2023 in paleoichthyology
{{Short description|none}}
{{Year nav topic20 |2023|paleoichthyology|paleontology |paleobotany |arthropod paleontology |paleoentomology |paleomalacology |reptile paleontology |archosaur paleontology |mammal paleontology}}
This list of fossil fish research presented in 2023 is a list of new fossil taxa of jawless vertebrates, placoderms, cartilaginous fishes, bony fishes, and other fishes that were described during the year, as well as other significant discoveries and events related to paleoichthyology that occurred in 2023.
Jawless vertebrates
=Jawless vertebrate research=
- A study on the anatomy and affinities of Lasanius is published by Reeves et al. (2023), who interpret this vertebrate as a stem-cyclostome.{{Cite journal|last1=Reeves |first1=J. C. |last2=Wogelius |first2=R. A. |last3=Keating |first3=J. N. |last4=Sansom |first4=R. S. |title=Lasanius, an exceptionally preserved Silurian jawless fish from Scotland |year=2023 |journal=Palaeontology |volume=66 |issue=2 |at=e12643 |doi=10.1111/pala.12643 |bibcode=2023Palgy..6612643R |s2cid=258066900 |doi-access=free }}
- Dearden et al. (2023) describe the cranial anatomy of Eriptychius americanus, provide evidence of the presence of a symmetrical set of cartilages interpreted as the preorbital neurocranium, and report that the studied cartilages filled out the head and closely supported the dermal skeleton (in that they were closer to the cranial anatomy of osteostracans and galeaspids than cyclostomes), but were not fused into a single unit around the brain (more closely resembling the cranial anatomy of cyclostomes than osteostracans, galeaspids and jawed vertebrates in that aspect).{{Cite journal|last1=Dearden |first1=R. P. |last2=Lanzetti |first2=A. |last3=Giles |first3=S. |last4=Johanson |first4=Z. |last5=Jones |first5=A. S. |last6=Lautenschlager |first6=S. |last7=Randle |first7=E. |last8=Sansom |first8=I. J. |title=The oldest three-dimensionally preserved vertebrate neurocranium |year=2023 |journal=Nature |volume=621 |issue=7980 |pages=782–787 |doi=10.1038/s41586-023-06538-y |pmid=37730987 |pmc=10533405 |bibcode=2023Natur.621..782D }}
- A study on the interaction of fluid flow with 2D models of heterostracan oral plate denticles is published by Grohganz et al. (2023), who interpret their findings as indicating that the studied denticles were not an adaptation to suspension feeding.{{Cite journal |last1=Grohganz |first1=M. |last2=Ferrón |first2=H. G. |last3=Johanson |first3=Z. |last4=Donoghue |first4=P. C. J. |year=2023 |title=Testing hypotheses of pteraspid heterostracan feeding using computational fluid dynamics |journal=Journal of Vertebrate Paleontology |volume=43 |issue=2 |at=e2272974 |doi=10.1080/02724634.2023.2272974 |doi-access=free |hdl=10550/98081 |hdl-access=free }}
Placoderms
=Placoderm research=
- Evidence from the study of the skull of Kolymaspis sibirica, interpreted as indicating that the sixth branchial arch was probably the one that was incorporated into the vertebrate shoulder girdle, is presented by Brazeau et al. (2023).{{Cite journal|last1=Brazeau |first1=M. |last2=Castiello |first2=M. |last3=El Fassi El Fehri |first3=A. |last4=Hamilton |first4=L. |last5=Ivanov |first5=A. O. |last6=Johanson |first6=Z. |last7=Friedman |first7=M. |title=Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle |year=2023 |journal=Nature |volume=623 |issue=7987 |pages=550–554 |doi=10.1038/s41586-023-06702-4 |pmid=37914937 |pmc=10651482 |bibcode=2023Natur.623..550B }}
- Brazeau et al. (2023) describe a near-complete "acanthothoracid" upper jaw from the Devonian (Pragian) Yamaat Gol locality (Mongolia), and interpret this finding as indicating that the morphology and function of "acanthoracid" jaws resemble generalized "placoderm" conditions seen also in arthrodires and rhenanids.{{Cite journal|last1=Brazeau |first1=M. D. |last2=Yuan |first2=H. |last3=Giles |first3=S. |last4=Jerve |first4=A. L. |last5=Zorig |first5=E. |last6=Ariunchimeg |first6=Ya. |last7=Sansom |first7=R. S. |last8=Atwood |first8=R. C. |year=2023 |title=A well-preserved 'placoderm' (stem-group Gnathostomata) upper jaw from the Early Devonian of Mongolia clarifies jaw evolution |journal=Royal Society Open Science |volume=10 |issue=2 |at=221452 |doi=10.1098/rsos.221452 |pmid=36844806 |pmc=9943883 |bibcode=2023RSOS...1021452B |doi-access=free }}
- Redescription and a study on the affinities of Bothriolepis sinensis is published by Luo et al. (2023).{{cite journal|last1=Luo |first1=Y.-C. |last2=Zhu |first2=M. |last3=Lu |first3=L.-W. |last4=Pan |first4=Z.-H. |year=2023 |title=Reappraisal of Bothriolepis sinensis Chi, 1940 from the Tiaomachien Formation, Hunan, China |journal=Vertebrata PalAsiatica |volume=61 |issue=4 |pages=261–276 |doi=10.19615/j.cnki.2096-9899.230901 |url=http://www.vertpala.ac.cn/EN/10.19615/j.cnki.2096-9899.230901 }}
- Evidence of different patterns of phylogenetic and taxic diversity of Arthrodira throughout their evolutionary history is presented by Xue et al. (2023), who find evidence robust correlation between declines of phylogenetic diversity and significant global events during the Devonian, especially the late Givetian event, the Late Devonian extinction and the Hangenberg event.{{cite journal|last1=Xue |first1=Q.-Y. |last2=Yu |first2=Y.-L. |last3=Pan |first3=Z.-H. |last4=Zhu |first4=Y.-A. |last5=Zhu |first5=M. |year=2023 |title=Decline in phylogenetic diversity of Arthrodira (stem-group Gnathostomata) correlates with major Devonian bioevents |journal=Vertebrata PalAsiatica |volume=62 |issue=1 |pages=1–12 |doi=10.19615/j.cnki.2096-9899.231124 |url=http://www.vertpala.ac.cn/EN/10.19615/j.cnki.2096-9899.231124 }}
- Engelman (2023) attempts to determine body size of Dunkleosteus terrelli, recovering the body lengths of between 3.1 and 3.5 m for typical adults and ~4.1 m for the largest individuals;{{Cite journal|last=Engelman |first=R. K. |title=A Devonian Fish Tale: A New Method of Body Length Estimation Suggests Much Smaller Sizes for Dunkleosteus terrelli (Placodermi: Arthrodira) |year=2023 |journal=Diversity |volume=15 |issue=3 |at=318 |doi=10.3390/d15030318 |doi-access=free }} in a subsequent study the author reevaluates the methodology and length estimates used by Ferrón, Martinez-Perez & Botella (2017),{{Cite journal|last1=Ferrón |first1=H. G. |last2=Martínez-Pérez |first2=C. |last3=Botella |first3=H. |year=2017 |title=Ecomorphological inferences in early vertebrates: reconstructing Dunkleosteus terrelli (Arthrodira, Placodermi) caudal fin from palaeoecological data |journal=PeerJ |volume=5 |at=e4081 |doi=10.7717/peerj.4081 |pmid=29230354 |pmc=5723140 |doi-access=free }} and argues that length estimates for Dunkleosteus based on the mouth dimensions of extant sharks are not reliable, as arthrodires have proportionally larger mouths than sharks.{{Cite journal|last=Engelman |first=R. |year=2023 |title=Giant, swimming mouths: oral dimensions of extant sharks do not accurately predict body size in Dunkleosteus terrelli (Placodermi: Arthrodira) |journal=PeerJ |volume=11 |at=e15131 |doi=10.7717/peerj.15131 |pmid=37065696 |pmc=10100833 |doi-access=free }}
- Cui et al. (2023) describe a near-complete post-thoracic exoskeleton of Entelognathus primordialis from the Silurian Kuanti Formation (China), reporting the presence of an anal fin spine in the studied specimen, previously known only in stem cartilaginous fishes, as well as striking similarities of the scales and squamation of the studied specimen to those of bony fishes, including the presence of rhomboid scales with the peg-and-socket articulation previously considered a synapomorphy of bony fishes.{{cite journal |last1=Cui |first1=X. |last2=Friedman |first2=M. |last3=Yu |first3=Y. |last4=Zhu |first4=Y.A. |last5=Zhu |first5=M. |year=2023 |title=Bony-fish-like scales in a Silurian maxillate placoderm |journal=Nature Communications |volume=14 |issue=1 |at=7622 |doi=10.1038/s41467-023-43557-9 |doi-access=free |pmid=37993457 |pmc=10665347 |bibcode=2023NatCo..14.7622C }}
Cartilaginous fishes
=Cartilaginous fish research=
- Fossil material of members of the genera Pucapampella and Zamponiopteron is described from the Devonian (Eifelian) Chagrapi Formation by Zevallos-Valdivia et al. (2023), representing the first record of Paleozoic vertebrates from Peru reported to date.{{Cite journal|last1=Zevallos-Valdivia |first1=L. |last2=Martínez-Pérez |first2=C. |last3=García-Flores |first3=V. |last4=Chávez-Valencia |first4=A. |last5=Botella |first5=H. |title=First record of palaeozoic vertebrates from Peru |year=2023 |journal=Spanish Journal of Palaeontology |volume=38 |issue=1 |pages=95–100 |doi=10.7203/sjp.25691 |s2cid=256585278 |doi-access=free }}
- Burrow & Desbiens (2023) describe dental elements of Doliodus latispinosus from the Devonian York River Formation (Quebec, Canada), finding no justification for assigning the studied isolated dental elements to a species distinct from D. latispinosus from the Atholville beds (New Brunswick, Canada).{{Cite journal|last1=Burrow |first1=C. J. |last2=Desbiens |first2=S. |title=Teeth and tooth whorls of the stem chondrichthyan Doliodus from the Early Devonian of the Gaspé Sandstone Group, Gaspé Peninsula, Quebec, Canada |year=2023 |journal=Spanish Journal of Palaeontology |volume=38 |issue=1 |pages=15–22 |doi=10.7203/sjp.26372 |s2cid=257995090 |doi-access=free }}
- A study on the musculoskeletal anatomy of Iniopera is published by Dearden, Herrel & Pradel (2023), who interpret the anatomy of Iniopera as unsuited to durophagy, and consider it to be likely a high-performance suction-feeder.{{Cite journal|last1=Dearden |first1=R. P. |last2=Herrel |first2=A. |last3=Pradel |first3=A. |year=2023 |title=Evidence for high-performance suction feeding in the Pennsylvanian stem-group holocephalan Iniopera |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=120 |issue=4 |at=e2207854119 |doi=10.1073/pnas.2207854119 |pmid=36649436 |pmc=9942859 |bibcode=2023PNAS..12007854D }}
- Fossil material of members of at least seven species belonging to the genus Ptychodus is described from the ?Cenomanian–Santonian of the Malyy Prolom area (Ryazan Oblast, Russia) by Amadori et al. (2023), who also report the northernmost occurrence of Ptychodus in Europe from the Cenomanian of Varavinsky ravine area (Moscow Oblast, Russia), and interpret the studied fossils as indicating that Late Cretaceous epicontinental seas of the Russian platform were important areas of diversification and spread of Ptychodus.{{Cite journal |last1=Amadori |first1=M. |last2=Solonin |first2=S. V. |last3=Vodorezov |first3=A. V. |last4=Shell |first4=R. |last5=Niedźwiedzki |first5=R. |last6=Kriwet |first6=J. |year=2023 |title=The extinct shark, Ptychodus (Elasmobranchii, Ptychodontidae) in the Upper Cretaceous of central-western Russia—The road to easternmost peri-Tethyan seas |journal=Journal of Vertebrate Paleontology |volume=42 |issue=2 |at=e2162909 |doi=10.1080/02724634.2022.2162909 |pmid=37559798 |pmc=7614918 |s2cid=256756251 }}
- Amadori et al. (2023) report the discovery of teeth of various species belonging to the genus Ptychodus from the Cenomanian and Turonian deposits of Ukraine, including teeth of cuspidate (P. altior) and un-cuspidate species (P. decurrens, P. latissimus, P. marginalis and P. polygyrus), and argue that the availability of diverse shelled invertebrates in epicontinental seas might have favored the diversification of Ptychodus.{{Cite journal |last1=Amadori |first1=M. |last2=Kovalchuk |first2=O. |last3=Barkaszi |first3=Z. |last4=Giusberti |first4=L. |last5=Kindlimann |first5=R. |last6=Kriwet |first6=J. |year=2023 |title=A diverse assemblage of Ptychodus species (Elasmobranchii: Ptychodontidae) from the Upper Cretaceous of Ukraine, with comments on possible diversification drivers during the Cenomanian |journal=Cretaceous Research |volume=151 |at=105659 |doi=10.1016/j.cretres.2023.105659 |s2cid=260049184 |doi-access=free |bibcode=2023CrRes.15105659A |hdl=11577/3490720 |hdl-access=free }}
- Ghosh et al. (2023) report the discovery of a new assemblage of lamniform shark teeth from the Aptian Habur Formation (India), including teeth of Dwardius and possibly of Eostriatolamia which may be some of the globally oldest record of these taxa.{{Cite journal|last1=Ghosh |first1=T. |last2=Bajpai |first2=S. |last3=Kumar |first3=K. |last4=Maurya |first4=A. S. |last5=Bhattacharya |first5=D. |year=2023 |title=First Early Cretaceous sharks from India |journal=Historical Biology: An International Journal of Paleobiology |pages=1–9 |doi=10.1080/08912963.2023.2280623 }}
- A study on the teeth of Megachasma applegatei is published by Krak & Shimada (2023), who find that the range of the morphometric variation of teeth of M. applegatei is larger than that of teeth of extant megamouth shark, with different tooth types corresponding to tooth types present in the smalltooth sand tiger.{{Cite journal|last1=Krak |first1=A. M. |last2=Shimada |first2=K. |title=The dentition of the extinct megamouth shark, Megachasma applegatei (Lamniformes: Megachasmidae), from southern California, USA, based on geometric morphometrics |year=2023 |journal=PaleoBios |volume=40 |issue=1 |pages=1–10 |doi=10.5070/P940160139 |s2cid=256801266 |doi-access=free }}
- Shimada et al. (2023) describe tessellated calcified cartilage and placoid scale associated with a tooth set of Otodus megalodon from the Miocene strata in Japan, and interpret the morphology of the studied material as indicating that O. megalodon was generally a slow cruising shark.{{Cite journal|last1=Shimada |first1=K. |last2=Yamaoka |first2=Y. |last3=Kurihara |first3=Y. |last4=Takakuwa |first4=Y. |last5=Maisch |first5=H. M. |last6=Becker |first6=M. A. |last7=Eagle |first7=R. A. |last8=Griffiths |first8=M. L. |year=2023 |title=Tessellated calcified cartilage and placoid scales of the Neogene megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), offer new insights into its biology and the evolution of regional endothermy and gigantism in the otodontid clade |journal=Historical Biology: An International Journal of Paleobiology |pages=1–15 |doi=10.1080/08912963.2023.2211597 |s2cid=259597157 |doi-access=free }}
- A study on the thermoregulation in Otodus megalodon is published by Griffiths et al. (2023), who argue that O. megalodon had an overall warmer body temperature compared with other coexisting shark species, and that its large body size coupled with high metabolic costs associated with having at least partial endothermy might have made it vulnerable to extinction.{{Cite journal|last1=Griffiths |first1=M. L. |last2=Eagle |first2=R. A. |last3=Kim |first3=S. L. |last4=Flores |first4=R. J. |last5=Becker |first5=M. A. |last6=Maisch |first6=H. M. |last7=Trayler |first7=R. B. |last8=Chan |first8=R. L. |last9=McCormack |first9=J. |last10=Akhtar |first10=A. A. |last11=Tripati |first11=A. K. |last12=Shimada |first12=K. |year=2023 |title=Endothermic physiology of extinct megatooth sharks |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=120 |issue=27 |pages=e2218153120 |doi=10.1073/pnas.2218153120 |pmid=37364100 |pmc=10318976 |bibcode=2023PNAS..12018153G }}
- Collareta, Casati & Di Cencio (2023) describe new fossil material of Parotodus benedenii from the Valdelsa Basin (Italy), providing evidence of the survival of the species at least until the Late Pliocene, and interpret P. benedenii as a large-bodied carnivorous shark living in pelagic settings.{{Cite journal|last1=Collareta |first1=A. |last2=Casati |first2=S. |last3=Di Cencio |first3=A. |year=2023 |title=The Palaeobiology of the False Mako Shark, Parotodus benedenii (Le Hon, 1871): A View from the Pliocene Mediterranean Sea |journal=Journal of Marine Science and Engineering |volume=11 |issue=10 |at=1990 |doi=10.3390/jmse11101990 |doi-access=free }}
- Collareta et al. (2023) report the discovery of teeth of Alopias grandis from the Miocene deposits in southern Italy, possibly including the geologically youngest record of the species and extending its known geographic range.{{Cite journal|last1=Collareta |first1=A. |last2=Merella |first2=M. |last3=Nobile |first3=F. |last4=Peri |first4=E. |last5=Bianucci |first5=G. |title=Alopias grandis (Leriche, 1942) from the Miocene of Italy: insights on a rare species of giant thresher shark |year=2023 |journal=Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen |volume=309 |issue=2 |pages=93–103 |doi=10.1127/njgpa/2023/1151 |hdl=11568/1208627 |hdl-access=free }}
- Villafaña et al. (2023) describe fossil material of the common thresher and the porbeagle from the Bahía Inglesa Formation (Caldera Basin, Chile), confirming the abundance of lamniform sharks in the Eastern Pacific of South America during the Neogene.{{Cite journal|last1=Villafaña |first1=J. A. |last2=Chávez-Hoffmeister |first2=M. F. |last3=Cumplido |first3=N. |last4=Campos-Medina |first4=J. |last5=Oyanadel-Urbina |first5=P. |last6=Rivadeneira |first6=M. M. |year=2023 |title=The fossil distribution of two pelagic lamniform sharks Alopias vulpinus and Lamna nasus, from South America |journal=Historical Biology: An International Journal of Paleobiology |pages=1–9 |doi=10.1080/08912963.2023.2259409 }}
- Ehret et al. (2023) provisionally refer the species Cosmopolitodus planus/Isurus planus to the genus Carcharodon, and describe fossil material of C. planus and Carcharodon hubbelli from Miocene deposits in the South Island, representing the first records of both species from New Zealand reported to date.{{Cite journal|last1=Ehret |first1=D. J. |last2=Tennyson |first2=A. J. D. |last3=Richards |first3=M. D. |last4=Boessenecker |first4=R. W. |title=First records of two mackerel shark species (Carcharodon planus comb. nov. and Carcharodon hubbelli; Lamnidae) from New Zealand |year=2023 |journal=Journal of the Royal Society of New Zealand |pages=1–11 |doi=10.1080/03036758.2023.2278730 |doi-access=free |pmc=11459750 }}
- A study on the anatomy and affinities of Protospinax annectans, based on data from both known and previously undescribed specimens from the Tithonian Altmühltal Formation (Germany), is published by Jambura et al. (2023).{{Cite journal|last1=Jambura |first1=P. L. |last2=Villalobos-Segura |first2=E. |last3=Türtscher |first3=J. |last4=Begat |first4=A. |last5=Staggl |first5=M. A. |last6=Stumpf |first6=S. |last7=Kindlimann |first7=R. |last8=Klug |first8=S. |last9=Lacombat |first9=F. |last10=Pohl |first10=B. |last11=Maisey |first11=J. G. |last12=Naylor |first12=G. J. P. |last13=Kriwet |first13=J. |title=Systematics and Phylogenetic Interrelationships of the Enigmatic Late Jurassic Shark Protospinax annectans Woodward, 1918 with Comments on the Shark–Ray Sister Group Relationship |year=2023 |journal=Diversity |volume=15 |issue=3 |at=311 |doi=10.3390/d15030311 |pmid=36950326 |pmc=7614347 |doi-access=free }}
- Ferrón (2023) argues that, although representatives of most squalomorph groups colonized deep waters independently during the Late Jurassic and Early Cretaceous, bioluminescence evolved only once among sharks in a bathydemersal ancestor.{{Cite journal|last=Ferrón |first=H. G. |title=Illuminating the evolution of bioluminescence in sharks |year=2023 |journal=Palaeontology |volume=66 |issue=1 |at=e12641 |doi=10.1111/pala.12641 |bibcode=2023Palgy..6612641F |s2cid=257206719 |doi-access=free |hdl=10550/85586 |hdl-access=free }}
- A fossil egg case containing a well-preserved batoid (possibly stem-myliobatiform) embryo, with a unique combination of characters indicating that the embryo represents a previously unknown batoid form, is described from the Cenomanian Sannine limestone of Hjoula (Lebanon) by Capasso & Yamaguchi (2023).{{Cite journal|last1=Capasso |first1=L. |last2=Yamaguchi |first2=A. |year=2023 |title=A batoid hembryo (Chondrichthyes: Batoidea), from the marine upper Cenomanian (Late Cretaceous) Sannine limestone of Hjoula, Lebanon |journal=Historical Biology: An International Journal of Paleobiology |volume=36 |issue=2 |pages=293–308 |doi=10.1080/08912963.2022.2162395 |s2cid=256433989 }}
- Reinecke et al. (2023) study the anatomy and affinities of whiptail stingray teeth from the Chattian of northern Germany and the Burdigalian of southern France, transferring the species Dasyatis probsti to the genus Bathytoshia.{{cite journal|last1=Reinecke |first1=T. |last2=Mollen |first2=F. H. |last3=Seitz |first3=J. C. |last4=Motomura |first4=H. |last5=Hovestadt |first5=D. |last6=Hoedemakers |first6=K. |title=Iconography of jaws and representative teeth of extant rhinopristiform and dasyatoid batoids (Chondrichthyes, Elasmobranchii) for comparison with fossil batoid material |journal=Palaeontos |year=2023 |volume=34 |pages=3–158 |url=http://www.palaeontos.be/34/det34.html }}
- Pollerspöck et al. (2023) describe an assemblage of deep-sea shark fossils from the Eocene (Ypresian) Lillebælt Clay Formation (Denmark), showing highest similarities with deep-sea shark faunas of France, Austria and northern Morocco in spite of the North Sea Basin having lost direct connections to the neighbouring marine areas in the Eocene.{{Cite journal|last1=Pollerspöck |first1=J. |last2=Nielsen |first2=K. A. |last3=Feichtinger |first3=I. |last4=Straube |first4=N. |year=2023 |title=New records of fossil deep-sea shark teeth from the Lillebælt Clay (Early–Middle Eocene) of Denmark |journal=Bulletin of the Geological Society of Denmark |volume=72 |pages=153–173 |doi=10.37570/bgsd-2023-72-06 |s2cid=261051166 |doi-access=free |hdl=11250/3150975 |hdl-access=free }}
- Kovalchuk et al. (2023) revise the taxonomic composition of the cartilaginous fish assemblage from the Eocene (Lutetian-Bartonian) Kyiv Formation (Ukraine), interpreting the studied taxa as inhabiting shallow, warm waters and confined to the continental shelf.{{cite journal|last1=Kovalchuk |first1=O. |last2=Kriwet |first2=J. |last3=Shimada |first3=K. |last4=Ryabokon |first4=T. |last5=Barkaszi |first5=Z. |last6=Dubikovska |first6=A. |last7=Anfimova |first7=G. |last8=Davydenko |first8=S. |title=Middle Eocene cartilaginous fishes (Vertebrata: Chondrichthyes) of the Dnieper–Donets Basin, northern Ukraine |year=2023 |journal=Palaeontologia Electronica |volume=26 |issue=2 |at=26.2.a32 |doi=10.26879/1283 |doi-access=free |pmc=7616602 }}
- Verma (2023) describes new fossil material of elasmobranchs from the Eocene (Bartonian) Harudi Formation (India), providing evidence of replacement of earlier Eocene assemblages of elasmobranchs from western India by an assemblage dominated by members of the genera Brachycarcharias, Striatolamia, Galeocerdo and Carcharhinus, which might have been linked to the Middle Eocene Climatic Optimum.{{Cite journal|last=Verma |first=S. K. |year=2023 |title=A new Bartonian elasmobranch assemblage from the Kutch Basin, western India, and its significance in the context of paleoclimate change |journal=Historical Biology: An International Journal of Paleobiology |pages=1–24 |doi=10.1080/08912963.2023.2238736 |s2cid=260833551 }}
- An assemblage of shark and ray teeth, interpreted as indicative of a warm, shallow water community, is described from the Lower Miocene deposits of the Upper Marine Molasse near Ballendorf (Germany) by Höltke et al. (2023).{{Cite journal|last1=Höltke |first1=O. |last2=Maxwell |first2=E. E. |last3=Bracher |first3=H. |last4=Rasser |first4=M. W. |year=2023 |title=The shark and ray teeth of the Lower Miocene (Upper Marine Molasse) from Ballendorf, Baden-Württemberg, Southern Germany |journal=Palaeobiodiversity and Palaeoenvironments |volume=104 |pages=153–180 |doi=10.1007/s12549-023-00582-2 |s2cid=260654351 |doi-access=free }}
- A study on changes of diversity of European chondrichthyans during the Neogene is published by Villafaña et al. (2023).{{cite journal|last1=Villafaña |first1=J. A. |last2=Rivadeneira |first2=M. M. |last3=Pimiento |first3=C. |last4=Kriwet |first4=J. |title=Diversification trajectories and paleobiogeography of Neogene chondrichthyans from Europe |journal=Paleobiology |year=2023 |volume=49 |issue=2 |pages=329–341 |doi=10.1017/pab.2022.40 |pmid=37564372 |pmc=7614935 |bibcode=2023Pbio...49..329V |s2cid=256722926 }}
- A study on the impact of the Cretaceous–Paleogene extinction event on elasmobranchs is published by Guinot & Condamine (2023), who find rays and durophagous species to be more affected by the extinction than sharks and nondurophagous species, and find taxa with large geographic ranges or restricted to high-latitude settings to show higher survival.{{Cite journal|last1=Guinot |first1=G. |last2=Condamine |first2=F. L. |title=Global impact and selectivity of the Cretaceous-Paleogene mass extinction among sharks, skates, and rays |year=2023 |journal=Science |volume=379 |issue=6634 |pages=802–806 |doi=10.1126/science.abn2080 |pmid=36821692 |bibcode=2023Sci...379..802G |s2cid=257103123 |url=https://www.science.org/doi/10.1126/science.abn2080 }}
Ray-finned fishes
=Ray-finned fish research=
- Figueroa et al. (2023) report brain and cranial nerve soft-tissue preservation in the type specimen of Coccocephalus wildi from the Carboniferous strata in the Mountain Fourfoot Mine (Pennine Lower Coal Measures; Lancashire, United Kingdom).{{Cite journal |last1=Figueroa |first1=R. T. |last2=Goodvin |first2=D. |last3=Kolmann |first3=M. A. |last4=Coates |first4=M. I. |last5=Caron |first5=A. M. |last6=Friedman |first6=M. |last7=Giles |first7=S. |year=2023 |title=Exceptional fossil preservation and evolution of the ray-finned fish brain |journal=Nature |volume=614 |issue=7948 |pages=486–491 |doi=10.1038/s41586-022-05666-1 |pmid=36725931 |bibcode=2023Natur.614..486F |s2cid=249475791 }}
- Bakaev, Johanson & LeBlanc (2023) study the dental system of Kazanichthys viatkensis, reporting the presence of morphological similarities to the dental systems of extant sparids, and interpreting K. viatkensis as a generalist durophagous feeder.{{Cite journal |last1=Bakaev |first1=A. S. |last2=Johanson |first2=Z. |last3=LeBlanc |first3=A. |year=2023 |title=The dental system of †Kazanichthys viatkensis (Actinopterygii, Acrolepididae) from the middle Permian of European Russia: palaeobiological and palaeoecological inferences |journal=Papers in Palaeontology |volume=9 |issue=4 |at=e1512 |doi=10.1002/spp2.1512 |s2cid=260008805 |doi-access=free |bibcode=2023PPal....9E1512B }}
- Revision of the fossil material of Permian ray-finned fishes from the Kazankovo-Markino Formation (Kemerovo Oblast, Russia) is published by Bakaev (2023), who considers Heterolepis Sergienko (1974) to be a junior synonym of Eurynotoides Berg (1940).{{Cite journal |last=Bakaev |first=A. S. |year=2023 |title=Revision of Permian Ray-Finned Fishes from the Kazankovo-Markino Formation of the Kuznetsk Basin |journal=Paleontological Journal |volume=57 |issue=3 |pages=335–342 |doi=10.1134/S0031030123030036 |bibcode=2023PalJ...57..335B |s2cid=259336344 |url=https://www.researchgate.net/publication/372079651 }}
- Martill (2023) describes a bony scute of a sturgeon from the Maastrichtian marine phosphatites of central Morocco, representing the first record of an acipenseriform fish from Africa reported to date.{{Cite journal |last=Martill |first=D. M. |year=2023 |title=A sturgeon (Actinopterygii, Acipenseriformes) from the Upper Cretaceous of Africa |journal=Cretaceous Research |volume=148 |at=105546 |doi=10.1016/j.cretres.2023.105546 |bibcode=2023CrRes.14805546M |s2cid=257863907 }}
- New information on the morphology of the scales of members of the family Pseudobeaconiidae, based on new fossil material from the Triassic Santa Clara Abajo Formation (Argentina), is presented by Giordano, Benavente & Suárez (2023).{{Cite journal |last1=Giordano |first1=P. G. |last2=Benavente |first2=C. A. |last3=Suárez |first3=S. A. |title=Macro- and micromorphology of scales from an endemic South American actinopterygian family (Pseudobeaconiidae, Triassic, Cuyana Basin) |year=2023 |journal=Ameghiniana |volume=60 |issue=2 |pages=164–177 |doi=10.5710/AMGH.03.02.2023.3540 |s2cid=256622326 }}
- Putative eugnathid amiiform Sinoeugnathus kueichowensis is reinterpreted as a small-sized member of Ionoscopiformes by Feng et al. (2023), who name a new family Subortichthyidae including the genera Subortichthys, Sinoeugnathus, Allolepidotus and Eoeugnathus.{{cite journal|last1=Feng |first1=D.-H. |last2=Xu |first2=G.-H. |last3=Ma |first3=X.-Y. |last4=Ren |first4=Y. |year=2023 |title=Taxonomic revision of Sinoeugnathus kueichowensis (Halecomorphi, Holostei) from the Middle Triassic of Guizhou and Yunnan, China |journal=Vertebrata PalAsiatica |volume=61 |issue=3 |pages=161–181 |doi=10.19615/j.cnki.2096-9899.230703 |url=http://www.vertpala.ac.cn/EN/10.19615/j.cnki.2096-9899.230703 }}
- Sullivan, Jasinski & Williamson (2023) describe an exceptionally well-preserved articulated skull roof and braincase of Melvius chauliodous from the Upper Cretaceous Kirtland Formation (New Mexico, United States), revise the characters that defin the genus and its two recognized species, and study the phylogenetic affinities of Melvius.{{Cite journal |last1=Sullivan |first1=R. M. |last2=Jasinski |first2=S. E. |last3=Williamson |first3=T. E. |year=2023 |title=The first articulated skull roof and braincase of Melvius chauliodous (Amiidae, Vidalamiinae) from the Upper Cretaceous Kirtland Formation, San Juan Basin, New Mexico |journal=Journal of Vertebrate Paleontology |volume=43 |issue=2 |at=e2264341 |doi=10.1080/02724634.2023.2264341 }}
- A study on the microstructure of teeth of Late Jurassic pachycormids and caturoids from the Owadów-Brzezinki site (Poland) is published by Weryński, Błażejowski & Kędzierski (2023), who report structural differences interpreted as suggestive of different adaptations for predation and possible niche partitioning between the studied taxa.{{Cite journal|last1=Weryński |first1=Ł. |last2=Błażejowski |first2=B. |last3=Kędzierski |first3=M. |year=2023 |title=A comparison of teeth in Tithonian, Late Jurassic, predatory actinopterygian fishes from Owadów-Brzezinki Lägerstatte and its palaeoecological implications |journal=Acta Palaeontologica Polonica |volume=68 |issue=3 |pages=493–512 |doi=10.4202/app.01058.2023 |doi-access=free }}
- Systematic revision of the Late Jurassic species of Caturidae is published by López-Arbarello & Ebert (2023).{{Cite journal|last1=López-Arbarello |first1=A. |last2=Ebert |first2=M. |year=2023 |title=Taxonomic status of the caturid genera (Halecomorphi, Caturidae) and their Late Jurassic species |journal=Royal Society Open Science |volume=10 |issue=1 |at=221318 |doi=10.1098/rsos.221318 |pmid=36686548 |pmc=9832298 |bibcode=2023RSOS...1021318L |doi-access=free }}
- Fossil material of a putative member of the genus Caturus reported by Bogan, Taverne & Agnolin (2013) as found in the Triassic Los Menucos Group,{{Cite journal|last1=Bogan |first1=S. |last2=Taverne |first2=L. |last3=Agnolin |first3=F. |year=2013 |title=First Triassic and oldest record of a South American amiiform fish: Caturus sp. from the Los Menucos Group (lower Upper Triassic), Río Negro province, Argentina |journal=Geologica Belgica |volume=16 |issue=3 |pages=191–195 |url=https://popups.uliege.be/1374-8505/index.php?id=4195 }} is reinterpreted by López-Arbarello et al. (2023) as actually collected in outcrops of the Jurassic Vaca Muerta Formation, and excluded from the genus Caturus.{{cite journal |last1=López-Arbarello |first1=A. |last2=Concheyro |first2=A. |last3=Palma |first3=R. M. |last4=Aguirre-Urreta |first4=B. |year=2023 |title=The early fossil record of Caturoidea (Halecomorphi: Amiiformes): biogeographic implications |journal=Swiss Journal of Palaeontology |volume=142 |issue=1 |at=33 |doi=10.1186/s13358-023-00297-z |doi-access=free |bibcode=2023SwJP..142...33L }}
- Cooper & Maxwell (2023) describe a specimen of Pachycormus macropterus from the Toarcian Posidonia Shale (Germany) preserved with an unusually large ammonite inside its gut, interpreted as ingested immediately prior to and directly responsible for the fish's death.{{Cite journal |last1=Cooper |first1=S. L. A. |last2=Maxwell |first2=E. E. |year=2023 |title=Death by ammonite: fatal ingestion of an ammonoid shell by an Early Jurassic bony fish |journal=Geological Magazine |volume=160 |issue=7 |pages=1254–1261 |doi=10.1017/S0016756823000456 |bibcode=2023GeoM..160.1254C |s2cid=260230492 |doi-access=free }}
- A study on the bone histology of Araripichthys castilhoi, interpreted as corroborating its placement within basal Teleostei, is published by Mayrinck et al. (2023).{{Cite journal|last1=Mayrinck |first1=D. |last2=Meunier |first2=F. J. |last3=Cupello |first3=C. |last4=Brito |first4=P. M. |year=2023 |title=The paleohistology of †Araripichthys castilhoi from the Lower Cretaceous of Araripe Basin, Northeastern Brazil: a typical case of basal teleost |journal=Journal of Vertebrate Paleontology |volume=42 |issue=2 |at=e2157732 |doi=10.1080/02724634.2022.2157732 |s2cid=255660485 }}
- Stinnesbeck et al. (2023) report the presence of two different body shape types of specimens of Tselfatia formosa from the Turonian platy limestone deposit of Vallecillo (Mexico), interpreted as evidence of sexual dimorphism, and interpret the anatomy of its fins as indicating that T. formosa lived in a deep water environment and that its lifestyle resembled that of extant fan fishes.{{Cite journal|last1=Stinnesbeck |first1=E. S. |last2=Herder |first2=F. |last3=Rust |first3=J. |last4=Stinnesbeck |first4=W. |title=Taphonomy of the teleost Tselfatia formosa Arambourg, 1943 from Vallecillo, NE Mexico |year=2023 |journal=PLOS ONE |volume=18 |issue=2 |at=e0280797 |doi=10.1371/journal.pone.0280797 |pmid=36724176 |pmc=9891505 |bibcode=2023PLoSO..1880797S |doi-access=free }}
- Cooper & Norton (2023) describe fossil material of an indeterminate plethodid from the Maastrichtian deposits from the Plateau des Phosphates (Morocco), representing the youngest occurrence of a plethodid reported to date.{{Cite journal|last1=Cooper |first1=S. L. A. |last2=Norton |first2=J. L. |year=2023 |title=Youngest occurrence of a plethodid fish (Teleostei: Tselfatiiformes: Plethodidae) from the Maastrichtian of North Africa |journal=Cretaceous Research |volume=152 |at=105673 |doi=10.1016/j.cretres.2023.105673 |bibcode=2023CrRes.15205673C |s2cid=260798016 }}
- Redescription and a study on the affinities of Sorbinichthys elusivo is published by Taverne & Capasso (2023).{{Cite journal |last1=Taverne |first1=L. |last2=Capasso |first2=L. |year=2023 |title=New data on the osteology of Sorbinichthys elusivo (Teleostei, Clupeomorpha, Ellimmichthyiformes) from the marine Cenomanian (Upper Cretaceous) of Lebanon and on the phylogenetic relationships of the genus Sorbinichthys |journal=Geo-Eco-Trop |volume=46 |issue=2 |pages=159–174 |url=http://www.geoecotrop.be/uploads/publications/pub_462_01.pdf }}
- Fossil material of a catfish, representing the first record of a bony fish from the Maastrichtian of the Marília Formation (Brazil) and extending known Late Cretaceous catfish distribution, is described by Candeiro et al. (2023).{{Cite journal |last1=Candeiro |first1=C. R. A. |last2=Brito |first2=P. M. |last3=Cavin |first3=L. |last4=Alves |first4=Y. M. |last5=Canile |first5=F. |last6=Muniz |first6=F. |last7=Queiroz |first7=G. K. |last8=Santos |first8=D. |last9=Toriño |first9=P. |year=2023 |title=First record of Siluriformes from the northernmost portion of the Bauru Group (Upper Cretaceous) in the center-west region of Brazil |journal=Journal of South American Earth Sciences |volume=133 |at=104690 |doi=10.1016/j.jsames.2023.104690 }}
- A study on the fossil record of acanthomorphs from the Maastrichtian–Paleocene strata is published by Friedman et al. (2023), who find that the majority of the principal acanthomorph groups appear in the fossil record before the end of the Paleocene.{{Cite journal |last1=Friedman |first1=M. |last2=Andrews |first2=J. V. |last3=Saad |first3=H. |last4=El-Sayed |first4=S. |year=2023 |title=The Cretaceous–Paleogene transition in spiny-rayed fishes: surveying "Patterson's Gap" in the acanthomorph skeletal record |journal=Geologica Belgica |volume=26 |issue=1–2 |pages=1–23 |doi=10.20341/gb.2023.002 |s2cid=259477507 |doi-access=free }}
- A study on the variety of the morphology of the first abdominal vertebral centrum in extant acanthomorphs is published by Murray & Brinkman (2023), who interpret their findings as indicating that the overall morphology of the first centrum is conservative within acanthomorph families, and that it is possible to assign many fossil acanthomorph centra to extant families, suborders or orders.{{Cite journal |last1=Murray |first1=A. M. |last2=Brinkman |first2=D. B. |year=2023 |title=Morphological variation in the first abdominal vertebra among acanthomorph fishes – a guide for identifying fossil centra from microvertebrate sites |journal=Vertebrate Anatomy Morphology Palaeontology |volume=11 |pages=42–90 |doi=10.18435/vamp29392 |s2cid=260942423 |doi-access=free }}
- Rust & Robinson (2023) redescribe Eothyrsites holosquamatus, and interpret this taxon as likely representing an ancestral form of gempylid.{{Cite journal|last1=Rust |first1=S. |last2=Robinson |first2=J. H. |title=Revisiting Eothyrsites holosquamatus Chapman (Trichiuroidea: Gempylidae), an Eocene gemfish from the Burnside Mudstone, Dunedin, New Zealand |year=2023 |journal=Journal of the Royal Society of New Zealand |pages=1–18 |doi=10.1080/03036758.2023.2228211 |s2cid=259880404 |doi-access=free |pmc=11459795 }}
- Fossil material representing one of the oldest records of marlins reported to date is described from the Miocene (Aquitanian) Northern Alpine Foreland Basin (Austria) by De Gracia, Berning & Kriwet (2023), who report evidence of coexistence of marlins, xiphiorhynchine xiphiids and aglyptorhynchine palaeorhynchids from the Northern Alpine Foreland Basin and from the Oligocene Chandler Bridge Formation (South Carolina, United States).{{Cite journal |last1=De Gracia |first1=C. |last2=Berning |first2=B. |last3=Kriwet |first3=J. |year=2023 |title=The origin of modern marlins (Teleostei: Istiophoridae): new fossil evidence from the Lower Miocene of Austria |journal=Journal of Vertebrate Paleontology |volume=43 |issue=2 |at=e2281490 |doi=10.1080/02724634.2023.2281490 |doi-access=free }}
- Bannikov & Zorzin (2023) interpret the percomorph genus Callipteryx as a probable member of Percoidei of uncertain affinities, and interpret Callipteryx recticaudus as a junior synonym of Callipteryx speciosus.{{Cite journal|last1=Bannikov |first1=A. F. |last2=Zorzin |first2=R. |year=2023 |title=On the osteology and relationships of the genus †Callipteryx Agassiz (Perciformes s.l.) from the Eocene of Bolca in northern Italy |journal=Studi e ricerche sui giacimenti terziari di Bolca, XXIII - Miscellanea Paleontologica |volume=20 |pages=35–44 |url=https://museodistorianaturale.comune.verona.it/media/_Musei/_StoriaNaturale/_Allegati/Biblioteca/Studi%20Bolca/Volume_23_2023/3_Studi_e_ricerche_23.pdf }}
- Ngoepe et al. (2023) reconstruct the history of arrival order and relative abundances of major fish groups from Lake Victoria, using data from the continuous fossil record from the preceding 17,000 years, and report that cichlids did not dominate the assemblage until several thousand years into its history, but they were the only major group that had the ecological versatility that allowed them to persist once the new deep and open-water habitats emerged.{{Cite journal|last1=Ngoepe |first1=N. |last2=Muschick |first2=M. |last3=Kishe |first3=M. A. |last4=Mwaiko |first4=S. |last5=Temoltzin-Loranca |first5=Y. |last6=King |first6=L. |last7=Courtney Mustaphi |first7=C. |last8=Heiri |first8=O. |last9=Wienhues |first9=G. |last10=Vogel |first10=H. |last11=Cuenca-Cambronero |first11=M. |last12=Tinner |first12=W. |last13=Grosjean |first13=M. |last14=Matthews |first14=B. |last15=Seehausen |first15=O. |title=A continuous fish fossil record reveals key insights into adaptive radiation |year=2023 |journal=Nature |volume=622 |issue=7982 |pages=315–320 |doi=10.1038/s41586-023-06603-6 |pmid=37794187 |pmc=10567567 |bibcode=2023Natur.622..315N }}
- Evidence from (mostly lanternfish) otoliths from the Lindos Bay Formation (Rhodes, Greece), interpreted as indicative of an overall decline of the median size of lanternfishes in the eastern Mediterranean during MIS 19 interglacial, but also as indicative of different trends in size in individual mesopelagic species across the studied time interval, is presented by Agiadi et al. (2023).{{cite journal |last1=Agiadi |first1=K. |last2=Quillévéré |first2=F. |last3=Nawrot |first3=R. |last4=Sommeville |first4=T. |last5=Coll |first5=M. |last6=Koskeridou |first6=E. |last7=Fietzke |first7=J. |last8=Zuschin |first8=M. |year=2023 |title=Palaeontological evidence for community-level decrease in mesopelagic fish size during Pleistocene climate warming in the eastern Mediterranean |journal=Proceedings of the Royal Society B: Biological Sciences |volume=290 |issue=1990 |at=20221994 |doi=10.1098/rspb.2022.1994 |pmid=36629116 |pmc=9832546 }}
Lobe-finned fishes
=Lobe-finned fish research=
- Dupret et al. (2023) describe new fossil material of sarcopterygians from the Devonian (Givetian) Valentia Slate Formation (Republic of Ireland), including a tooth plate of a lungfish with a derived morphology otherwise only known from Late Devonian and later taxa, and a possible rhizodontid fossil material, which might indicate that a dispersal of rhizodontids from Gondwana into Euramerica happened as early as middle Givetian.{{Cite journal|last1=Dupret |first1=V. |last2=Byrne |first2=H. |last3=Challands |first3=T. |last4=Hammer |first4=Ø. |last5=Higgs |first5=K. |last6=Long |first6=J. |last7=Niedźwiedzki |first7=G. |last8=Qvarnström |first8=M. |last9=Stössel |first9=I. |last10=Ahlberg |first10=P. E. |title=Non-tetrapod sarcopterygians from the Valentia Slate Formation (Givetian, Devonian) of the Iveragh Peninsula, south-western Ireland: systematic reappraisal and palaeobiogeographic implications |year=2023 |journal=Spanish Journal of Palaeontology |volume=38 |issue=1 |pages=37–45 |doi=10.7203/sjp.26527 |s2cid=259033690 |doi-access=free |hdl=20.500.11850/621947 |hdl-access=free }}
General research
- Kuznetsov & Kryukova (2023) present new reconstructions of subcephalic musculature for Pucapampella, Eusthenopteron and Ichthyostega.{{Cite journal|last1=Kuznetsov |first1=A. N. |last2=Kryukova |first2=N. V. |year=2023 |title=Reconstructing the subcephalic musculature in Pucapampella and Ichthyostega |journal=Journal of Morphology |volume=284 |issue=12 |at=e21648 |doi=10.1002/jmor.21648 |pmid=37990766 }}
- Baucon et al. (2023) describe fish-feeding traces from the Lower Cretaceous (Hauterivian–Barremian) Palombini Shale Formation (Italy), interpreted as the earliest direct evidence of bottom-living vertebrates from the deep sea.{{Cite journal|last1=Baucon |first1=A. |last2=Ferretti |first2=A. |last3=Fioroni |first3=C. |last4=Pandolfi |first4=L. |last5=Serpagli |first5=E. |last6=Piccinini |first6=A. |last7=de Carvalho |first7=C. N. |last8=Cachão |first8=M. |last9=Linley |first9=T. |last10=Muñiz |first10=F. |last11=Belaústegui |first11=Z. |last12=Jamieson |first12=A. |last13=Lo Russo |first13=G. |last14=Guerrini |first14=F. |last15=Ferrando |first15=S. |last16=Priede |first16=I. |year=2023 |title=The earliest evidence of deep-sea vertebrates |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=120 |issue=37 |at=e2306164120 |doi=10.1073/pnas.2306164120 |pmid=37669391 |pmc=10500276 |bibcode=2023PNAS..12006164B |s2cid=261556179 }}
- Trif et al. (2023) describe a diverse fish assemblage from the Priabonian strata in the Leghia-Tabără area (Romania), including the first record of Physogaleus alabamensis from Europe and the first record of Striatolamia tchelkarnurensis outside the Turgai Strait region.{{Cite journal|last1=Trif |first1=N. |last2=Codrea |first2=V. A. |last3=Pleș |first3=G. |last4=Bordeianu |first4=M. |year=2023 |title=The Priabonian fish from Leghia (Transylvanian Basin, Romania) |journal=Historical Biology: An International Journal of Paleobiology |pages=1–14 |doi=10.1080/08912963.2023.2253273 }}
References
{{reflist}}