
  • Oxygenian Period/System (2420–2250 Ma) – named for displaying the first evidence for a global oxidising atmosphere.
  • Jatulian or Eukaryian Period/System (2250–2060 Ma) – names are respectively for the Lomagundi–Jatuli δ13C isotopic excursion event spanning its duration, and for the (proposed){{cite journal |last1=El Albani |first1=Abderrazak |last2=Bengtson |first2=Stefan |last3=Canfield |first3=Donald E. |last4=Riboulleau |first4=Armelle |last5=Rollion Bard |first5=Claire |last6=Macchiarelli |first6=Roberto |display-authors=etal |year=2014 |title=The 2.1 Ga Old Francevillian Biota: Biogenicity, Taphonomy and Biodiversity |journal=PLOS ONE |volume=9 |issue=6 |pages=e99438 |bibcode=2014PLoSO...999438E |doi=10.1371/journal.pone.0099438 |pmc=4070892 |pmid=24963687 |doi-access=free}}{{cite journal |last1=El Albani |first1=Abderrazak |last2=Bengtson |first2=Stefan |last3=Canfield |first3=Donald E. |last4=Bekker |first4=Andrey |last5=Macchiarelli |first5=Roberto |last6=Mazurier |first6=Arnaud |last7=Hammarlund |first7=Emma U. |display-authors=etal |year=2010 |title=Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago |url=http://www.afrikibouge.com/publications/Article%20Albani.pdf |archive-url=https://web.archive.org/web/20240616162702/https://www.afrikibouge.com/publications/Article%20Albani.pdf |url-status=dead |archive-date=16 June 2024 |journal=Nature |volume=466 |issue=7302 |pages=100–104 |bibcode=2010Natur.466..100A |doi=10.1038/nature09166 |pmid=20596019 |s2cid=4331375}} first fossil appearance of eukaryotes.
  • Columbian Period/System (2060–1780 Ma) – named after the supercontinent Columbia.
  • Mesoproterozoic Era/Erathem (1780–850 Ma)
  • Rodinian Period/System (1780–850 Ma) – named after the supercontinent Rodinia, stable environment.

Proposed pre-Cambrian timeline (GTS2012), shown to scale:

ImageSize = width:1200 height:100

PlotArea = left:80 right:20 bottom:20 top:5

AlignBars = justify

Colors =

id:proterozoic value:rgb(0.968,0.207,0.388)

id:neoproterozoic value:rgb(0.996,0.701,0.258)

id:ediacaran value:rgb(0.996,0.85,0.415)

id:cryogenian value:rgb(0.996,0.8,0.36)

id:tonian value:rgb(0.996,0.75,0.305)

id:mesoproterozoic value:rgb(0.996,0.705,0.384)

id:rodinian value:rgb(0.996,0.75,0.478)

id:paleoproterozoic value:rgb(0.968,0.263,0.44)

id:columbian value:rgb(0.968,0.459,0.655)

id:eukaryian value:rgb(0.968,0.408,0.596)

id:oxygenian value:rgb(0.968,0.357,0.537)

id:archean value:rgb(0.996,0.157,0.498)

id:neoarchean value:rgb(0.976,0.608,0.757)

id:siderian value:rgb(0.976,0.7,0.85)

id:methanian value:rgb(0.976,0.65,0.8)

id:mesoarchean value:rgb(0.968,0.408,0.662)

id:pongolan value:rgb(0.968,0.5,0.75)

id:vaalbaran value:rgb(0.968,0.45,0.7)

id:paleoarchean value:rgb(0.96,0.266,0.624)

id:isuan value:rgb(0.96,0.35,0.65)

id:acastan value:rgb(0.96,0.3,0.6)

id:hadean value:rgb(0.717,0,0.494)

id:zirconian value:rgb(0.902,0.114,0.549)

id:chaotian value:rgb(0.8,0.05,0.5)

id:black value:black

id:white value:white

Period = from:-4567.3 till:-538.8

TimeAxis = orientation:horizontal

ScaleMajor = unit:year increment:500 start:-4500

ScaleMinor = unit:year increment:100 start:-4500

PlotData =

align:center textcolor:black fontsize:8 mark:(line,black) width:25 shift:(0,-5)

bar:Eonothem/Eon

from: -2420 till: -541 text:Proterozoic color:proterozoic

from: -4030 till: -2420 text:Archean color:archean

from: -4567 till: -4030 text:Hadean color:hadean

from: start till: -4567 color:white

bar:Erathem/Era

from: -850 till: -541 text:Neoproterozoic color:neoproterozoic

from: -1780 till: -850 text:Mesoproterozoic color:mesoproterozoic

from: -2420 till: -1780 text:Paleoproterozoic color:paleoproterozoic

from: -2780 till: -2420 text:Neoarchean color:neoarchean

from: -3490 till: -2780 text:Mesoarchean color:mesoarchean

from: -4030 till: -3490 text:Paleoarchean color:paleoarchean

from: -4404 till: -4030 text:Zirconian color:zirconian

from: -4567 till: -4404 text:Chaotian color:chaotian

from: start till: -4567 color:white

bar:System/Period fontsize:7

from: -630 till: -541 text:Ediacaran color:ediacaran

from: -850 till: -630 text:Cryogenian color:cryogenian

from: -1780 till: -850 text:Rodinian color:rodinian

from: -2060 till: -1780 text:Columbian color:columbian

from: -2250 till: -2060 text:Eukaryian color:eukaryian

from: -2420 till: -2250 text:Oxygenian color:oxygenian

from: -2630 till: -2420 text:Siderian color:siderian

from: -2780 till: -2630 text:Methanian color:methanian

from: -3020 till: -2780 text:Pongolan color:pongolan

from: -3490 till: -3020 text:Vaalbaran color:vaalbaran

from: -3810 till: -3490 text:Isuan color:isuan

from: -4030 till: -3810 text:Acastan color:acastan

from: start till: -4030 color:white

ICC pre-Cambrian timeline (v2024/12, current {{As of|2025|01|lc=y}}), shown to scale:

ImageSize = width:1200 height:100

PlotArea = left:80 right:20 bottom:20 top:5

AlignBars = justify

Colors =

id:proterozoic value:rgb(0.968,0.207,0.388)

id:neoproterozoic value:rgb(0.996,0.701,0.258)

id:ediacaran value:rgb(0.996,0.85,0.415)

id:cryogenian value:rgb(0.996,0.8,0.36)

id:tonian value:rgb(0.996,0.75,0.305)

id:mesoproterozoic value:rgb(0.996,0.705,0.384)

id:stenian value:rgb(0.996,0.85,0.604)

id:ectasian value:rgb(0.996,0.8,0.541)

id:calymmian value:rgb(0.996,0.75,0.478)

id:paleoproterozoic value:rgb(0.968,0.263,0.44)

id:statherian value:rgb(0.968,0.459,0.655)

id:orosirian value:rgb(0.968,0.408,0.596)

id:rhyacian value:rgb(0.968,0.357,0.537)

id:siderian value:rgb(0.968,0.306,0.478)

id:archean value:rgb(0.996,0.157,0.498)

id:neoarchean value:rgb(0.976,0.608,0.757)

id:mesoarchean value:rgb(0.968,0.408,0.662)

id:paleoarchean value:rgb(0.96,0.266,0.624)

id:eoarchean value:rgb(0.902,0.114,0.549)

id:hadean value:rgb(0.717,0,0.494)

id:black value:black

id:white value:white

Period = from:-4567.3 till:-538.8

TimeAxis = orientation:horizontal

ScaleMajor = unit:year increment:500 start:-4500

ScaleMinor = unit:year increment:100 start:-4500

PlotData =

align:center textcolor:black fontsize:8 mark:(line,black) width:25 shift:(0,-5)

bar:Eonothem/Eon

from: -2500 till: -538.8 text:Proterozoic color:proterozoic

from: -4031 till: -2500 text:Archean color:archean

from: start till: -4031 text:Hadean color:hadean

bar:Erathem/Era

from: -1000 till: -538.8 text:Neoproterozoic color:neoproterozoic

from: -1600 till: -1000 text:Mesoproterozoic color:mesoproterozoic

from: -2500 till: -1600 text:Paleoproterozoic color:paleoproterozoic

from: -2800 till: -2500 text:Neoarchean color:neoarchean

from: -3200 till: -2800 text:Mesoarchean color:mesoarchean

from: -3600 till: -3200 text:Paleoarchean color:paleoarchean

from: -4031 till: -3600 text:Eoarchean color:eoarchean

from: start till: -4031 color:white

bar:System/Period fontsize:7

from: -635 till: -538.8 text:Ediacaran color:ediacaran

from: -720 till: -635 text:Cryogenian color:cryogenian

from: -1000 till: -720 text:Tonian color:tonian

from: -1200 till: -1000 text:Stenian color:stenian

from: -1400 till: -1200 text:Ectasian color:ectasian

from: -1600 till: -1400 text:Calymmian color:calymmian

from: -1800 till: -1600 text:Statherian color:statherian

from: -2050 till: -1800 text:Orosirian color:orosirian

from: -2300 till: -2050 text:Rhyacian color:rhyacian

from: -2500 till: -2300 text:Siderian color:siderian

from: start till: -2500 color:white

Table of geologic time

{{More citations needed section|date=November 2023}}

The following table summarises the major events and characteristics of the divisions making up the geologic time scale of Earth. This table is arranged with the most recent geologic periods at the top, and the oldest at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time. As such, this table is not to scale and does not accurately represent the relative time-spans of each geochronologic unit. While the Phanerozoic Eon looks longer than the rest, it merely spans ~539 million years (~12% of Earth's history), whilst the previous three eons{{Efn|name=Precam|group=note}} collectively span ~3,461 million years (~76% of Earth's history). This bias toward the most recent eon is in part due to the relative lack of information about events that occurred during the first three eons compared to the current eon (the Phanerozoic).{{cite web |title=Geological time scale |url=https://www.digitalatlasofancientlife.org/learn/geological-time/geological-time-scale/ |access-date=January 17, 2022 |work=Digital Atlas of Ancient Life |publisher=Paleontological Research Institution}} The use of subseries/subepochs has been ratified by the ICS.

While some regional terms are still in use, the table of geologic time conforms to the nomenclature, ages, and colour codes set forth by the International Commission on Stratigraphy in the official International Chronostratigraphic Chart.{{cite web |title=International Commission on Stratigraphy |url=https://stratigraphy.org/ |accessdate=5 June 2022 |work=International Geological Time Scale}} The International Commission on Stratigraphy also provide an online interactive version of this chart. The interactive version is based on a service delivering a machine-readable Resource Description Framework/Web Ontology Language representation of the time scale, which is available through the Commission for the Management and Application of Geoscience Information GeoSciML project as a service{{cite web |title=Geologic Timescale Elements in the International Chronostratigraphic Chart |url=http://resource.geosciml.org/classifier/ics/ischart/ |access-date=2014-08-03}} and at a SPARQL end-point.{{cite web |last=Cox |first=Simon J. D. |title=SPARQL endpoint for CGI timescale service |url=http://resource.geosciml.org/sparql/isc2014 |url-status=dead |archive-url=https://archive.today/20140806164132/http://resource.geosciml.org/sparql/isc2014 |archive-date=2014-08-06 |access-date=2014-08-03}}{{cite journal |last1=Cox |first1=Simon J. D. |last2=Richard |first2=Stephen M. |year=2014 |title=A geologic timescale ontology and service |journal=Earth Science Informatics |volume=8 |pages=5–19 |doi=10.1007/s12145-014-0170-6 |s2cid=42345393}}

{{sticky header}}

class="wikitable collapsible sticky-header" style="clear:both;margin:0; font-size:95%"

!Eonothem/
Eon

!Erathem/
Era

!System/
Period

!Series/
Epoch

!Stage/
Age

!Major events

!Start, million years ago
{{efn|The dates and uncertainties quoted are according to the International Commission on Stratigraphy International Chronostratigraphic chart (v2024/12). An * indicates boundaries where a Global Boundary Stratotype Section and Point has been internationally agreed.|name="ICC-dates"|group=note}}

rowspan="102" style="background:{{period color|Phanerozoic}}" |Phanerozoic

| rowspan="24" style="background:{{period color|Cenozoic}}" |Cenozoic
{{efn|name=Tertiary|group=note}}

| rowspan="7" style="background:{{period color|Quaternary}}" |Quaternary

| rowspan="3" style="background:{{period color|Holocene}}" |Holocene

| style="background:#fcf0f2" |Meghalayan

|4.2-kiloyear event, Austronesian expansion, increasing industrial CO2.

| style="background:#fcf0f2" |{{Period start|meghalayan}} {{Period start error|meghalayan}}*

style="background:#fcf0e8" |Northgrippian

|8.2-kiloyear event, Holocene climatic optimum. Sea level flooding of Doggerland and Sundaland. Sahara becomes a desert. End of Stone Age and start of recorded history. Humans finally expand into the Arctic Archipelago and Greenland.

| style="background:#fcf0e8" |{{Period start|northgrippian}} {{Period start error|northgrippian}}*

style="background:#fcf0de" |Greenlandian

|Climate stabilises. Current interglacial and Holocene extinction begins. Agriculture begins. Humans spread across the wet Sahara and Arabia, the Extreme North, and the Americas (mainland and the Caribbean).

| style="background:#fcf0de" |{{Period start|greenlandian}} {{Period start error|greenlandian}}*

rowspan="4" style="background:{{period color|Pleistocene}}" |Pleistocene

| style="background:{{period color|Upper Pleistocene}}" |Upper/Late ('Tarantian')

|Eemian interglacial, last glacial period, ending with Younger Dryas. Toba eruption. Pleistocene megafauna (including the last terror birds) extinction. Humans expand into Near Oceania and the Americas.

| style="background:{{period color|upper Pleistocene}}" |{{Period start|Late pleistocene}} {{Period start error|Late pleistocene}}

style="background:{{period color|Middle Pleistocene}}" |Chibanian

|Mid-Pleistocene Transition occurs, high amplitude 100 ka glacial cycles. Rise of Homo sapiens.

| style="background:{{period color|Middle Pleistocene}}" |{{Period start|middle pleistocene}}{{Period start error|middle pleistocene}}*

style="background:{{period color|Calabrian}}" |Calabrian

|Further cooling of the climate. Giant terror birds go extinct. Spread of Homo erectus across Afro-Eurasia.

| style="background:{{period color|Calabrian}}" |{{Period start|calabrian}} {{Period start error|calabrian}}*

style="background:{{period color|Gelasian}}" |Gelasian

|Start of Quaternary glaciations and unstable climate.{{Cite journal |last1=Hoag |first1=Colin |last2=Svenning |first2=Jens-Christian |date=2017-10-17 |title=African Environmental Change from the Pleistocene to the Anthropocene |url=https://www.annualreviews.org/doi/10.1146/annurev-environ-102016-060653 |journal=Annual Review of Environment and Resources |language=en |volume=42 |issue=1 |pages=27–54 |doi=10.1146/annurev-environ-102016-060653 |issn=1543-5938 |access-date=5 June 2022 |archive-date=1 May 2022 |archive-url=https://web.archive.org/web/20220501144059/https://www.annualreviews.org/doi/10.1146/annurev-environ-102016-060653 |url-status=dead }} Rise of the Pleistocene megafauna and Homo habilis.

| style="background:{{period color|Gelasian}}" |{{Period start|gelasian}} {{Period start error|geliasian}}*

rowspan="8" style="background:{{period color|Neogene}}" |Neogene

| rowspan="2" style="background:{{period color|Pliocene}}" |Pliocene

| style="background:{{period color|Piacenzian}}" |Piacenzian

|Greenland ice sheet develops{{cite journal |last1=Bartoli |first1=G |last2=Sarnthein |first2=M |last3=Weinelt |first3=M |last4=Erlenkeuser |first4=H |last5=Garbe-Schönberg |first5=D |last6=Lea |first6=D.W |year=2005 |title=Final closure of Panama and the onset of northern hemisphere glaciation |journal=Earth and Planetary Science Letters |volume=237 |issue=1–2 |pages=33–44 |bibcode=2005E&PSL.237...33B |doi=10.1016/j.epsl.2005.06.020 |doi-access=free}} as the cold slowly intensifies towards the Pleistocene. Atmospheric {{O2}} and {{CO2}} content reaches present-day levels while landmasses also reach their current locations (e.g. the Isthmus of Panama joins the North and South Americas, while allowing a faunal interchange). The last non-marsupial metatherians go extinct. Australopithecus common in East Africa; Stone Age begins.{{cite web |last=Tyson |first=Peter |date=October 2009 |title=NOVA, Aliens from Earth: Who's who in human evolution |url=https://www.pbs.org/wgbh/nova/hobbit/tree-nf.html |access-date=2009-10-08 |publisher=PBS}}

| style="background:{{period color|Piacenzian}}" |{{Period start|piacenzian}} {{Period start error|piacenzian}}*

style="background:{{period color|Zanclean}}" |Zanclean

|Zanclean flooding of the Mediterranean Basin. Cooling climate continues from the Miocene. First equines and elephantines. Ardipithecus in Africa.

| style="background:{{period color|Zanclean}}" |{{Period start|zanclean}} {{Period start error|zanclean}}*

rowspan="6" style="background:{{period color|Miocene}}" |Miocene

| style="background:{{period color|Messinian}}" |Messinian

| rowspan="2" |Messinian Event with hypersaline lakes in empty Mediterranean Basin. Sahara desert formation begins. Moderate icehouse climate, punctuated by ice ages and re-establishment of East Antarctic Ice Sheet. Choristoderes, the last non-crocodilian crocodylomorphs and creodonts go extinct. After separating from gorilla ancestors, chimpanzee and human ancestors gradually separate; Sahelanthropus and Orrorin in Africa.

| style="background:{{period color|Messinian}}" |{{Period start|messinian}} {{Period start error|messinian}}*

style="background:{{period color|Tortonian}}" |Tortonian

| style="background:{{period color|Tortonian}}" |{{Period start|tortonian}} {{Period start error|tortonian}}*

style="background:{{period color|Serravallian}}" |Serravallian

| rowspan="2" |Middle Miocene climate optimum temporarily provides a warm climate.{{Cite journal |last=Gannon |first=Colin |date=2013-04-26 |title=Understanding the Middle Miocene Climatic Optimum: Evaluation of Deuterium Values (δD) Related to Precipitation and Temperature |url=https://digitalcommons.bryant.edu/honors_science/11 |journal=Honors Projects in Science and Technology}} Extinctions in middle Miocene disruption, decreasing shark diversity. First hippos. Ancestor of great apes.

| style="background:{{period color|Serravallian}}" |{{Period start|serravallian}} {{Period start error|serravallian}}*

style="background:{{period color|Langhian}}" |Langhian

| style="background:{{period color|Langhian}}" |{{Period start|langhian}} {{Period start error|langhian}}*

style="background:{{period color|Burdigalian}}" |Burdigalian

| rowspan="2" |Orogeny in Northern Hemisphere. Start of Kaikoura Orogeny forming Southern Alps in New Zealand. Widespread forests slowly draw in massive amounts of {{CO2}}, gradually lowering the level of atmospheric {{CO2}} from 650 ppmv down to around 100 ppmv during the Miocene.{{cite journal |last1=Royer |first1=Dana L. |year=2006 |title=CO2-forced climate thresholds during the Phanerozoic |url=http://droyer.web.wesleyan.edu/PhanCO2%28GCA%29.pdf |url-status=dead |journal=Geochimica et Cosmochimica Acta |volume=70 |issue=23 |pages=5665–75 |bibcode=2006GeCoA..70.5665R |doi=10.1016/j.gca.2005.11.031 |archive-url=https://web.archive.org/web/20190927033455/http://droyer.web.wesleyan.edu/PhanCO2%28GCA%29.pdf |archive-date=27 September 2019 |access-date=6 August 2015}}{{efn|For more information on this, see Atmosphere of Earth#Evolution of Earth's atmosphere, Carbon dioxide in the Earth's atmosphere, and climate change. Specific graphs of reconstructed {{CO2}} levels over the past ~550, 65, and 5 million years can be seen at :File:Phanerozoic Carbon Dioxide.png, :File:65 Myr Climate Change.png, :File:Five Myr Climate Change.png, respectively.|name="atmospheric-carbon-dioxide"|group=note}} Modern bird and mammal families become recognizable. The last of the primitive whales go extinct. Grasses become ubiquitous. Ancestor of apes, including humans.{{cite web |date=10 August 2017 |title=Here's What the Last Common Ancestor of Apes and Humans Looked Like |url=https://www.livescience.com/60093-last-common-ancestor-of-apes-humans-revealed.html |website=Live Science}}{{Cite journal |last1=Nengo |first1=Isaiah |last2=Tafforeau |first2=Paul |last3=Gilbert |first3=Christopher C. |last4=Fleagle |first4=John G. |last5=Miller |first5=Ellen R. |last6=Feibel |first6=Craig |last7=Fox |first7=David L. |last8=Feinberg |first8=Josh |last9=Pugh |first9=Kelsey D. |last10=Berruyer |first10=Camille |last11=Mana |first11=Sara |date=2017 |title=New infant cranium from the African Miocene sheds light on ape evolution |url=http://www.nature.com/articles/nature23456 |journal=Nature |language=en |volume=548 |issue=7666 |pages=169–174 |doi=10.1038/nature23456 |pmid=28796200 |bibcode=2017Natur.548..169N |s2cid=4397839 |issn=0028-0836}} Afro-Arabia collides with Eurasia, fully forming the Alpide Belt and closing the Tethys Ocean, while allowing a faunal interchange. At the same time, Afro-Arabia splits into Africa and West Asia.

| style="background:{{period color|Burdigalian}}" |{{Period start|burdigalian}} {{Period start error|burdigalian}}

style="background:{{period color|Aquitanian}}" |Aquitanian

| style="background:{{period color|Aquitanian}}" |{{Period start|aquitanian}} {{Period start error|anquitanian}}*

rowspan="9" style="background:{{period color|Paleogene}}" |Paleogene

| rowspan="2" style="background:{{period color|Oligocene}}" |Oligocene

| style="background:{{period color|Chattian}}" |Chattian

| rowspan="2" |Grande Coupure extinction. Start of widespread Antarctic glaciation.{{Cite journal |last1=Deconto |first1=Robert M. |last2=Pollard |first2=David |year=2003 |title=Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 |journal=Nature |volume=421 |issue=6920 |pages=245–249 |bibcode=2003Natur.421..245D |doi=10.1038/nature01290 |pmid=12529638 |s2cid=4326971|url=http://doc.rero.ch/record/16546/files/PAL_E3220.pdf }} Rapid evolution and diversification of fauna, especially mammals (e.g. first macropods and seals). Major evolution and dispersal of modern types of flowering plants. Cimolestans, miacoids and condylarths go extinct. First neocetes (modern, fully aquatic whales) appear.

| style="background:{{period color|Chattian}}" |{{Period start|chattian}} {{Period start error|chattian}}*

style="background:{{period color|Rupelian}}" |Rupelian

| style="background:{{period color|Rupelian}}" |{{Period start|rupelian}} {{Period start error|rupelian}}*

rowspan="4" style="background:{{period color|Eocene}}" |Eocene

| style="background:{{period color|Priabonian}}" |Priabonian

| rowspan="3" |Moderate, cooling climate. Archaic mammals (e.g. creodonts, miacoids, "condylarths" etc.) flourish and continue to develop during the epoch. Appearance of several "modern" mammal families. Primitive whales and sea cows diversify after returning to water. Birds continue to diversify. First kelp, diprotodonts, bears and simians. The multituberculates and leptictidans go extinct by the end of the epoch. Reglaciation of Antarctica and formation of its ice cap; End of Laramide and Sevier Orogenies of the Rocky Mountains in North America. Hellenic Orogeny begins in Greece and Aegean Sea.

| style="background:{{period color|Priabonian}}" |{{Period start|priabonian}} {{Period start error|priabonian}}*

style="background:{{period color|Bartonian}}" |Bartonian

| style="background:{{period color|Bartonian}}" |{{Period start|bartonian}} {{Period start error|bartonian}}

style="background:{{period color|Lutetian}}" |Lutetian

| style="background:{{period color|Lutetian}}" |{{Period start|lutetian}} {{Period start error|lutetian}}*

style="background:{{period color|Ypresian}}" |Ypresian

|Two transient events of global warming (PETM and ETM-2) and warming climate until the Eocene Climatic Optimum. The Azolla event decreased {{CO2}} levels from 3500 ppm to 650 ppm, setting the stage for a long period of cooling.{{efn|name="atmospheric-carbon-dioxide"|group=note}} Greater India collides with Eurasia and starts Himalayan Orogeny (allowing a biotic interchange) while Eurasia completely separates from North America, creating the North Atlantic Ocean. Maritime Southeast Asia diverges from the rest of Eurasia. First passerines, ruminants, pangolins, bats and true primates.

| style="background:{{period color|Ypresian}}" |{{Period start|ypresian}} {{Period start error|ypresian}}*

rowspan="3" style="background:{{period color|Paleocene}}" |Paleocene

| style="background:{{period color|Thanetian}}" |Thanetian

| rowspan="3" |Starts with Chicxulub impact and the K–Pg extinction event, wiping out all non-avian dinosaurs and pterosaurs, most marine reptiles, many other vertebrates (e.g. many Laurasian metatherians), most cephalopods (only Nautilidae and Coleoidea survived) and many other invertebrates. Climate tropical. Mammals and birds (avians) diversify rapidly into a number of lineages following the extinction event (while the marine revolution stops). Multituberculates and the first rodents widespread. First large birds (e.g. ratites and terror birds) and mammals (up to bear or small hippo size). Alpine orogeny in Europe and Asia begins. First proboscideans and plesiadapiformes (stem primates) appear. Some marsupials migrate to Australia.

| style="background:{{period color|Thanetian}}" |{{Period start|thanetian}} {{Period start error|thanetian}}*

style="background:{{period color|Selandian}}" |Selandian

| style="background:{{period color|Selandian}}" |{{Period start|selandian}} {{Period start error|selandian}}*

style="background:{{period color|Danian}}" |Danian

| style="background:{{period color|Danian}}" |{{Period start|danian}} {{Period start error|danian}}*

rowspan="30" style="background:{{period color|Mesozoic}}" |Mesozoic

| rowspan="12" style="background:{{period color|Cretaceous}}" |Cretaceous

| rowspan="6" style="background:{{period color|Late Cretaceous}}" |Upper/Late

| style="background:{{period color|Maastrichtian}}" |Maastrichtian

| rowspan="12" |Flowering plants proliferate (after developing many features since the Carboniferous), along with new types of insects, while other seed plants (gymnosperms and seed ferns) decline. More modern teleost fish begin to appear. Ammonoids, belemnites, rudist bivalves, sea urchins and sponges all common. Many new types of dinosaurs (e.g. tyrannosaurs, titanosaurs, hadrosaurs, and ceratopsids) evolve on land, while crocodilians appear in water and probably cause the last temnospondyls to die out; and mosasaurs and modern types of sharks appear in the sea. The revolution started by marine reptiles and sharks reaches its peak, though ichthyosaurs vanish a few million years after being heavily reduced at the Bonarelli Event. Toothed and toothless avian birds coexist with pterosaurs. Modern monotremes, metatherian (including marsupials, who migrate to South America) and eutherian (including placentals, leptictidans and cimolestans) mammals appear while the last non-mammalian cynodonts die out. First terrestrial crabs. Many snails become terrestrial. Further breakup of Gondwana creates South America, Afro-Arabia, Antarctica, Oceania, Madagascar, Greater India, and the South Atlantic, Indian and Antarctic Oceans and the islands of the Indian (and some of the Atlantic) Ocean. Beginning of Laramide and Sevier Orogenies of the Rocky Mountains. Atmospheric oxygen and carbon dioxide levels similar to present day. Acritarchs disappear. Climate initially warm, but later it cools.

| style="background:{{period color|Maastrichtian}}" |{{Period start|maastrichtian}} {{Period start error|maastrichtian}}*

style="background:{{period color|Campanian}}" |Campanian

| style="background:{{period color|Campanian}}" |{{Period start|campanian}} {{Period start error|campanian}}*

style="background:{{period color|Santonian}}" |Santonian

| style="background:{{period color|Santonian}}" |{{Period start|santonian}} {{Period start error|santonian}}*

style="background:{{period color|Coniacian}}" |Coniacian

| style="background:{{period color|Coniacian}}" |{{Period start|coniacian}} {{Period start error|coniacian}}*

style="background:{{period color|Turonian}}" |Turonian

| style="background:{{period color|Turonian}}" |{{Period start|turonian}} {{Period start error|turonian}}*

style="background:{{period color|Cenomanian}}" |Cenomanian

| style="background:{{period color|Cenomanian}}" |{{Period start|cenomanian}} {{Period start error|cenomanian}}*

rowspan="6" style="background:{{period color|Early Cretaceous}}" |Lower/Early

| style="background:{{period color|Albian}}" |Albian

| style="background:{{period color|Albian}}" |~{{Period start|albian}} {{Period start error|albian}}*

style="background:{{period color|Aptian}}" |Aptian

| style="background:{{period color|Aptian}}" |~{{Period start|aptian}} {{Period start error|aptian}}

style="background:{{period color|Barremian}}" |Barremian

| style="background:{{period color|Barremian}}" |~{{Period start|barremian}} {{Period start error|barremian}}*

style="background:{{period color|Hauterivian}}" |Hauterivian

| style="background:{{period color|Hauterivian}}" |~{{Period start|hauterivian}} {{Period start error|hauterivian}}*

style="background:{{period color|Valanginian}}" |Valanginian

| style="background:{{period color|Valanginian}}" |~{{Period start|valanginian}} {{Period start error|valanginian}}*

style="background:{{period color|Berriasian}}" |Berriasian

| style="background:{{period color|Berriasian}}" |~{{Period start|berriasian}} {{Period start error|berriasian}}

rowspan="11" style="background:{{period color|Jurassic}}" |Jurassic

| rowspan="3" style="background:{{period color|Late Jurassic}}" |Upper/Late

| style="background:{{period color|Tithonian}}" |Tithonian

| rowspan="11" |Climate becomes humid again. Gymnosperms (especially conifers, cycads and cycadeoids) and ferns common. Dinosaurs, including sauropods, carnosaurs, stegosaurs and coelurosaurs, become the dominant land vertebrates. Mammals diversify into shuotheriids, australosphenidans, eutriconodonts, multituberculates, symmetrodonts, dryolestids and boreosphenidans but mostly remain small. First birds, lizards, snakes and turtles. First brown algae, rays, shrimps, crabs and lobsters. Parvipelvian ichthyosaurs and plesiosaurs diverse. Rhynchocephalians throughout the world. Bivalves, ammonoids and belemnites abundant. Sea urchins very common, along with crinoids, starfish, sponges, and terebratulid and rhynchonellid brachiopods. Breakup of Pangaea into Laurasia and Gondwana, with the latter also breaking into two main parts; the Pacific and Arctic Oceans form. Tethys Ocean forms. Nevadan orogeny in North America. Rangitata and Cimmerian orogenies taper off. Atmospheric {{CO2}} levels 3–4 times the present-day levels (1200–1500 ppmv, compared to today's 400 ppmv{{efn|name="atmospheric-carbon-dioxide"|group=note}}). Crocodylomorphs (last pseudosuchians) seek out an aquatic lifestyle. Mesozoic marine revolution continues from late Triassic. Tentaculitans disappear.

| style="background:{{period color|Tithonian}}" |{{Period start|tithonian}} {{Period start error|tithonian}}

style="background:{{period color|Kimmeridgian}}" |Kimmeridgian

| style="background:{{period color|Kimmeridgian}}" |{{Period start|kimmeridgian}} {{Period start error|kimmeridgian}}*

style="background:{{period color|Oxfordian}}" |Oxfordian

| style="background:{{period color|Oxfordian}}" |{{Period start|oxfordian}} {{Period start error|oxfordian}}

rowspan="4" style="background:{{period color|Middle Jurassic}}" |Middle

| style="background:{{period color|Callovian}}" |Callovian

| style="background:{{period color|Callovian}}" |{{Period start|callovian}} {{Period start error|callovian}}

style="background:{{period color|Bathonian}}" |Bathonian

| style="background:{{period color|Bathonian}}" |{{Period start|bathonian}} {{Period start error|bathonian}}*

style="background:{{period color|Bajocian}}" |Bajocian

| style="background:{{period color|Bajocian}}" |{{Period start|bajocian}} {{Period start error|bajocian}}*

style="background:{{period color|Aalenian}}" |Aalenian

| style="background:{{period color|Aalenian}}" |{{Period start|aalenian}} {{Period start error|aalenian}}*

rowspan="4" style="background:{{period color|Early Jurassic}}" |Lower/Early

| style="background:{{period color|Toarcian}}" |Toarcian

| style="background:{{period color|Toarcian}}" |{{Period start|toarcian}} {{Period start error|toarcian}}*

style="background:{{period color|Pliensbachian}}" |Pliensbachian

| style="background:{{period color|Pliensbachian}}" |{{Period start|pliensbachian}} {{Period start error|pliensbachian}}*

style="background:{{period color|Sinemurian}}" |Sinemurian

| style="background:{{period color|Sinemurian}}" |{{Period start|sinemurian}} {{Period start error|sinemurian}}*

style="background:{{period color|Hettangian}}" |Hettangian

| style="background:{{period color|Hettangian}}" |{{Period start|hettangian}} {{Period start error|hettangian}}*

rowspan="7" style="background:{{period color|Triassic}}" |Triassic

| rowspan="3" style="background:{{period color|Late Triassic}}" |Upper/Late

| style="background:{{period color|Rhaetian}}" |Rhaetian

| rowspan="7" |Archosaurs dominant on land as pseudosuchians and in the air as pterosaurs. Dinosaurs also arise from bipedal archosaurs. Ichthyosaurs and nothosaurs (a group of sauropterygians) dominate large marine fauna. Cynodonts become smaller and nocturnal, eventually becoming the first true mammals, while other remaining synapsids die out. Rhynchosaurs (archosaur relatives) also common. Seed ferns called Dicroidium remained common in Gondwana, before being replaced by advanced gymnosperms. Many large aquatic temnospondyl amphibians. Ceratitidan ammonoids extremely common. Modern corals and teleost fish appear, as do many modern insect orders and suborders. First starfish. Andean Orogeny in South America. Cimmerian Orogeny in Asia. Rangitata Orogeny begins in New Zealand. Hunter-Bowen Orogeny in Northern Australia, Queensland and New South Wales ends, (c. 260–225 Ma). Carnian pluvial event occurs around 234–232 Ma, allowing the first dinosaurs and lepidosaurs (including rhynchocephalians) to radiate. Triassic–Jurassic extinction event occurs 201 Ma, wiping out all conodonts and the last parareptiles, many marine reptiles (e.g. all sauropterygians except plesiosaurs and all ichthyosaurs except parvipelvians), all crocopodans except crocodylomorphs, pterosaurs, and dinosaurs, and many ammonoids (including the whole Ceratitida), bivalves, brachiopods, corals and sponges. First diatoms.{{cite journal |last1=Medlin |first1=L. K. |last2=Kooistra |first2=W. H. C. F. |last3=Gersonde |first3=R. |last4=Sims |first4=P. A. |last5=Wellbrock |first5=U. |year=1997 |title=Is the origin of the diatoms related to the end-Permian mass extinction? |journal=Nova Hedwigia |volume=65 |issue=1–4 |pages=1–11 |doi=10.1127/nova.hedwigia/65/1997/1 |hdl=10013/epic.12689}}

| style="background:{{period color|Rhaetian}}" |~{{Period start|rhaetian}} {{Period start error|rhaetian}}

style="background:{{period color|Norian}}" |Norian

| style="background:{{period color|Norian}}" |~{{Period start|norian}} {{Period start error|norian}}

style="background:{{period color|Carnian}}" |Carnian

| style="background:{{period color|Carnian}}" |~{{Period start|carnian}} {{Period start error|carnian}}*

rowspan="2" style="background:{{period color|Middle Triassic}}" |Middle

| style="background:{{period color|Ladinian}}" |Ladinian

| style="background:{{period color|Ladinian}}" |~{{Period start|ladinian}} {{Period start error|ladnian}}*

style="background:{{period color|Anisian}}" |Anisian

| style="background:{{period color|Anisian}}" |{{Period start|anisian}} {{Period start error|anisian}}

rowspan="2" style="background:{{period color|Early Triassic}}" |Lower/Early

| style="background:{{period color|Olenekian}}" |Olenekian

| style="background:{{period color|Olenekian}}" |{{Period start|olenekian}} {{Period start error|olenekian}}

style="background:{{period color|Induan}}" |Induan

| style="background:{{period color|Induan}}" |{{Period start|induan}} {{Period start error|induan}}*

rowspan="48" style="background:{{period color|Paleozoic}}" |Paleozoic

| rowspan="9" style="background:{{period color|Permian}}" |Permian

| rowspan="2" style="background:{{period color|Lopingian}}" |Lopingian

| style="background:{{period color|Changhsingian}}" |Changhsingian

| rowspan="9" |Landmasses unite into supercontinent Pangaea, creating the Urals, Ouachitas and Appalachians, among other mountain ranges (the superocean Panthalassa or Proto-Pacific also forms). End of Permo-Carboniferous glaciation. Hot and dry climate. A possible drop in oxygen levels. Synapsids (pelycosaurs and therapsids) become widespread and dominant, while parareptiles and temnospondyl amphibians remain common, with the latter probably giving rise to modern amphibians in this period. In the mid-Permian, lycophytes are heavily replaced by ferns and seed plants. Beetles and flies evolve. The very large arthropods and non-tetrapod tetrapodomorphs go extinct. Marine life flourishes in warm shallow reefs; productid and spiriferid brachiopods, bivalves, forams, ammonoids (including goniatites), and orthoceridans all abundant. Crown reptiles arise from earlier diapsids, and split into the ancestors of lepidosaurs, kuehneosaurids, choristoderes, archosaurs, testudinatans, ichthyosaurs, thalattosaurs, and sauropterygians. Cynodonts evolve from larger therapsids. Olson's Extinction (273 Ma), End-Capitanian extinction (260 Ma), and Permian–Triassic extinction event (252 Ma) occur one after another: more than 80% of life on Earth becomes extinct in the lattermost, including most retarian plankton, corals (Tabulata and Rugosa die out fully), brachiopods, bryozoans, gastropods, ammonoids (the goniatites die off fully), insects, parareptiles, synapsids, amphibians, and crinoids (only articulates survived), and all eurypterids, trilobites, graptolites, hyoliths, edrioasteroid crinozoans, blastoids and acanthodians. Ouachita and Innuitian orogenies in North America. Uralian orogeny in Europe/Asia tapers off. Altaid orogeny in Asia. Hunter-Bowen Orogeny on Australian continent begins (c. 260–225 Ma), forming the New England Fold Belt.

| style="background:{{period color|Changhsingian}}" |{{Period start|changhsingian}} {{Period start error|changhsingian}}*

style="background:{{period color|Wuchiapingian}}" |Wuchiapingian

| style="background:{{period color|Wuchiapingian}}" |{{Period start|wuchiapingian}} {{Period start error|wuchiapingian}}*

rowspan="3" style="background:{{period color|Guadalupian}}" |Guadalupian

| style="background:{{period color|Capitanian}}" |Capitanian

| style="background:{{period color|Capitanian}}" |{{Period start|capitanian}} {{Period start error|capitanian}}*

style="background:{{period color|Wordian}}" |Wordian

| style="background:{{period color|Wordian}}" |{{Period start|wordian}} {{Period start error|wordian}}*

style="background:{{period color|Roadian}}" |Roadian

| style="background:{{period color|Roadian}}" |{{Period start|roadian}} {{Period start error|roadian}}*

rowspan="4" style="background:{{period color|Cisuralian}}" |Cisuralian

| style="background:{{period color|Kungurian}}" |Kungurian

| style="background:{{period color|Kungurian}}" |{{Period start|kungurian}} {{Period start error|kungurian}}

style="background:{{period color|Artinskian}}" |Artinskian

| style="background:{{period color|Artinskian}}" |{{Period start|artinskian}} {{Period start error|artinskian}}*

style="background:{{period color|Sakmarian}}" |Sakmarian

| style="background:{{period color|Sakmarian}}" |{{Period start|sakmarian}} {{Period start error|sakmarian}}*

style="background:{{period color|Asselian}}" |Asselian

| style="background:{{period color|Asselian}}" |{{Period start|asselian}} {{Period start error|asselian}}*

rowspan="7" style="background:{{period color|Carboniferous}}" |Carboniferous
{{efn|The Mississippian and Pennsylvanian are official sub-systems/sub-periods.|name=CarboSub|group=note}}

| rowspan="4" style="background:{{period color|Pennsylvanian}}" |Pennsylvanian
{{efn|group=note|name=MissiPenns|This is divided into Lower/Early, Middle, and Upper/Late series/epochs}}

| style="background:{{period color|Gzhelian}}" |Gzhelian

| rowspan="4" |Winged insects radiate suddenly; some (esp. Protodonata and Palaeodictyoptera) of them as well as some millipedes and scorpions become very large. First coal forests (scale trees, ferns, club trees, giant horsetails, Cordaites, etc.). Higher atmospheric oxygen levels. Ice Age continues to the Early Permian. Goniatites, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. First woodlice. Testate forams proliferate. Euramerica collides with Gondwana and Siberia-Kazakhstania, the latter of which forms Laurasia and the Uralian orogeny. Variscan orogeny continues (these collisions created orogenies, and ultimately Pangaea). Amphibians (e.g. temnospondyls) spread in Euramerica, with some becoming the first amniotes. Carboniferous Rainforest Collapse occurs, initiating a dry climate which favors amniotes over amphibians. Amniotes diversify rapidly into synapsids, parareptiles, cotylosaurs, protorothyridids and diapsids. Rhizodonts remained common before they died out by the end of the period. First sharks.

| style="background:{{period color|Gzhelian}}" |{{Period start|gzhelian}} {{Period start error|gzhelain}}

style="background:{{period color|Kasimovian}}" |Kasimovian

| style="background:{{period color|Kasimovian}}" |{{Period start|kasimovian}} {{Period start error|kasimovian}}

style="background:{{period color|Moscovian}}" |Moscovian

| style="background:{{period color|Moscovian}}" |{{Period start|moscovian}} {{Period start error|moscovian}}

style="background:{{period color|Bashkirian}}" |Bashkirian

| style="background:{{period color|Bashkirian}}" |{{Period start|bashkirian}} {{Period start error|bashkrian}}*

rowspan="3" style="background:{{period color|Mississippian}}" |Mississippian
{{efn|group=note|name=MissiPenns}}

| style="background:{{period color|Serpukhovian}}" |Serpukhovian

| rowspan="3" |Large lycopodian primitive trees flourish and amphibious eurypterids live amid coal-forming coastal swamps, radiating significantly one last time. First gymnosperms. First holometabolous, paraneopteran, polyneopteran, odonatopteran and ephemeropteran insects and first barnacles. First five-digited tetrapods (amphibians) and land snails. In the oceans, bony and cartilaginous fishes are dominant and diverse; echinoderms (especially crinoids and blastoids) abundant. Corals, bryozoans, orthoceridans, goniatites and brachiopods (Productida, Spiriferida, etc.) recover and become very common again, but trilobites and nautiloids decline. Glaciation in East Gondwana continues from Late Devonian. Tuhua Orogeny in New Zealand tapers off. Some lobe finned fish called rhizodonts become abundant and dominant in freshwaters. Siberia collides with a different small continent, Kazakhstania.

| style="background:{{period color|Serpukhovian}}" |{{Period start|serpukhovian}} {{Period start error|serpukhovian}}

style="background:{{period color|visean}}" |Viséan

| style="background:{{period color|visean}}" |{{Period start|visean}} {{Period start error|visean}}*

style="background:{{period color|Tournaisian}}" |Tournaisian

| style="background:{{period color|Tournaisian}}" |{{Period start|tournaisian}} {{Period start error|tournaisian}}*

rowspan="7" style="background:{{period color|Devonian}}" |Devonian

| rowspan="2" style="background:{{period color|Late Devonian}}" |Upper/Late

| style="background:{{period color|Famennian}}" |Famennian

| rowspan="7" |First lycopods, ferns, seed plants (seed ferns, from earlier progymnosperms), first trees (the progymnosperm Archaeopteris), and first winged insects (palaeoptera and neoptera). Strophomenid and atrypid brachiopods, rugose and tabulate corals, and crinoids are all abundant in the oceans. First fully coiled cephalopods (Ammonoidea and Nautilida, independently) with the former group very abundant (especially goniatites). Trilobites and ostracoderms decline, while jawed fishes (placoderms, lobe-finned and ray-finned bony fish, and acanthodians and early cartilaginous fish) proliferate. Some lobe finned fish transform into digited fishapods, slowly becoming amphibious. The last non-trilobite artiopods die off. First decapods (like prawns) and isopods. Pressure from jawed fishes cause eurypterids to decline and some cephalopods to lose their shells while anomalocarids vanish. "Old Red Continent" of Euramerica persists after forming in the Caledonian orogeny. Beginning of Acadian Orogeny for Anti-Atlas Mountains of North Africa, and Appalachian Mountains of North America, also the Antler, Variscan, and Tuhua orogenies in New Zealand. A series of extinction events, including the massive Kellwasser and Hangenberg ones, wipe out many acritarchs, corals, sponges, molluscs, trilobites, eurypterids, graptolites, brachiopods, crinozoans (e.g. all cystoids), and fish, including all placoderms and ostracoderms.

| style="background:{{period color|Famennian}}" |{{Period start|famennian}} {{Period start error|famennian}}*

style="background:{{period color|Frasnian}}" |Frasnian

| style="background:{{period color|Frasnian}}" |{{Period start|frasnian}} {{Period start error|frasnian}}*

rowspan="2" style="background:{{period color|Middle Devonian}}" |Middle

| style="background:{{period color|Givetian}}" |Givetian

| style="background:{{period color|Givetian}}" |{{Period start|givetian}} {{Period start error|givetian}}*

style="background:{{period color|Eifelian}}" |Eifelian

| style="background:{{period color|Eifelian}}" |{{Period start|eifelian}} {{Period start error|eifelian}}*

rowspan="3" style="background:{{period color|Early Devonian}}" |Lower/Early

| style="background:{{period color|Emsian}}" |Emsian

| style="background:{{period color|Emsian}}" |{{Period start|emsian}} {{Period start error|emsian}}*

style="background:{{period color|Pragian}}" |Pragian

| style="background:{{period color|Pragian}}" |{{Period start|pragian}} {{Period start error|pragian}}*

style="background:{{period color|Lochkovian}}" |Lochkovian

| style="background:{{period color|Lochkovian}}" |{{Period start|lochkovian}} {{Period start error|lochkovian}}*

rowspan="8" style="background:{{period color|Silurian}}" |Silurian

| colspan="2" style="background:{{period color|Pridoli}}" |Pridoli

| rowspan="8" |Ozone layer thickens. First vascular plants and fully terrestrialised arthropods: myriapods, hexapods (including insects), and arachnids. Eurypterids diversify rapidly, becoming widespread and dominant. Cephalopods continue to flourish. True jawed fishes, along with ostracoderms, also roam the seas. Tabulate and rugose corals, brachiopods (Pentamerida, Rhynchonellida, etc.), cystoids and crinoids all abundant. Trilobites and molluscs diverse; graptolites not as varied. Three minor extinction events. Some echinoderms go extinct. Beginning of Caledonian Orogeny (collision between Laurentia, Baltica and one of the formerly small Gondwanan terranes) for hills in England, Ireland, Wales, Scotland, and the Scandinavian Mountains. Also continued into Devonian period as the Acadian Orogeny, above (thus Euramerica forms). Taconic Orogeny tapers off. Icehouse period ends late in this period after starting in Late Ordovician. Lachlan Orogeny on Australian continent tapers off.

| style="background:{{period color|Pridoli}}" |{{Period start|pridoli}} {{Period start error|pridoli}}*

rowspan="2" style="background:{{period color|Ludlow}}" |Ludlow

| style="background:{{period color|Ludfordian}}" |Ludfordian

| style="background:{{period color|Ludfordian}}" |{{Period start|ludfordian}} {{Period start error|ludfordian}}*

style="background:{{period color|Gorstian}}" |Gorstian

| style="background:{{period color|Gorstian}}" |{{Period start|gorstian}} {{Period start error|gorstian}}*

rowspan="2" style="background:{{period color|Wenlock}}" |Wenlock

| style="background:{{period color|Homerian}}" |Homerian

| style="background:{{period color|Homerian}}" |{{Period start|homerian}} {{Period start error|homerian}}*

style="background:{{period color|Sheinwoodian}}" |Sheinwoodian

| style="background:{{period color|Sheinwoodian}}" |{{Period start|sheinwoodian}} {{Period start error|sheinwoodian}}*

rowspan="3" style="background:{{period color|Llandovery}}" |Llandovery

| style="background:{{period color|Telychian}}" |Telychian

| style="background:{{period color|Telychian}}" |{{Period start|telychian}} {{Period start error|telychian}}*

style="background:{{period color|Aeronian}}" |Aeronian

| style="background:{{period color|Aeronian}}" |{{Period start|aeronian}} {{Period start error|aeronian}}*

style="background:{{period color|Rhuddanian}}" |Rhuddanian

| style="background:{{period color|Rhuddanian}}" |{{Period start|rhuddanian}} {{Period start error|rhuddanian}}*

rowspan="7" style="background:{{period color|Ordovician}}" |Ordovician

| rowspan="3" style="background:{{period color|Late Ordovician}}" |Upper/Late

| style="background:{{period color|Hirnantian}}" |Hirnantian

| rowspan="7" |The Great Ordovician Biodiversification Event occurs as plankton increase in number: invertebrates diversify into many new types (especially brachiopods and molluscs; e.g. long straight-shelled cephalopods like the long lasting and diverse Orthocerida). Early corals, articulate brachiopods (Orthida, Strophomenida, etc.), bivalves, cephalopods (nautiloids), trilobites, ostracods, bryozoans, many types of echinoderms (blastoids, cystoids, crinoids, sea urchins, sea cucumbers, and star-like forms, etc.), branched graptolites, and other taxa all common. Acritarchs still persist and common. Cephalopods become dominant and common, with some trending toward a coiled shell. Anomalocarids decline. Mysterious tentaculitans appear. First eurypterids and ostracoderm fish appear, the latter probably giving rise to the jawed fish at the end of the period. First uncontroversial terrestrial fungi and fully terrestrialised plants. Ice age at the end of this period, as well as a series of mass extinction events, killing off some cephalopods and many brachiopods, bryozoans, echinoderms, graptolites, trilobites, bivalves, corals and conodonts.

| style="background:{{period color|Hirnantian}}" |{{Period start|hirnantian}} {{Period start error|hirnantian}}*

style="background:{{period color|Katian}}" |Katian

| style="background:{{period color|Katian}}" |{{Period start|katian}} {{Period start error|katian}}*

style="background:{{period color|Sandbian}}" |Sandbian

| style="background:{{period color|Sandbian}}" |{{Period start|sandbian}} {{Period start error|sandbian}}*

rowspan="2" style="background:{{period color|Middle Ordovician}}" |Middle

| style="background:{{period color|Darriwilian}}" |Darriwilian

| style="background:{{period color|Darriwilian}}" |{{Period start|darriwilian}} {{Period start error|darriwilian}}*

style="background:{{period color|Dapingian}}" |Dapingian

| style="background:{{period color|Dapingian}}" |{{Period start|dapingian}} {{Period start error|dapingian}}*

rowspan="2" style="background:{{period color|Early Ordovician}}" |Lower/Early

| style="background:{{period color|Floian}}" |Floian
(formerly Arenig)

| style="background:{{period color|Floian}}" |{{Period start|floian}} {{Period start error|floian}}*

style="background:{{period color|Tremadocian}}" |Tremadocian

| style="background:{{period color|Tremadocian}}" |{{Period start|tremadocian}} {{Period start error|tremadocian}}*

rowspan="10" style="background:{{period color|Cambrian}}" |Cambrian

| rowspan="3" style="background:{{period color|Furongian}}" |Furongian

| style="background:{{period color|Stage 10}}" |Stage 10

| rowspan="10" |Major diversification of (fossils mainly show bilaterian) life in the Cambrian Explosion as oxygen levels increase. Numerous fossils; most modern animal phyla (including arthropods, molluscs, annelids, echinoderms, hemichordates and chordates) appear. Reef-building archaeocyathan sponges initially abundant, then vanish. Stromatolites replace them, but quickly fall prey to the Agronomic revolution, when some animals started burrowing through the microbial mats (affecting some other animals as well). First artiopods (including trilobites), priapulid worms, inarticulate brachiopods (unhinged lampshells), hyoliths, bryozoans, graptolites, pentaradial echinoderms (e.g. blastozoans, crinozoans and eleutherozoans), and numerous other animals. Anomalocarids are dominant and giant predators, while many Ediacaran fauna die out. Crustaceans and molluscs diversify rapidly. Prokaryotes, protists (e.g., forams), algae and fungi continue to present day. First vertebrates from earlier chordates. Petermann Orogeny on the Australian continent tapers off (550–535 Ma). Ross Orogeny in Antarctica. Delamerian Orogeny (c. 514–490 Ma) on Australian continent. Some small terranes split off from Gondwana. Atmospheric {{CO2}} content roughly 15 times present-day (Holocene) levels (6000 ppm compared to today's 400 ppm){{efn|name="atmospheric-carbon-dioxide"|group=note}} Arthropods and streptophyta start colonising land. 3 extinction events occur 517, 502 and 488 Ma, the first and last of which wipe out many of the anomalocarids, artiopods, hyoliths, brachiopods, molluscs, and conodonts (early jawless vertebrates).

| style="background:{{period color|Stage 10}}" |~{{Period start|cambrian stage 10}}

style="background:{{period color|Jiangshanian}}" |Jiangshanian

| style="background:{{period color|Jiangshanian}}" |~{{Period start|Jiangshanian}} {{Period start error|Jiangshanian}}*

style="background:{{period color|Paibian}}" |Paibian

| style="background:{{period color|Paibian}}" |~{{Period start|paibian}} {{Period start error|paibian}}*

rowspan="3" style="background:{{period color|Series 3}}" |Miaolingian

| style="background:{{period color|Guzhangian}}" |Guzhangian

| style="background:{{period color|Guzhangian}}" |~{{Period start|guzhangian}} {{Period start error|guzhangian}}*

style="background:{{period color|Drumian}}" |Drumian

| style="background:{{period color|Drumian}}" |~{{Period start|drumian}} {{Period start error|drumian}}*

style="background:{{period color|Stage 5}}" |Wuliuan

| style="background:{{period color|Stage 5}}" |~{{Period start|wuliuan}} {{Period start error|wuliuan}}

rowspan="2" style="background:{{period color|Series 2}}" |Series 2

| style="background:{{period color|Stage 4}}" |Stage 4

| style="background:{{period color|Stage 4}}" |~{{Period start|cambrian stage 4}} {{Period start error|cambrian stage 4}}

style="background:{{period color|Stage 3}}" |Stage 3

| style="background:{{period color|Stage 3}}" |~{{Period start|cambrian stage 3}} {{Period start error|cambrian stage 3}}

rowspan="2" style="background:{{period color|Terreneuvian}}" |Terreneuvian

| style="background:{{period color|Stage 2}}" |Stage 2

| style="background:{{period color|Stage 2}}" |~{{Period start|cambrian stage 2}} {{Period start error|cambrian stage 2}}

style="background:{{period color|Fortunian}}" |Fortunian

| style="background:{{period color|Fortunian}}" |{{Period start|fortunian}} {{Period start error|fortunian}}*

rowspan="10" style="background:{{period color|Proterozoic}}" |Proterozoic

| rowspan="3" style="background:{{period color|Neoproterozoic}}" |Neoproterozoic

| style="background:{{period color|Ediacaran}}" |Ediacaran

| colspan="3" |Good fossils of primitive animals. Ediacaran biota flourish worldwide in seas, possibly appearing after an explosion, possibly caused by a large-scale oxidation event.{{Cite journal |last1=Williams |first1=Joshua J. |last2=Mills |first2=Benjamin J. W. |last3=Lenton |first3=Timothy M. |date=2019 |title=A tectonically driven Ediacaran oxygenation event |journal=Nature Communications |language=en |volume=10 |issue=1 |pages=2690 |doi=10.1038/s41467-019-10286-x |issn=2041-1723 |pmc=6584537 |pmid=31217418|bibcode=2019NatCo..10.2690W }} First vendozoans (unknown affinity among animals), cnidarians and bilaterians. Enigmatic vendozoans include many soft-jellied creatures shaped like bags, disks, or quilts (like Dickinsonia). Simple trace fossils of possible worm-like Trichophycus, etc. Taconic Orogeny in North America. Aravalli Range orogeny in Indian subcontinent. Beginning of Pan-African Orogeny, leading to the formation of the short-lived Ediacaran supercontinent Pannotia, which by the end of the period breaks up into Laurentia, Baltica, Siberia and Gondwana. Petermann Orogeny forms on Australian continent. Beardmore Orogeny in Antarctica, 633–620 Ma. Ozone layer forms. An increase in oceanic mineral levels.

| style="background:{{period color|Ediacaran}}" |~{{Period start|ediacaran}} {{Period start error|ediacaran}}*

style="background:{{period color|Cryogenian}}" |Cryogenian

| colspan="3" |Possible "Snowball Earth" period. Fossils still rare. Late Ruker / Nimrod Orogeny in Antarctica tapers off. First uncontroversial animal fossils. First hypothetical terrestrial fungi{{cite journal |last1=Naranjo-Ortiz |first1=Miguel A. |last2=Gabaldón |first2=Toni |date=2019-04-25 |title=Fungal evolution: major ecological adaptations and evolutionary transitions |journal=Biological Reviews of the Cambridge Philosophical Society |publisher=Cambridge Philosophical Society (Wiley) |volume=94 |issue=4 |pages=1443–1476 |doi=10.1111/brv.12510 |pmid=31021528 |pmc=6850671 |s2cid=131775942 |issn=1464-7931}} and streptophyta.{{Cite journal |last1=Žárský |first1=Jakub |last2=Žárský |first2=Vojtěch |last3=Hanáček |first3=Martin |last4=Žárský |first4=Viktor |date=2022-01-27 |title=Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split |journal=Frontiers in Plant Science |volume=12 |pages=735020 |doi=10.3389/fpls.2021.735020 |issn=1664-462X |pmc=8829067 |pmid=35154170|doi-access=free }}

| style="background:{{period color|Cryogenian}}" |~{{Period start|cryogenian}} {{Period start error|cryogenian}}

style="background:{{period color|Tonian}}" |Tonian

| colspan="3" |Final assembly of Rodinia supercontinent occurs in early Tonian, with breakup beginning c. 800 Ma. Sveconorwegian orogeny ends. Grenville Orogeny tapers off in North America. Lake Ruker / Nimrod Orogeny in Antarctica, 1,000 ± 150 Ma. Edmundian Orogeny (c. 920–850 Ma), Gascoyne Complex, Western Australia. Deposition of Adelaide Superbasin and Centralian Superbasin begins on Australian continent. First hypothetical animals (from holozoans) and terrestrial algal mats. Many endosymbiotic events concerning red and green algae occur, transferring plastids to ochrophyta (e.g. diatoms, brown algae), dinoflagellates, cryptophyta, haptophyta, and euglenids (the events may have begun in the Mesoproterozoic){{Cite journal |last1=Yoon |first1=Hwan Su |last2=Hackett |first2=Jeremiah D. |last3=Ciniglia |first3=Claudia |last4=Pinto |first4=Gabriele |last5=Bhattacharya |first5=Debashish |date=2004 |title=A Molecular Timeline for the Origin of Photosynthetic Eukaryotes |url=https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msh075 |journal=Molecular Biology and Evolution |language=en |volume=21 |issue=5 |pages=809–818 |doi=10.1093/molbev/msh075 |pmid=14963099 |issn=1537-1719|doi-access=free }} while the first retarians (e.g. forams) also appear: eukaryotes diversify rapidly, including algal, eukaryovoric and biomineralised forms. Trace fossils of simple multi-celled eukaryotes. Neoproterozoic oxygenation event (NOE), 850–540 Ma.{{Cite journal |last1=Och |first1=Lawrence M. |last2=Shields-Zhou |first2=Graham A. |date=2012-01-01 |title=The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling |url=https://linkinghub.elsevier.com/retrieve/pii/S0012825211001498 |journal=Earth-Science Reviews |language=en |volume=110 |issue=1–4 |pages=26–57 |doi=10.1016/j.earscirev.2011.09.004}}

| style="background:{{period color|Tonian}}" |{{Period start|tonian}} {{Period start error|tonian}}{{efn|name="absolute-age"|Defined by absolute age (Global Standard Stratigraphic Age).|group=note}}

rowspan="3" style="background:{{period color|Mesoproterozoic}}" |Mesoproterozoic

| style="background:{{period color|Stenian}}" |Stenian

| colspan="3" |Narrow highly metamorphic belts due to orogeny as Rodinia forms, surrounded by the Pan-African Ocean. Sveconorwegian orogeny starts. Late Ruker / Nimrod Orogeny in Antarctica possibly begins. Musgrave Orogeny (c. 1,080–), Musgrave Block, Central Australia. Stromatolites decline as algae proliferate.

| style="background:{{period color|Stenian}}" |{{Period start|stenian}} {{Period start error|stenian}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Ectasian}}" |Ectasian

| colspan="3" |Platform covers continue to expand. Algal colonies in the seas. Grenville Orogeny in North America. Columbia breaks up.

| style="background:{{period color|Ectasian}}" |{{Period start|ectasian}} {{Period start error|ectasian}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Calymmian}}" |Calymmian

| colspan="3" |Platform covers expand. Barramundi Orogeny, McArthur Basin, Northern Australia, and Isan Orogeny, {{circa}} 1,600 Ma, Mount Isa Block, Queensland. First archaeplastidans (the first eukaryotes with plastids from cyanobacteria; e.g. red and green algae) and opisthokonts (giving rise to the first fungi and holozoans). Acritarchs (remains of marine algae possibly) start appearing in the fossil record.

| style="background:{{period color|Calymmian}}" |{{Period start|calymmian}} {{Period start error|calymmian}}{{efn|name="absolute-age"|group=note}}

rowspan="4" style="background:{{period color|Paleoproterozoic}}" |Paleoproterozoic

| style="background:{{period color|Statherian}}" |Statherian

| colspan="3" |First uncontroversial eukaryotes: protists with nuclei and endomembrane system. Columbia forms as the second undisputed earliest supercontinent. Kimban Orogeny in Australian continent ends. Yapungku Orogeny on Yilgarn craton, in Western Australia. Mangaroon Orogeny, 1,680–1,620 Ma, on the Gascoyne Complex in Western Australia. Kararan Orogeny (1,650 Ma), Gawler craton, South Australia. Oxygen levels drop again.

| style="background:{{period color|Statherian}}" |{{Period start|statherian}} {{Period start error|statherian}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Orosirian}}" |Orosirian

| colspan="3" |The atmosphere becomes much more oxygenic while more cyanobacterial stromatolites appear. Vredefort and Sudbury Basin asteroid impacts. Much orogeny. Penokean and Trans-Hudsonian Orogenies in North America. Early Ruker Orogeny in Antarctica, 2,000–1,700 Ma. Glenburgh Orogeny, Glenburgh Terrane, Australian continent {{circa}} 2,005–1,920 Ma. Kimban Orogeny, Gawler craton in Australian continent begins.

| style="background:{{period color|Orosirian}}" |{{Period start|orosirian}} {{Period start error|orosirian}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Rhyacian}}" |Rhyacian

| colspan="3" |Bushveld Igneous Complex forms. Huronian glaciation. First hypothetical eukaryotes. Multicellular Francevillian biota. Kenorland disassembles.

| style="background:{{period color|Rhyacian}}" |{{Period start|rhyacian}} {{Period start error|rhyacian}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Siderian}}" |Siderian

| colspan="3" |Great Oxidation Event (due to cyanobacteria) increases oxygen. Sleaford Orogeny on Australian continent, Gawler craton 2,440–2,420 Ma.

| style="background:{{period color|Siderian}}" |{{Period start|siderian}} {{Period start error|siderian}}{{efn|name="absolute-age"|group=note}}

rowspan="4" style="background:{{period color|Archean}}" |Archean

| style="background:{{period color|Neoarchean}}" |Neoarchean

| colspan="4" |Stabilization of most modern cratons; possible mantle overturn event. Insell Orogeny, 2,650 ± 150 Ma. Abitibi greenstone belt in present-day Ontario and Quebec begins to form, stabilises by 2,600 Ma. First uncontroversial supercontinent, Kenorland, and first terrestrial prokaryotes.

| style="background:{{period color|Neoarchean}}" |{{Period start|neoarchean}} {{Period start error|neoarchean}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Mesoarchean}}" |Mesoarchean

| colspan="4" |First stromatolites (probably colonial phototrophic bacteria, like cyanobacteria). Oldest macrofossils. Humboldt Orogeny in Antarctica. Blake River Megacaldera Complex begins to form in present-day Ontario and Quebec, ends by roughly 2,696 Ma.

| style="background:{{period color|Mesoarchean}}" |{{Period start|mesoarchean}} {{Period start error|mesoarchean}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Paleoarchean}}" |Paleoarchean

| colspan="4" |Prokaryotic archaea (e.g. methanogens) and bacteria (e.g. cyanobacteria) diversify rapidly, along with early viruses. First known phototrophic bacteria. Oldest definitive microfossils. First microbial mats. Oldest cratons on Earth (such as the Canadian Shield and the Pilbara Craton) may have formed during this period.{{efn|The age of the oldest measurable craton, or continental crust, is dated to 3,600–3,800 Ma.|name="Oldest-craton"|group=note}} Rayner Orogeny in Antarctica.

| style="background:{{period color|Paleoarchean}}" |{{Period start|paleoarchean}} {{Period start error|paleoarchean}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Eoarchean}}" |Eoarchean

| colspan="4" |First uncontroversial living organisms: at first protocells with RNA-based genes around 4000 Ma, after which true cells (prokaryotes) evolve along with proteins and DNA-based genes around 3800 Ma. The end of the Late Heavy Bombardment. Napier Orogeny in Antarctica, 4,000 ± 200 Ma.

| style="background:{{period color|Eoarchean}}" |{{Period start|eoarchean}} {{Period start error|eoarchean}}{{efn|name="absolute-age"|group=note}}

style="background:{{period color|Hadean}}" |Hadean

| colspan="5" |Formation of protolith of the oldest known rock (Acasta Gneiss) c. 4,031 to 3,580 Ma.{{cite journal |last1=Bowring |first1=Samuel A. |last2=Williams |first2=Ian S. |year=1999 |title=Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada |journal=Contributions to Mineralogy and Petrology |volume=134 |issue=1 |pages=3 |bibcode=1999CoMP..134....3B |doi=10.1007/s004100050465 |s2cid=128376754}}{{Citation |last1=Iizuka |first1=Tsuyoshi |date=2007 |url=https://linkinghub.elsevier.com/retrieve/pii/S0166263507150313 |volume=15 |pages=127–147 |publisher=Elsevier |language=en |doi=10.1016/s0166-2635(07)15031-3 |isbn=978-0-444-52810-0 |access-date=2022-05-01 |last2=Komiya |first2=Tsuyoshi |last3=Maruyama |first3=Shigenori|title=Chapter 3.1 the Early Archean Acasta Gneiss Complex: Geological, Geochronological and Isotopic Studies and Implications for Early Crustal Evolution |series=Developments in Precambrian Geology }} Possible first appearance of plate tectonics. First hypothetical life forms. End of the Early Bombardment Phase. Oldest known mineral (Zircon, 4,404 ± 8 Ma).{{Cite journal |last1=Wilde |first1=Simon A. |last2=Valley |first2=John W. |last3=Peck |first3=William H. |last4=Graham |first4=Colin M. |date=2001 |title=Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago |url=http://www.nature.com/articles/35051550 |journal=Nature |language=en |volume=409 |issue=6817 |pages=175–178 |doi=10.1038/35051550 |issn=0028-0836 |pmid=11196637 |s2cid=4319774}} Asteroids and comets bring water to Earth, forming the first oceans. Formation of Moon (4,510 Ma), probably from a giant impact. Formation of Earth (4,543 to 4,540 Ma)

| style="background:{{period color|Hadean}}" |{{Period start|hadean}} {{Period start error|hadean}}{{efn|name="absolute-age"|group=note}}

Non-Earth based geologic time scales

{{Main|Lunar geologic timescale|Martian geologic timescale|Geology of Venus}}Some other planets and satellites in the Solar System have sufficiently rigid structures to have preserved records of their own histories, for example, Venus, Mars and the Earth's Moon. Dominantly fluid planets, such as the giant planets, do not comparably preserve their history. Apart from the Late Heavy Bombardment, events on other planets probably had little direct influence on the Earth, and events on Earth had correspondingly little effect on those planets. Construction of a time scale that links the planets is, therefore, of only limited relevance to the Earth's time scale, except in a Solar System context. The existence, timing, and terrestrial effects of the Late Heavy Bombardment are still a matter of debate.{{efn|Not enough is known about extra-solar planets for worthwhile speculation.|group=note}}

= Lunar (selenological) time scale =

The geologic history of Earth's Moon has been divided into a time scale based on geomorphological markers, namely impact cratering, volcanism, and erosion. This process of dividing the Moon's history in this manner means that the time scale boundaries do not imply fundamental changes in geological processes, unlike Earth's geologic time scale. Five geologic systems/periods (Pre-Nectarian, Nectarian, Imbrian, Eratosthenian, Copernican), with the Imbrian divided into two series/epochs (Early and Late) were defined in the latest Lunar geologic time scale.{{Cite book |last=Wilhelms |first=Don E. |title=The geologic history of the Moon |series=Professional Paper |publisher=United States Geological Survey |year=1987 |doi=10.3133/pp1348}} The Moon is unique in the Solar System in that it is the only other body from which humans have rock samples with a known geological context.

{{Timeline Lunar Geological Timescale}}

= Martian geologic time scale =

The geological history of Mars has been divided into two alternate time scales. The first time scale for Mars was developed by studying the impact crater densities on the Martian surface. Through this method four periods have been defined, the Pre-Noachian (~4,500–4,100 Ma), Noachian (~4,100–3,700 Ma), Hesperian (~3,700–3,000 Ma), and Amazonian (~3,000 Ma to present).{{Cite journal |last=Tanaka |first=Kenneth L. |date=1986 |title=The stratigraphy of Mars |url=http://doi.wiley.com/10.1029/JB091iB13p0E139 |journal=Journal of Geophysical Research |language=en |volume=91 |issue=B13 |pages=E139 |doi=10.1029/JB091iB13p0E139 |bibcode=1986JGR....91E.139T |issn=0148-0227}}{{Cite journal |last1=Carr |first1=Michael H. |last2=Head |first2=James W. |date=2010-06-01 |title=Geologic history of Mars |url=https://www.sciencedirect.com/science/article/pii/S0012821X09003847 |journal=Earth and Planetary Science Letters |series=Mars Express after 6 Years in Orbit: Mars Geology from Three-Dimensional Mapping by the High Resolution Stereo Camera (HRSC) Experiment |language=en |volume=294 |issue=3 |pages=185–203 |doi=10.1016/j.epsl.2009.06.042 |bibcode=2010E&PSL.294..185C |issn=0012-821X}}

{{Mars timescale}}

A second time scale based on mineral alteration observed by the OMEGA spectrometer on board the Mars Express. Using this method, three periods were defined, the Phyllocian (~4,500–4,000 Ma), Theiikian (~4,000–3,500 Ma), and Siderikian (~3,500 Ma to present).{{Cite journal |last1=Bibring |first1=Jean-Pierre |last2=Langevin |first2=Yves |last3=Mustard |first3=John F. |last4=Poulet |first4=François |last5=Arvidson |first5=Raymond |last6=Gendrin |first6=Aline |last7=Gondet |first7=Brigitte |last8=Mangold |first8=Nicolas |last9=Pinet |first9=P. |last10=Forget |first10=F. |last11=Berthé |first11=Michel |date=2006-04-21 |title=Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data |url=https://www.science.org/doi/10.1126/science.1122659 |journal=Science |language=en |volume=312 |issue=5772 |pages=400–404 |doi=10.1126/science.1122659 |pmid=16627738 |bibcode=2006Sci...312..400B |s2cid=13968348 |issn=0036-8075}}

ImageSize = width:800 height:50

PlotArea = left:15 right:15 bottom:20 top:5

AlignBars = early

Period = from:-4500 till:0

TimeAxis = orientation:horizontal

ScaleMajor = unit:year increment:500 start:-4500

ScaleMinor = unit:year increment:100 start:-4500

Colors =

id:sidericol value:rgb(1,0.4,0.3)

id:theiicol value:rgb(1,0.2,0.5)

id:phyllocol value:rgb(0.7,0.4,1)

PlotData=

align:center textcolor:black fontsize:8 mark:(line,black) width:25 shift:(0,-5)

text:Siderikan from:-3500 till:0 color:sidericol

text:Theiikian from:-4000 till:-3500 color:theiicol

text:Phyllocian from:start till:-4000 color:phyllocol

See also

Notes

{{Notelist|group=note}}

References

{{reflist|25em}}

Further reading

  • {{cite journal |date=2009 |last1=Aubry|first1=Marie-Pierre|last2=Van Couvering|first2=John A.|last3=Christie-Blick|first3=Nicholas|last4= Landing|first4=Ed|last5=Pratt|first5=Brian R.|last6=Owen|first6=Donald E.|last7=Ferrusquia-Villafranca|first7=Ismael |title=Terminology of geological time: Establishment of a community standard |journal=Stratigraphy |volume=6 |issue=2 |pages=100–105 |doi=10.7916/D8DR35JQ}}
  • {{cite journal |date=2004 |last1=Gradstein |first1=F. M. |last2=Ogg |first2=J. G. |title=A Geologic Time scale 2004 – Why, How and Where Next! |journal=Lethaia |volume=37 |issue=2 |pages=175–181 |url=https://eesc.columbia.edu/courses/w4937/Readings/Gradstein_Ogg_2004.pdf |access-date=30 November 2018 |doi=10.1080/00241160410006483 |bibcode=2004Letha..37..175G |archive-url=https://web.archive.org/web/20180417173639/http://eesc.columbia.edu/courses/w4937/Readings/Gradstein_Ogg_2004.pdf |archive-date=17 April 2018 |url-status=dead }}
  • {{cite book |date=2004 |last1=Gradstein|first1=Felix M.|last2=Ogg|first2=James G.|last3=Smith|first3=Alan G. |title=A Geologic Time Scale 2004 |url=https://books.google.com/books?id=rse4v1P-f9kC |location=Cambridge, UK |publisher=Cambridge University Press |isbn=978-0-521-78142-8 |access-date=18 November 2011}}
  • {{cite journal |date=June 2004 |last1=Gradstein |first1=Felix M. |last2=Ogg |first2=James G. |last3=Smith |first3=Alan G. |last4=Bleeker |first4=Wouter |last5=Laurens |first5=Lucas, J. |title=A new Geologic Time Scale, with special reference to Precambrian and Neogene |journal=Episodes |volume=27 |issue=2 |pages=83–100 |doi=10.18814/epiiugs/2004/v27i2/002 |doi-access=free }}
  • {{cite news|url=https://www.npr.org/sections/13.7/2014/09/28/351692717/embracing-deep-time-thinking|last= Ialenti|first=Vincent|title=Embracing 'Deep Time' Thinking.|newspaper= NPR|date= 28 September 2014|publisher=NPR Cosmos & Culture}}
  • {{cite news|url=https://www.npr.org/sections/13.7/2014/09/21/350344129/pondering-deep-time-could-inspire-new-ways-to-view-climate-change |last=Ialenti|first=Vincent|title=Pondering 'Deep Time' Could Inspire New Ways To View Climate Change.|newspaper=NPR|date=21 September 2014|publisher=NPR Cosmos & Culture}}
  • {{cite journal |date=30 July 2004 |author1-link=Andrew H. Knoll|last1=Knoll|first1=Andrew H.|last2=Walter|first2=Malcolm R.|last3=Narbonne|first3=Guy M.|last4=Christie-Blick|first4=Nicholas |title=A New Period for the Geologic Time Scale |journal=Science |volume=305 |issue=5684 |pages=621–622 |url=http://www.ldeo.columbia.edu/~ncb/Selected_Articles_all_files/17_Science%20305.621.pdf |archive-url=https://web.archive.org/web/20111215034718/http://www.ldeo.columbia.edu/%7Encb/Selected_Articles_all_files/17_Science%20305.621.pdf |archive-date=2011-12-15 |url-status=live |doi=10.1126/science.1098803 |access-date=18 November 2011 |pmid=15286353|s2cid=32763298}}
  • {{cite book |date=2010 |last=Levin|first=Harold L. |chapter=Time and Geology |chapter-url=https://books.google.com/books?id=D0yl7Cqsu78C&pg=PA29|title=The Earth Through Time |url=https://books.google.com/books?id=D0yl7Cqsu78C |place=Hoboken, New Jersey |publisher=John Wiley & Sons |isbn=978-0-470-38774-0 |access-date=18 November 2011}}
  • {{cite book |last=Montenari |first=Michael |url=https://books.google.com/books?id=xzJQDAAAQBAJ |title=Stratigraphy and Timescales |edition=1st |location=Amsterdam |publisher=Academic Press (Elsevier) |date=2016 |isbn=978-0-12-811549-7}}
  • {{cite book |last=Montenari |first=Michael |url=https://www.sciencedirect.com/bookseries/stratigraphy-and-timescales/vol/2/suppl/C |title=Advances in Sequence Stratigraphy |date=2017 |edition=1st |location=Amsterdam |publisher=Academic Press (Elsevier) |isbn=978-0-12-813077-3}}
  • {{cite book |last=Montenari |first=Michael |date=2018 |url=https://www.sciencedirect.com/bookseries/stratigraphy-and-timescales/vol/3/suppl/C |title=Cyclostratigraphy and Astrochronology |edition=1st |location=Amsterdam |publisher=Academic Press (Elsevier) |isbn=978-0-12-815098-6}}
  • {{cite book |last=Montenari |first=Michael |date=2019 |url=https://www.sciencedirect.com/bookseries/stratigraphy-and-timescales/vol/4/suppl/C |title=Case Studies in Isotope Stratigraphy |edition=1st |location=Amsterdam |publisher=Academic Press (Elsevier) |isbn=978-0-12-817552-1}}
  • {{cite book |last=Montenari |first=Michael |date=2020 |url=https://www.sciencedirect.com/bookseries/stratigraphy-and-timescales/vol/5/suppl/C |title=Carbon Isotope Stratigraphy |edition=1st |location=Amsterdam |publisher=Academic Press (Elsevier) |isbn=978-0-12-820991-2}}
  • {{cite book |last=Montenari |first=Michael |date=2021 |url=https://www.sciencedirect.com/bookseries/stratigraphy-and-timescales/vol/6/suppl/C |title=Calcareous Nannofossil Biostratigraphy |edition=1st |location=Amsterdam |publisher=Academic Press (Elsevier) |isbn=978-0-12-824624-5}}
  • Montenari, Michael (2022). [https://www.sciencedirect.com/bookseries/stratigraphy-and-timescales/vol/7/suppl/C Integrated Quaternary Stratigraphy] (1st ed.). Amsterdam: Academic Press (Elsevier). ISBN 978-0-323-98913-8.
  • Montenari, Michael (2023). [https://www.sciencedirect.com/bookseries/stratigraphy-and-timescales/vol/8/suppl/C Stratigraphy of Geo- and Biodynamic Processes] (1st ed.). Amsterdam: Academic Press (Elsevier). ISBN 978-0-323-99242-8.
  • Nichols, Gary (2013). [https://books.google.com/books?id=Gcgp5oLFrZMC Sedimentology and Stratigraphy] (2nd ed.). Hoboken: Wiley-Blackwell. {{ISBN|978-1-4051-3592-4}}
  • Williams, Aiden (2019). [https://books.google.com/books?id=etVhxQEACAAJ Sedimentology and Stratigraphy] (1st ed.). Forest Hills, NY: Callisto Reference. {{ISBN|978-1-64116-075-9}}