microprocessor chronology

{{Short description|Timeline of microprocessors}}

{{See also|Microprocessor#History}}

File:Comparison semiconductor process nodes.svg nodes with some microscopic objects and visible light wavelengths]]

1970s

The first chips that could be considered microprocessors were designed and manufactured in the late 1960s and early 1970s, including the MP944 used in the F-14 CADC.{{Cite web |last=Laws |first=David |date=2018-09-20 |title=Who Invented the Microprocessor? |url=https://computerhistory.org/blog/who-invented-the-microprocessor/ |access-date=2024-01-19 |website=Computer History Museum |language=en}} Intel's 4004 of 1971 is widely regarded as the first commercial microprocessor.{{cite web|url=http://www.intel.co.uk/content/www/uk/en/history/museum-story-of-intel-4004.html|title=The Story of the Intel 4004|website=Intel}}

Designers predominantly used MOSFET transistors with pMOS logic in the early 1970s, switching to nMOS logic after the mid-1970s. nMOS had the advantage that it could run on a single voltage, typically +5V, which simplified the power supply requirements and allowed it to be easily interfaced with the wide variety of +5V transistor-transistor logic (TTL) devices. nMOS had the disadvantage that it was more susceptible to electronic noise generated by slight impurities in the underlying silicon material, and it was not until the mid-1970s that these, sodium in particular, were successfully removed to the required levels. At that time, around 1975, nMOS quickly took over the market.{{cite web |title= NMOS versus PMOS |url=http://www.hp9825.com/html/prologues.html#NMOS}}

This corresponded with the introduction of new semiconductor masking systems, notably the Micralign system from Perkin-Elmer. Micralign projected an image of the mask onto the silicon wafer, never touching it directly, which eliminated the previous problems when the mask would be lifted off the surface and take away some of the photoresist along with it, ruining the chips on that portion of the wafer.{{cite web |url=https://www.chiphistory.org/154-perkin-elmer-micralign-projection-mask-alignment-system |title= Perkin Elmer - Micralign Projection Mask Alignment System}} By reducing the number of flawed chips, from about 70% to 10%, the cost of complex designs like early microprocessors fell by the same amount. Systems based on contact aligners cost on the order of $300 in single-unit quantities, the MOS 6502, designed specifically to take advantage of these improvements, cost only $25.{{cite web|title=The MOS 6502 and the Best Layout Guy in the World |publisher=swtch.com |date=2011-01-03 |access-date=2014-08-09 |url=http://research.swtch.com/6502}}

This period also saw considerable experimentation with various word lengths. Early on, 4-bit processors were common, like the Intel 4004, simply because making a wider word length could not be accomplished cost-effectively in the room available on the small wafers of the era, especially when the majority would be defective. As yields improved, wafer sizes grew, and feature size continued to be reduced, more complex 8-bit designs emerged like the Intel 8080 and 6502. 16-bit processors emerged early but were expensive; by the decade's end, low-cost 16-bit designs like the Zilog Z8000 were becoming common. Some unusual word lengths were also produced, including 12-bit and 20-bit, often matching a design that had previously been implemented in a multi-chip format in a minicomputer. These had largely disappeared by the end of the decade as minicomputers moved to 32-bit formats.

class="wikitable sortable" style="text-align:center"

! Date

! Name

! Developer

! data-sort-type="number" | Max clock
(first version)

! data-sort-type="number" | Word size
(bits)

! data-sort-type="number" | Process

! data-sort-type="number" | Chips{{cite book |last1=Belzer |first1=Jack |last2=Holzman |first2=Albert G. |last3=Kent |first3=Allen |title=Encyclopedia of Computer Science and Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification |date=1978 |publisher=CRC Press |isbn=9780824722609 |page=402 |url=https://books.google.com/books?id=iBsUXrgKBKkC&pg=PA402}}

! data-sort-type="number" | Transistors

! MOSFET

! {{Abbr|Ref|Reference(s)}}

1970

| AL1

| Four-Phase Systems

| 1 MHz

| 8-bit slice{{efn|The AL1 chip is an 8-bit slice arithmetic logic unit with registers. Four-Phase did not sell the AL1 individually but as part of a system combining three of these 8-bit AL1 chips to yield a multi-chip CPU with a 24-bit word size.|group=1970s}}

| 10 μm

| 1{{efn|A 1995 court demo combined one AL1 with ROM, RAM, and I/0 to argue that the AL1 alone be considered a microprocessor.{{cite web |url=https://archive.computerhistory.org/resources/access/text/2017/01/102770290-05-01-acc.pdf |title=Court Room Demonstration System 1969 AL1 Microprocessor |date=April 3, 1995 |author=Lee Boysel |website=Computer History Museum |access-date=June 11, 2010}} But because it requires an external microcode controller, another view disagrees.{{Cite web |last=Shirriff |first=Ken |date=2015 |title=The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor |url=https://www.righto.com/2015/05/the-texas-instruments-tmx-1795-first.html |archive-url=https://web.archive.org/web/20241228143736/http://www.righto.com/2015/05/the-texas-instruments-tmx-1795-first.html |archive-date=2024-12-28 |access-date=2024-12-29}}|group=1970s}}

| 4,000

| MOS

| {{cite web |quote=System announced at FJCC in Vegas in fall '70. First order from Eastern |at=Slide #13 "Four-Phase - It works!" |url=https://eecsnews.engin.umich.edu/wp-content/uploads/sites/2/2023/03/Boysel-slides.pdf |title=Untold 8 Year History of the Microprocessor’s Origins}} Slide #13 has arrow on year 1970.{{cite web | url=https://www.cpushack.com/2014/08/15/four-phase-systems-al1-processor-8-bits-by-lee-boysel/ | title=Four-Phase Systems AL1 Processor – 8-bits by Lee Boysel | the CPU Shack Museum | date=16 August 2014 }}

1970

| TMS1802NC{{Efn|TMS1802NC is the original designation of the TMS0102, which is considered a microcontroller because it incorporates all program ROM internally. It can't execute external code and programming is done during manufacture. The term microprocessor may instead be reserved for devices that can execute external code.|group=1970s}}

| Texas Instruments

| 400 kHz

| 4

| 10 μm

| 1

| ~5,000

| pMOS

| {{Cite web |title=The Story of the Datamath Calculator |url=http://www.datamath.org/Story/Datamath.htm#The%20%22Calculator-on-a-chip%22 |access-date=2024-12-29 |website=}}{{Cite web |title=IC_List |url=http://www.datamath.org/Chips/TMS0100.htm |access-date=2024-12-29 |website=www.datamath.org}}{{cite web |last=Woerner |first=Joerg |date=February 26, 2001 |title=Texas Instruments: They invented the Microcontroller |url=http://www.datamath.org/Story/Intel.htm#Texas%20Instruments:%20They%20invented%20the%20Microcontroller |access-date=March 22, 2016 |website=Datamath Calculator Museum}}{{Cite web |last=Leibson |first=Steven |date=2022-11-21 |title=A History of Early Microcontrollers, Part 2: The Texas instruments TMS1000 |url=https://www.eejournal.com/article/a-history-of-early-microcontrollers-part-2-the-texas-instruments-tms1000/ |url-status=live |archive-url=https://web.archive.org/web/20241225143756/https://www.eejournal.com/article/a-history-of-early-microcontrollers-part-2-the-texas-instruments-tms1000/ |archive-date=2024-12-25 |access-date=2024-12-29 |website=EEJournal |language=en-US}}

1971

| 4004

| Intel

| 740 kHz

| 4

| 10 μm

| 1

| 2,250

| pMOS

|

1972

| PPS-25

| Fairchild

| 400 kHz

| 4

|  

| 2

|

| pMOS

| {{harvnb|Ogdin|1975|pp=57–59, 77}}{{efn|According to {{harvnb|Ogdin|1975}}, the Fairchild PPS-25 was first delivered in 2Q 1971 and the Intel 4004 in 4Q 1971.|group=1970s}}

1972

| μPD700

| NEC

|  

| 4

|  

| 1

|

|

| {{cite web |url=http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf |title=1970s: Development and evolution of microprocessors |website=Semiconductor History Museum of Japan |url-status=dead |archive-url=https://web.archive.org/web/20190627161417/http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf |archive-date=2019-06-27 |access-date=16 September 2020}}

1972

| 8008

| Intel

| 500 kHz

| 8

| 10 μm

| 1

| 3,500

| pMOS

|

1972

| PPS-4

| Rockwell

| 200 kHz

| 4

|  

| 1

|

| pMOS

| {{harvnb|Ogdin|1975|pp=72, 77}}{{cite web|url=http://www.antiquetech.com/?page_id=796|title=Rockwell PPS-4|publisher=The Antique Chip Collector's Page|access-date=2010-06-14}}

1973

| IMP-16

| National

| 715 kHz

| 16{{efn|The 16-bit registers and ALU were implemented by combining four identical 4-bit slice chips. The National Semiconductor PACE reimplemented its architecture as the first single-chip 16-bit microprocessor.|group=1970s}}

|  

| 5

|

| pMOS

| {{harvnb|Ogdin|1975|pp=70, 77}}{{cite web|url=http://www.antiquetech.com/chips/NSIMP-16.htm|archive-url=https://web.archive.org/web/20020207082859/http://www.antiquetech.com/chips/NSIMP-16.htm|url-status=dead|archive-date=2002-02-07|title=National Semiconductor IMP-16|publisher=The Antique Chip Collector's Page|access-date=2010-06-14}}

1973

| μCOM-4

| NEC

| 2 MHz

| 4

| 7.5 μm

| 1

| 2,500

| NMOS

| {{cite journal|author1=Ryoichi Mori|author2=Hiroaki Tajima|author3=Morihiko Tajima|author4=Yoshikuni Okada|date=October 1977|title=Microprocessors in Japan|journal=Euromicro Newsletter|volume=3|issue=4|pages=50–7 (51, Table 2.2)|doi=10.1016/0303-1268(77)90111-0}}{{cite web|url=http://www.antiquetech.com/chips/NEC751.htm|title=NEC 751 (uCOM-4)|publisher=The Antique Chip Collector's Page|archive-url=https://web.archive.org/web/20110525202756/http://www.antiquetech.com/chips/NEC751.htm|archive-date=2011-05-25|url-status=dead|access-date=2010-06-11}}

1973

| TLCS-12

| Toshiba

| 1 MHz

| 12

| 6 μm

| 1

| 2,800 silicon gates

| pMOS

| {{cite web |url=http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf |title=1973: 12-bit engine-control microprocessor (Toshiba) |website=Semiconductor History Museum of Japan |url-status=dead |archive-url=https://web.archive.org/web/20190627203018/http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf |archive-date=2019-06-27 |access-date=16 September 2020}}

1973

| Mini-D

| Burroughs

| 1 MHz

| 8

|  

| 1

|

| pMOS

| {{harvnb|Ogdin|1975|pp=55, 77}}

1974

| IMP-8

| National

| 715 kHz

| 8

|  

| 3

|

| pMOS

| {{harvnb|Ogdin|1975|p=77}}

1974

| 8080

| Intel

| 2 MHz

| 8

| 6 μm

| 1

| 6,000

| NMOS

|

1974

| μCOM-8

| NEC

| 2 MHz

| 8

|  

| 1

|

| NMOS

|

1974

| 5065

| Mostek

| 1.4 MHz

| 8

|  

| 1

|

| pMOS

| {{harvnb|Ogdin|1975|pp=65, 77}}

1974

| μCOM-16

| NEC

| 2 MHz

| 16

|  

| 2

|

| NMOS

|

1974

| IMP-4

| National

| 500 kHz

| 4

|  

| 3

|

| pMOS

|

1974

| 4040

| Intel

| 740 kHz

| 4

| 10 μm

| 1

| 3,000

| pMOS

|

1974

| 6800

| Motorola

| 1 MHz

| 8

| -

| 1

| 4,100

| NMOS

|

1974

| TMS 1000

| Texas Instruments

| 400 kHz

| 4

| 8 μm

| 1

| 8,000

| pMOS,nMOS,cMOS

|

1974

| IPC-16A PACE

| National

| 1.33 MHz

| 16

|  

| 1

|

| pMOS

| {{cite encyclopedia |editor=Allen Kent, James G. Williams |encyclopedia=Encyclopedia of Microcomputers |year=1990 |publisher=Marcel Dekker |volume=7 |title=Evolution of Computerized Maintenance Management to Generation of Random Numbers |isbn=0-8247-2706-1 |page=336 }}

1974

| ISP-8A/500 (SC/MP)

| National

| 1 MHz

| 8

|  

| 1

|

| pMOS

|

1975

| 6100

| Intersil

| 4 MHz

| 12

| -

| 1

| 4,000

| CMOS

| {{cite web |first=Jeff |last=Little |title=Intersil Intercept Jr |date=2009-03-04 |publisher=ClassicCmp |url=http://www.classiccmp.org/pipermail/cctech/2009-March/063949.html |access-date=2012-09-16 |archive-date=2014-10-03 |archive-url=https://web.archive.org/web/20141003082813/http://www.classiccmp.org/pipermail/cctech/2009-March/063949.html |url-status=dead }}{{cite web |title=Intersil IM6100 CMOS 12 Bit Microprocessor family databook |url=http://www.bitsavers.org/pdf/dec/pdp8/cmos8/IM6100.pdf}}

1975

| TLCS-12A

| Toshiba

| 1.2 MHz

| 12

| -

| 1

|

| pMOS

|

1975

| 2650

| Signetics

| 1.2 MHz

| 8

|  

| 1

|

| NMOS

|

1975

| PPS-8

| Rockwell

| 256 kHz

| 8

|  

| 1

|

| pMOS

|

1975

| F-8

| Fairchild

| 2 MHz

| 8

|  

| 1

|

| NMOS

|

1975

| CDP 1801

| RCA

| 2 MHz

| 8

| 5 μm

| 2

| 5,000

| CMOS

| {{cite web |title=RCA COSMAC 1801 |publisher=The Antique Chip Collector's Page |url=http://www.antiquetech.com/chips/RCA1801.htm |access-date=2010-06-14 |archive-date=2013-09-03 |archive-url=https://web.archive.org/web/20130903114633/http://www.antiquetech.com/chips/RCA1801.htm |url-status=dead }}{{cite journal |title=CDP 1800 μP Commercially available |journal=Microcomputer Digest |volume=2 |issue=4 |pages=1–3 |date=October 1975 |url=http://bitsavers.org/magazines/Microcomputer_Digest/Microcomputer_Digest_v02n04_Oct75.pdf |access-date=2023-11-13}}

1975

| 6502

| MOS Technology

| 1 MHz

| 8

| -

| 1

| 3,510

| NMOS (dynamic)

|

1975

| PFL-16A (MN 1610)

| Panafacom

| 2 MHz

| 16

| -

| 1

|

| NMOS

|

1975

| BPC

| Hewlett Packard

| 10 MHz

| 16

| -

| 1

| 6,000 (+ ROM)

| NMOS

| {{cite web |url=http://www.hp9825.com/html/hybrid_microprocessor.html |title=Hybrid Microprocessor |access-date=2008-06-15 }}{{cite journal |title=HP designs Custom 16-bit μC Chip |journal=Microcomputer Digest |volume=2 |issue=4 |pages=8 |date=October 1975 |url=http://bitsavers.org/magazines/Microcomputer_Digest/Microcomputer_Digest_v02n04_Oct75.pdf |access-date=2023-11-13}}

1975

| MCP-1600

| Western Digital

| 3.3 MHz

| 16{{Efn|Internally is an 8-bit processor, but is micro-programmed to emulate a 16-bit CPU.|group=1970s}}

| -

| 3{{Efn|Later microprocessors reused this chipset, for instance the LSI-11 in 1975 used 4 chips and the WD16 in 1976 used 5 chips.|group=1970s}}

|

| NMOS

| {{cite book |title=MCP-1600 Microprocessor Users Manual |date=1975 |publisher=Western Digital |url=http://bitsavers.trailing-edge.com/pdf/westernDigital/MCP-1600/MCP-1600_Users_Manual_Oct77.pdf |access-date=28 April 2022}}

1975

| CP1600

| General Instrument

| 3.3 MHz

| 16

|  

| 1

|

| NMOS

| {{cite journal |author=David Russell |title=Microprocessor survey |journal=Microprocessors |volume=2 |issue=1 |pages=13–20, See p. 18 |date=February 1978 |doi=10.1016/0308-5953(78)90071-5}}{{cite web |title=Microprocessors — The Early Years 1971–1974 |publisher=The Antique Chip Collector's Page |url=http://www.antiquetech.com/history/mpu1971-1974.htm |access-date=2010-06-16 |archive-date=2013-06-04 |archive-url=https://web.archive.org/web/20130604075458/http://www.antiquetech.com/history/mpu1971-1974.htm |url-status=dead }}{{cite web |title=CP1600 16-Bit Single-Chip Microprocessor |date=1977 |work=data sheet |publisher=General Instrument |url=http://www.rhoent.com/cp_lp.pdf |access-date=2010-06-18 |url-status=dead |archive-url=https://web.archive.org/web/20110526031123/http://www.rhoent.com/cp_lp.pdf |archive-date=2011-05-26 }}

1976

| CDP 1802

| RCA

| 6.4 MHz

| 8

|  

| 1

|

| CMOS

| {{cite web |title=RCA COSMAC 1802 |publisher=The Antique Chip Collector's Page |url=http://www.antiquetech.com/chips/RCA1802.htm |access-date=2010-06-14 |url-status=dead |archive-url=https://web.archive.org/web/20130102213115/http://www.antiquetech.com/chips/RCA1802.htm |archive-date=2013-01-02 }}{{cite journal |title=CDP 1802 |journal=Microcomputer Digest |volume=2 |issue=10 |pages=1, 4 |date=April 1976 |url=http://bitsavers.org/magazines/Microcomputer_Digest/Microcomputer_Digest_v02n10_Apr76.pdf |access-date=2023-11-13}}

1976

| Z80

| Zilog

| 2.5 MHz

| 8

| 4 μm

| 1

| 8,500

| NMOS

|

1976

| TMS9900

| Texas Instruments

| 3.3 MHz

| 16

| -

| 1

| 8,000

| nMOS

|

1976

| 8x300

| Signetics

| 8 MHz

| 8

|  

| 1

|

| Bipolar

| {{cite journal |author= Hans Hoffman |author2=John Nemec |title=A fast microprocessor for control applications |journal=Euromicro Newsletter |volume=3 |issue=3 |pages=53–59 |date=April 1977 |doi=10.1016/0303-1268(77)90010-4}}{{cite web |title=Microprocessors — The Explosion 1975–1976 |publisher=The Antique Chip Collector's Page |url=http://www.antiquetech.com/history/mpu1975-1976.htm |access-date=2010-06-18 |url-status=dead |archive-url=https://web.archive.org/web/20090909151455/http://www.antiquetech.com/history/mpu1975-1976.htm |archive-date=2009-09-09 }}

1977

| Bellmac-8 (WE212)

| Bell Labs

| 2.0 MHz

| 8

| 5 μm

| 1

| 7,000

| CMOS

|

1977

| 8085

| Intel

| 3.0 MHz

| 8

| 3 μm

| 1

| 6,500

| nMOS

|

1977

| MC14500B

| Motorola

| 1.0 MHz

| 1

|

| 1

|

| CMOS

|

1978

| 6809

| Motorola

| 1 MHz

| 8

| 5 μm

| 1

| 9,000

| NMOS

|

1978

| 8086

| Intel

| 5 MHz

| 16

| 3 μm

| 1

| 29,000

| nMOS

|

1978

| 6801

| Motorola

| -

| 8

| 5 μm

| 1

| 35,000

| nMOS

|

1979

| Z8000

| Zilog

| -

| 16

| -

| 1

| 17,500

| nMOS

|

1979

| 8088

| Intel

| 5 MHz

| 8/16{{efn|The Intel 8088 had an 8-bit external data bus, but internally used a 16-bit architecture.|group=1970s}}

| 3 μm

| 1

| 29,000

| NMOS (HMOS)

|

1979

| 68000

| Motorola

| 8 MHz

| 16/32{{efn|The Motorola 68000 had a 16-bit external data bus, but internally used 32-bit registers.|group=1970s}}

| 3.5 μm

| 1

| 68,000

| NMOS (HMOS)

| {{cite web |title=Chip Hall of Fame: Motorola MC68000 Microprocessor |url=https://spectrum.ieee.org/chip-hall-of-fame-motorola-mc68000-microprocessor |website=IEEE Spectrum |publisher=Institute of Electrical and Electronics Engineers |access-date=19 June 2019 |date=30 June 2017}}

{{notelist|group=1970s}}

1980s

As Moore's Law continued to drive the industry towards more complex chip designs, the expected widespread move from 8-bit designs of the 1970s to 16-bit designs almost didn't occur; instead, new 32-bit designs like the Motorola 68000 and National Semiconductor NS32000 emerged that offered far more performance. The only widespread use of 16-bit systems was in the IBM PC, which had selected the Intel 8088 in 1979 before the new designs had matured.

Another change was the move to CMOS gates as the primary method of building complex CPUs. CMOS had been available since the early 1970s; RCA introduced the COSMAC processor using CMOS in 1975.{{cite magazine |title=Chip Hall of Fame: RCA CDP 1802 |first=Stephen |last=Cass |date=2 July 2018 |magazine=IEEE Spectrum |url=https://spectrum.ieee.org/chip-hall-of-fame-rca-cdp-1802}} Whereas earlier systems used a single transistor as the basis for each "gate", CMOS used a two-sided design, essentially making it twice as expensive to build. Its advantage was that its logic was not based on the voltage of a transistor compared to the silicon substrate, but the difference in voltages between the two sides, which was detectable at much lower power levels.{{Citation needed|reason=This doesn't make sense. CMOS isn't differential signaling.|date=September 2023}} As processor complexity continued to grow, power dissipation had become a significant concern and chips were prone to overheating; CMOS greatly reduced this problem and quickly took over the market.{{cite book |last1=Kuhn |first1=Kelin|author1-link=Kelin Kuhn |title=High Mobility Materials for CMOS Applications |date=2018 |publisher=Woodhead Publishing |isbn=9780081020623 |chapter=CMOS and Beyond CMOS: Scaling Challenges |page=1 |chapter-url=https://books.google.com/books?id=sOJgDwAAQBAJ&pg=PA1}} This was aided by the uptake of CMOS by Japanese firms while US firms remained on nMOS, giving the Japanese industry a major advance during the 1980s.{{cite book |last1=Gilder |first1=George |title=Microcosm: The Quantum Revolution In Economics And Technology |date=1990 |publisher=Simon and Schuster |isbn=9780671705923 |pages=[https://archive.org/details/microcosm00geor/page/144 144]–5 |url=https://archive.org/details/microcosm00geor|url-access=registration }}

Semiconductor fabrication techniques continued to improve throughout. The Micralign, which had "created the modern IC industry", was obsolete by the early 1980s. They were replaced by the new steppers, which used high magnifications and extremely powerful light sources to allow a large mask to be copied onto the wafer at ever-smaller sizes. This technology allowed the industry to break below the former 1 micron limit.

Key home computers in the early part of the decade predominantly use processors developed in the 1970s. Versions of the 6502, first released in 1975, powered the Commodore 64, Apple II, BBC Micro, and Atari 8-bit computers. The 8-bit Zilog Z80 (1976) is at the core of the ZX Spectrum, MSX systems and many others. The 8086-based IBM PC, launched in 1981, started the move to 16-bit, but was soon passed by the 68000-based 16/32-bit Macintosh, then the Atari ST and Amiga. IBM PC compatibles moved to 32-bit with the introduction of the Intel 80386 in late 1985, although 386-based systems were considerably expensive at the time.

In addition to ever-growing word lengths, microprocessors began to add additional functional units that had previously been optional external parts. By the middle of the decade, memory management units (MMUs) were becoming commonplace, first appearing on designs like the Intel 80286 and Motorola 68030. By the end of the decade, floating point units (FPUs) were being added, first appearing on 1989s Intel 486 and followed the next year by the Motorola 68040.

Another change that began during the 1980s involved overall design philosophy with the emergence of the reduced instruction set computer, or RISC. Although the concept was first developed by IBM in the 1970s, the company did not introduce powerful systems based on it, largely for fear of cannibalizing their sales of larger mainframe systems. Market introduction was driven by smaller companies like MIPS Technologies, SPARC and ARM. These companies did not have access to high-end fabrication like Intel and Motorola, but were able to introduce chips that were highly competitive with those companies with a fraction of the complexity. By the end of the decade, every major vendor was introducing a RISC design of their own, like the IBM POWER, Intel i860 and Motorola 88000.

class="wikitable sortable" style="text-align:center"

! Date

! Name

! Developer

! data-sort-type="number" | Max Clock
(first version)

! data-sort-type="number" | Word size
(bits)

! data-sort-type="number" | Process

! data-sort-type="number" | Transistors

1980

| 16032

| National Semiconductor

| -

| 16/32

| -

| 60,000

1980

| BELLMAC-32/WE 32000

| Bell Labs

|

| 32

|

| 150,000

1981

| 6120

| Harris Corporation

| 10 MHz

| 12

| -

| 20,000 (CMOS){{cite book |title=Harris CMOS Digital Data Book |pages=4–3–21 |url=http://www.bitsavers.org/pdf/dec/pdp8/cmos8/HD6120.pdf}}

1981

| ROMP

| IBM

| 10 MHz

| 32

| 2 μm

| 45,000

1981

| T-11

| DEC

| 2.5 MHz

| 16

| 5 μm

| 17,000 (NMOS)

1982

| RISC-I{{cite web |url=http://www.cs.berkeley.edu/~pattrsn/Arch/prototypes2.html |title=Berkeley Hardware Prototypes |access-date=2008-06-15}}

| UC Berkeley

| 1 MHz

| -

| 5 μm

| 44,420 (NMOS)

1982

| FOCUS

| Hewlett Packard

| 18 MHz

| 32

| 1.5 μm

| 450,000

1982

| 80186

| Intel

| 6 MHz

| 16

| -

| 55,000

1982

| 80188

| Intel

| 8 MHz

| 8/16

| -

| 55,000

1982

| 80286

| Intel

| 6 MHz

| 16

| 1.5 μm

| 134,000

1983

| RISC-II

| UC Berkeley

| 3 MHz

| -

| 3 μm

| 40,760 (NMOS)

1983

| MIPS{{cite journal| doi = 10.1145/2465.214917| title = Reduced instruction set computers| year = 1985| author = Patterson, David A.| journal = Communications of the ACM| volume = 28| pages = 8–21| s2cid = 1493886| doi-access = free}}

| Stanford University

| 2 MHz

| 32

| 3 μm

| 25,000

1983

| 65816

| Western Design Center

| -

| 16

| -

| -

1984

| 68020

| Motorola

| 16 MHz

| 32

| 2 μm

| 190,000

1984

| NS32032

| National Semiconductor

| -

| 32

| -

| 70,000

1984

| V20

| NEC

| 5 MHz

| 8/16

| -

| 63,000

1985

| 80386

| Intel

| 12 MHz

| 32

| 1.5 μm

| 275,000

1985

| MicroVax II 78032

| DEC

| 5 MHz

| 32

| 3.0 μm

| 125,000

1985

| R2000

| MIPS

| 8 MHz

| 32

| 2 μm

| 115,000

1985{{cite web |title=Forth chips list |date=2010 |publisher=UltraTechnology |url=http://www.ultratechnology.com/chips.htm}}

| Novix NC4016

| Harris Corporation

| 8 MHz

| 16

| 3 μm{{cite book |first=Philip J. |last=Koopman |chapter=4.4 Architecture of the NOVIX NC4016 |chapter-url=https://www.ece.cmu.edu/~koopman/stack_computers/sec4_4.html |title=Stack Computers: the new wave |publisher=E. Horwood |year=1989 |isbn=0745804187 |url=http://users.ece.cmu.edu/~koopman/stack_computers/}}

| 16,000{{cite journal |first=Tom |last=Hand |title=The Harris RTX 2000 Microcontroller |journal=Journal of Forth Application and Research |volume=6 |issue=1 |issn=0738-2022 |year=1994 |url=http://soton.mpeforth.com/flag/jfar/vol6/no1/article1.pdf}}

1986

| Z80000

| Zilog

| -

| 32

| -

| 91,000

1986

| SPARC MB86900

| Fujitsu{{cite web |title=Fujitsu to take ARM into the realm of Super |url=http://www.cpushack.com/2016/06/21/fujitsu-to-take-arm-into-the-realm-of-super/ |website=The CPU Shack Museum |date=June 21, 2016 |access-date=30 June 2019}}{{cite web |title=Fujitsu SPARC |url=http://www.cpu-collection.de/?tn=0&l0=cl&l1=SPARC&l2=Fujitsu |website=cpu-collection.de |access-date=30 June 2019}}{{cite web |title=Timeline |url=https://sparc.org/timeline/ |website=SPARC International |access-date=30 June 2019}}

| 15 MHz

| 32

| 0.8 μm

| 800,000

1986

| V60{{cite journal |vauthors=Kimura S, Komoto Y, Yano Y |title=Implementation of the V60/V70 and its FRM function |journal=IEEE Micro |volume=8 |issue=2 |pages=22–36 |year=1988 |doi=10.1109/40.527 |s2cid=9507994 }}

| NEC

| 16 MHz

| 16/32

| 1.5 μm

| 375,000

1987

|80C186

|Intel

|10 MHz

|16

| -

|56,000 (CMOS)

1987

| CVAX 78034

| DEC

| 12.5 MHz

| 32

| 2.0 μm

| 134,000

1987

| ARM2

| Acorn

| 8 MHz

| 32

| 2 μm

| 25,000

{{cite journal |author1=C Green |author2=P Gülzow |author3=L Johnson |author4=K Meinzer |author5=J Miller |title=The Experimental IHU-2 Aboard P3D |journal=Amsat Journal |volume=22 |issue=2 |date=Mar–Apr 1999 |url=http://www.amsat.org/amsat/articles/g3ruh/124.html |quote=The first processor using these principles, called ARM-1, was fabricated by VLSI in April 1985, and gave startling performance for the time, whilst using barely 25,000 transistors}}

1987

| Gmicro/200{{cite journal |vauthors=Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K |title=Realization of Gmicro/200 |journal=IEEE Micro |volume=8 |issue=2 |pages=12–21 |year=1988 |doi=10.1109/40.526 |s2cid=36938046 }}

| Hitachi

| -

| -

| 1 μm

| 730,000

1987

| 68030

| Motorola

| 16 MHz

| 32

| 1.3 μm

| 273,000

1987

| V70

| NEC

| 20 MHz

| 16/32

| 1.5 μm

| 385,000

1988

| R3000

| MIPS

| 25 MHz

| 32

| 1.2 μm

| 120,000

1988

| 80386SX

| Intel

| 12 MHz

| 16/32

| -

| -

1988

| i960

| Intel

| 10 MHz

| 33/32

| 1.5 μm

| 250,000

1989

| i960CA{{cite web |title=Intel i960 Embedded Microprocessor |url=http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html |archive-url=https://web.archive.org/web/20030303223737/http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html |url-status=dead |archive-date=3 March 2003 |website=National High Magnetic Field Laboratory |publisher=Florida State University |access-date=29 June 2019 |date=3 March 2003}}

| Intel

| 16{{ndash}}33 MHz

| 33/32

| 0.8 μm

| 600,000

1989

| VAX DC520 "Rigel"

| DEC

| 35 MHz

| 32

| 1.5 μm

| 320,000

1989

| 80486

| Intel

| 25 MHz

| 32

| 1 μm

| 1,180,000

1989

| i860

| Intel

| 25 MHz

| 32

| 1 μm

| 1,000,000

1990s

The 32-bit microprocessor dominated the consumer market in the 1990s. Processor clock speeds increased by more than tenfold between 1990 and 1999, and 64-bit processors began to emerge later in the decade. In the 1990s, microprocessors no longer used the same clock speed for the processor and the RAM. Processors began to have a front-side bus (FSB) clock speed used in communication with RAM and other components. Typically, the processor itself ran at a clock speed that was a multiple of the FSB clock speed. Intel's Pentium III, for example, had an internal clock speed of 450–600 MHz and an FSB speed of 100–133 MHz. Only the processor's internal clock speed is shown here.

class="wikitable sortable" style="text-align:center"

! Date

! Name

! Developer

! data-sort-type="number" | Clock

! data-sort-type="number" | Word size
(bits)

! data-sort-type="number" | Process

! data-sort-type="number" | Transistors
(millions)

! data-sort-type="number" | Threads

1990

| 68040

| Motorola

| 40 MHz

| 32

| -

| 1.2

|

1990

| POWER1

| IBM

| 20–30 MHz

| 32

| 1,000 nm

| 6.9

|

1991

| R4000

| MIPS Computer Systems

| 100 MHz

| 64

| 800 nm

| 1.35

|

1991

| NVAX

| DEC

| 62.5–90.91 MHz

| 32

| 750 nm

| 1.3

|

1991

| RSC

| IBM

| 33 MHz

| 32

| 800 nm

| 1.0{{cite conference |vauthors=Moore CR, Balser DM, Muhich JS, East RE |title=IBM Single Chip RISC Processor (RSC) |book-title=Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors |publisher=IEEE Computer Society |pages=200–4 |year=1992 |url=http://zmoore.net/RSC%20ICCD92.pdf |isbn=0-8186-3110-4 |access-date=2008-11-15 |archive-date=2013-10-04 |archive-url=https://web.archive.org/web/20131004213712/http://zmoore.net/RSC%20ICCD92.pdf |url-status=dead }}

|

1992

| SH-1

| Hitachi

| 20 MHz{{cite journal |title=Embedded-DSP SuperH Family and Its Applications |journal=Hitachi Review |date=1998 |volume=47 |issue=4 |pages=121–7 |publisher=Hitachi |s2cid=43356065 |url=http://pdfs.semanticscholar.org/5ef8/dda794a72f0f9c3c347b0a2db9bd1a081571.pdf |archive-url=https://web.archive.org/web/20190225114235/http://pdfs.semanticscholar.org/5ef8/dda794a72f0f9c3c347b0a2db9bd1a081571.pdf |url-status=dead |archive-date=2019-02-25 |access-date=5 July 2019}}

| 32

| 800 nm

| 0.6{{cite web |title=SH Microprocessor Leading the Nomadic Era |url=http://www.shmj.or.jp/makimoto/en/pdf/makimoto_E_02_10.pdf |website=Semiconductor History Museum of Japan |access-date=27 June 2019}}

|

1992

| Alpha 21064

| DEC

| 100–200 MHz

| 64

| 750 nm

| 1.68

|

1992

| microSPARC I

| Sun

| 40–50 MHz

| 32

| 800 nm

| 0.8

|

1992

| PA-7100

| Hewlett Packard

| 100 MHz

| 32

| 800 nm

| 0.85{{cite web |url=http://www.openpa.net/pa-risc_processors.html |title=PA-RISC Processors |access-date=2008-05-11 }}

|

1992

| 486SLC

| Cyrix

| 40 MHz

| 16

|

|

|

1993

| HARP-1

| Hitachi

| 120 MHz

| -

| 500 nm

| 2.8{{cite web |title=HARP-1: A 120 MHz Superscalar PA-RISC Processor |url=https://www.hotchips.org/wp-content/uploads/hc_archives/hc05/3_Tue/HC05.S8/HC05.8.1-Matsubara-Hitachi-HARP-1.pdf |publisher=Hitachi |access-date=19 June 2019 |archive-date=23 April 2016 |archive-url=https://web.archive.org/web/20160423084425/http://www.hotchips.org/wp-content/uploads/hc_archives/hc05/3_Tue/HC05.S8/HC05.8.1-Matsubara-Hitachi-HARP-1.pdf |url-status=dead }}

|

1993

| PowerPC 601

| IBM, Motorola

| 50–80 MHz

| 32

|600 nm

| 2.8

|

1993

| Pentium

| Intel

| 60–66 MHz

| 32

| 800 nm

| 3.1

|

1993

| POWER2

| IBM

| 55–71.5 MHz

| 32

| 720 nm

| 23

|

1994

| microSPARC II

| Fujitsu

| 60–125 MHz

| -

| 500 nm

| 2.3

|

1994

| S/390 G1

| IBM

| -

| 32

| -

|

|

1994

| 68060

| Motorola

| 50 MHz

| 32

| 600 nm

| 2.5

|

1994

| Alpha 21064A

| DEC

| 200–300 MHz

| 64

| 500 nm

| 2.85

|

1994

| R4600

| QED

| 100–125 MHz

| 64

| 650 nm

| 2.2

|

1994

| R8000

| MTI

| 75-90 MHz

| 64

| 700 nm

| 3.43

|

1994

| PA-7200

| Hewlett Packard

| 125 MHz

| 32

| 550 nm

| 1.26

|

1994

| PowerPC 603

| IBM, Motorola

| 60–120 MHz

| 32

| 500 nm

| 1.6

|

1994

| PowerPC 604

| IBM, Motorola

| 100–180 MHz

| 32

| 500 nm

| 3.6

|

1994

| PA-7100LC

| Hewlett Packard

| 100 MHz

| 32

| 750 nm

| 0.90

|

1995

| Alpha 21164

| DEC

| 266–333 MHz

| 64

| 500 nm

| 9.3

|

1995

| S/390 G2

| IBM

| -

|32

| -

|

|

1995

| UltraSPARC

| Sun

| 143–167 MHz

| 64

| 470 nm

| 5.2

|

1995

| SPARC64

| HAL Computer Systems

| 101–118 MHz

| 64

| 400 nm

| -

|

1995

| Pentium Pro

| Intel

| 150–200 MHz

| 32

|350 nm

| 5.5

|

1996

| Alpha 21164A

| DEC

| 400–500 MHz

| 64

| 350 nm

| 9.7

|

1995

| S/390 G3

| IBM

| -

| 32

| -

|

|

1996

| K5

| AMD

| 75–100 MHz

| 32

| 500 nm

| 4.3

|

1996

| R10000

| MTI

| 150–250 MHz

| 64

| 350 nm

| 6.7

|

1996

| R5000

| QED

| 180–250 MHz

| -

| 350 nm

| 3.7

|

1996

| SPARC64 II

| HAL Computer Systems

| 141–161 MHz

| 64

| 350 nm

| -

|

1996

| PA-8000

| Hewlett-Packard

| 160–180 MHz

| 64

| 500 nm

| 3.8

|

1996

|POWER2 Super Chip (P2SC)

| IBM

| 150 MHz

| 32

| 290 nm

| 15

|

1997

| SH-4

| Hitachi

| 200 MHz

| -

| 200 nm{{cite journal |title=Entertainment Systems and High-Performance Processor SH-4 |journal=Hitachi Review |date=1999 |volume=48 |issue=2 |pages=58–63 |publisher=Hitachi |s2cid=44852046 |url=http://pdfs.semanticscholar.org/2dae/557444cd159c68d9a557189c70a68de0d233.pdf |archive-url=https://web.archive.org/web/20190221030542/http://pdfs.semanticscholar.org/2dae/557444cd159c68d9a557189c70a68de0d233.pdf |url-status=dead |archive-date=2019-02-21 |access-date=27 June 2019}}

| 10{{cite web |title=Remembering the Sega Dreamcast |url=https://bit-tech.net/reviews/gaming/retro/remembering-the-sega-dreamcast/3/ |website=Bit-Tech |access-date=18 June 2019 |date=September 29, 2009}}

|

1997

| RS64

| IBM

| 125 MHz

| 64

| ? nm

| ?

|

1997

| Pentium II

| Intel

| 233–300 MHz

| 32

| 350 nm

| 7.5

|

1997

| PowerPC 620

| IBM, Motorola

| 120–150 MHz

| 64

| 350 nm

| 6.9

|

1997

| UltraSPARC IIs

| Sun

| 250–400 MHz

| 64

| 350 nm

| 5.4

|

1997

| S/390 G4

| IBM

| 370 MHz

| 32

| 500 nm

| 7.8

|

1997

| PowerPC 750

| IBM, Motorola

| 233–366 MHz

| 32

| 260 nm

| 6.35

|

1997

| K6

| AMD

| 166–233 MHz

| 32

| 350 nm

| 8.8

|

1998

| RS64-II

| IBM

| 262 MHz

| 64

| 350 nm

| 12.5

|

1998

| Alpha 21264

| DEC

| 450–600 MHz

| 64

| 350 nm

| 15.2

|

1998

| MIPS R12000

| SGI

| 270–400 MHz

| 64

|250180 nm

| 6.9

|

1998

| RM7000

| QED

| 250–300 MHz

| -

|250 nm

| 18

|

1998

| SPARC64 III

| HAL Computer Systems

| 250–330 MHz

| 64

| 240 nm

| 17.6

|

1998

| S/390 G5

| IBM

| 500 MHz

| 32

| 250 nm

| 25

|

1998

| PA-8500

| Hewlett Packard

| 300–440 MHz

| 64

| 250 nm

| 140

|

1998

| POWER3

| IBM

| 200 MHz

| 64

| 250 nm

| 15

|

1999

| S/390 G6

| IBM

| 550-637 MHz

| 32

| -

|

|

1999

| Emotion Engine

| Sony, Toshiba

| 294–300 MHz

| -

| 180–65 nm{{cite news |title=EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP |url=https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf |access-date=26 June 2019 |publisher=Sony |date=April 21, 2003}}

| 13.5{{cite book|last1=Hennessy|first1=John L. |author-link1=John L. Hennessy |last2=Patterson|first2=David A. |author-link2=David Patterson (scientist)|title=Computer Architecture: A Quantitative Approach|page=491|url=https://books.google.com/books?id=XX69oNsazH4C&pg=PA491|access-date=9 April 2013|edition=3|date=29 May 2002|publisher=Morgan Kaufmann|isbn=978-0-08-050252-6}}

|

1999

| Pentium III

| Intel

| 450–600 MHz

| 32

| 250 nm

| 9.5

|

1999

| RS64-III

| IBM

| 450 MHz

| 64

| 220 nm

| 34

| 2

1999

| PowerPC 7400

| Motorola

| 350–500 MHz

| 32

| 200–130 nm

| 10.5

|

1999

| Athlon

| AMD

| 500–1000 MHz

| 32

| 250 nm

| 22

|

2000s

64-bit processors became mainstream in the 2000s. Microprocessor clock speeds reached a ceiling because of the heat dissipation barrier{{Citation needed|date=January 2024}}. Instead of implementing expensive and impractical cooling systems, manufacturers turned to parallel computing in the form of the multi-core processor. Overclocking had its roots in the 1990s, but came into its own in the 2000s. Off-the-shelf cooling systems designed for overclocked processors became common, and the gaming PC had its advent as well. Over the decade, transistor counts increased by about an order of magnitude, a trend continued from previous decades. Process sizes decreased about fourfold, from 180 nm to 45 nm.

class="wikitable sortable" style="text-align:center"

! Date

! Name

! Developer

! Clock

! Process

! Transistors
(millions)

! Cores per die /
Dies per module

2000

| Athlon XP

| AMD

| 1.33–1.73 GHz

| 180 nm

| 37.5

| 1 / 1

2000

| Duron

| AMD

| 550 MHz–1.3 GHz

| 180 nm

| 25

| 1 / 1

2000

| RS64-IV

| IBM

| 600–750 MHz

| 180 nm

| 44

| 1 / 2

2000

| Pentium 4

| Intel

| 1.3–2 GHz

| 180–130 nm

| 42

| 1 / 1

2000

| SPARC64 IV

| Fujitsu

| 450–810 MHz

| 130 nm

| -

| 1 / 1

2000

| z900

| IBM

| 918 MHz

| 180 nm

| 47

| 1 / 12, 20

2001

| MIPS R14000

| SGI

| 500–600 MHz

| 130 nm

| 7.2

| 1 / 1

2001

| POWER4

| IBM

| 1.1–1.4 GHz

| 180–130 nm

| 174

| 2 / 1, 4

2001

| UltraSPARC III

| Sun

| 750–1200 MHz

| 130 nm

| 29

| 1 / 1

2001

| Itanium

| Intel

| 733–800 MHz

| 180 nm

| 25

| 1 / 1

2001

| PowerPC 7450

| Motorola

| 733–800 MHz

| 180–130 nm

| 33

| 1 / 1

2002

| SPARC64 V

| Fujitsu

| 1.1–1.35 GHz

| 130 nm

| 190

| 1 / 1

2002

| Itanium 2

| Intel

| 0.9–1 GHz

| 180 nm

| 410

| 1 / 1

2003

| PowerPC 970

| IBM

| 1.6–2.0 GHz

| 130–90 nm

| 52

| 1 / 1

2003

| Pentium M

| Intel

| 0.9–1.7 GHz

| 130–90 nm

| 77

| 1 / 1

2003

| Opteron

| AMD

| 1.4–2.4 GHz

| 130 nm

| 106

| 1 / 1

2004

| POWER5

| IBM

| 1.65–1.9 GHz

| 130–90 nm

| 276

| 2 / 1, 2, 4

2004

| PowerPC BGL

| IBM

| 700 MHz

| 130 nm

| 95

| 2 / 1

2005

| IBM z9

| IBM

|

|

|

|

2005

| Opteron "Athens"

| AMD

| 1.6–3.0 GHz

| 90 nm

| 114

| 1 / 1

2005

| Pentium D

| Intel

| 2.8–3.2 GHz

| 90 nm

| 115

| 1 / 2

2005

| Athlon 64 X2

| AMD

| 2–2.4 GHz

| 90 nm

| 243

| 2 / 1

2005

| PowerPC 970MP

| IBM

| 1.2–2.5 GHz

| 90 nm

| 183

| 2 / 1

2005

| UltraSPARC IV

| Sun

| 1.05–1.35 GHz

| 130 nm

| 66

| 2 / 1

2005

| UltraSPARC T1

| Sun

| 1–1.4 GHz

| 90 nm

| 300

| 8 / 1

2005

| Xenon

| IBM

| 3.2 GHz

| 90–45 nm

| 165

| 3 / 1

2006

| Core Duo

| Intel

| 1.1–2.33 GHz

| 90–65 nm

| 151

| 2 / 1

2006

| Core 2

| Intel

| 1.06–2.67 GHz

| 65–45 nm

| 291

| 2 / 1, 2

2006

| Cell/B.E.

| IBM, Sony, Toshiba

| 3.2–4.6 GHz

| 90–45 nm

| 241

| 1+8 / 1

2006

| Itanium "Montecito"

| Intel

| 1.4–1.6 GHz

| 90 nm

| 1720

| 2 / 1

2007

| POWER6

| IBM

| 3.5–4.7 GHz

| 65 nm

| 790

| 2 / 1

2007

| SPARC64 VI

| Fujitsu

| 2.15–2.4 GHz

| 90 nm

| 543

| 2 / 1

2007

| UltraSPARC T2

| Sun

| 1–1.4 GHz

| 65 nm

| 503

| 8 / 1

2007

| TILE64

| Tilera

| 600–900 MHz

| 90–45 nm

| ?

| 64 / 1

2007

| Opteron "Barcelona"

| AMD

| 1.8–3.2 GHz

| 65 nm

| 463

| 4 / 1

2007

| PowerPC BGP

| IBM

| 850 MHz

| 90 nm

| 208

| 4 / 1

2008

| Phenom

| AMD

| 1.8–2.6 GHz

| 65 nm

| 450

| 2, 3, 4 / 1

2008

| z10

| IBM

| 4.4 GHz

| 65 nm

| 993

| 4 / 7

2008

| PowerXCell 8i

| IBM

| 2.8–4.0 GHz

| 65 nm

| 250

| 1+8 / 1

2008

| SPARC64 VII

| Fujitsu

| 2.4–2.88 GHz

| 65 nm

| 600

| 4 / 1

2008

| Atom

| Intel

| 0.8–1.6 GHz

| 65–45 nm

| 47

| 1 / 1

2008

| Core i7

| Intel

| 2.66–3.2 GHz

| 45–32 nm

| 730

| 2, 4, 6 / 1

2008

| TILEPro64

| Tilera

| 600–866 MHz

| 90–45 nm

| ?

| 64 / 1

2008

| Opteron "Shanghai"

| AMD

| 2.3–2.9 GHz

| 45 nm

| 751

| 4 / 1

2009

| Phenom II

| AMD

| 2.5–3.2 GHz

| 45 nm

| 758

| 2, 3, 4, 6 / 1

2009

| Opteron "Istanbul"

| AMD

| 2.2–2.8 GHz

| 45 nm

| 904

| 6 / 1

2010s

A new trend appears, the multi-chip module made of several chiplets. This is multiple monolithic chips in a single package. This allows higher integration with several smaller and easier to manufacture chips.

class="wikitable sortable" style="text-align:center"

! Date

! Name

! Developer

! Clock

! Process

! Transistors
(millions)

! Cores per die /
Dies per module

! Threads
per core

2010

| POWER7

| IBM

| 3–4.14 GHz

| 45 nm

| 1200

| 4, 6, 8 / 1, 4

| 4

2010

| Itanium "Tukwila"

| Intel

| 2 GHz

| 65 nm

| 2000

| 2, 4 / 1

| 2

2010

| Opteron "Magny-cours"

| AMD

| 1.7–2.4 GHz

| 45 nm

| 1810

| 4, 6 / 2

| 1

2010

| Xeon "Nehalem-EX"

| Intel

| 1.73–2.66 GHz

| 45 nm

| 2300

| 4, 6, 8 / 1

| 2

2010

| z196

| IBM

| 3.8–5.2 GHz

| 45 nm

| 1400

| 4 / 1, 6

| 1

2010

| SPARC T3

| Sun

| 1.6 GHz

| 45 nm

| 2000

| 16 / 1

| 8

2010

| SPARC64 VII+

| Fujitsu

| 2.66–3.0 GHz

| 45 nm

| ?

| 4 / 1

| 2

2010

| Intel "Westmere"

| Intel

| 1.86–3.33 GHz

| 32 nm

| 1170

| 4–6 / 1

| 2

2011

| Intel "Sandy Bridge"

| Intel

| 1.6–3.4 GHz

| 32 nm

| 995{{cite web |author=Anand Lal Shimpi |title=A Closer Look at the Sandy Bridge Die |date=10 January 2011 |publisher=AnandTech |url=http://www.anandtech.com/show/4118/a-closer-look-at-the-sandy-bridge-die}}

| 2, 4 / 1

| (1,) 2

2011

| AMD Llano

| AMD

| 1.0–1.6 GHz

| 40 nm

| 380{{cite web |author=renethx |at=Cedar (HD 5450) and Zacate (E350) are manufactured in TSMC 40 nm process |title=AMD Zacate — the next great HTPC chip? |date=10 November 2011 |work=AVS Forum |url=http://www.avsforum.com/avs-vb/showthread.php?s=75ab046a2a3e7839557c22b89ff1ccd5&p=19470009#post19470009}}

| 1, 2 / 1

| 1

2011

| Xeon E7

| Intel

| 1.73–2.67 GHz

| 32 nm

| 2600

| 4, 6, 8, 10 / 1

| 1–2

2011

| Power ISA BGQ

| IBM

| 1.6 GHz

| 45 nm

| 1470

| 18 / 1

| 4

2011

| SPARC64 VIIIfx

| Fujitsu

| 2.0 GHz

| 45 nm

| 760

| 8 / 1

| 2

2011

| FX "Bulldozer" Interlagos

| AMD

| 3.1–3.6 GHz

| 32 nm

| 1200{{cite web |title=AMD Revises Bulldozer Transistor Count: 1.2B, not 2B |date=2 December 2011 |publisher=AnandTech |url=http://www.anandtech.com/show/5176/amd-revises-bulldozer-transistor-count-12b-not-2b}}

| 4–8 / 2

| 1

2011

| SPARC T4

| Oracle

| 2.8–3 GHz

| 40 nm

| 855

| 8 / 1

| 8

2012

| SPARC64 IXfx

| Fujitsu

| 1.848 GHz

| 40 nm

| 1870

| 16 / 1

| 2

2012

| zEC12

| IBM

| 5.5 GHz

| 32 nm

| 2750

| 6 / 6

| 1

2012

| POWER7+

| IBM

| 3.1–5.3 GHz

| 32 nm

| 2100

| 8 / 1, 2

| 4

2012

| Itanium "Poulson"

| Intel

| 1.73–2.53 GHz

| 32 nm

| 3100

| 8 / 1

| 2

2013

| Intel "Haswell"

| Intel

| 1.9–4.4 GHz

| 22 nm

| 1400

| 4 / 1

| 2

2013

| SPARC64 X

| Fujitsu

| 2.8–3 GHz

| 28 nm

| 2950

| 16 / 1

| 2

2013

| SPARC T5

| Oracle

| 3.6 GHz

| 28 nm

| 1500

| 16 / 1

| 8

2014

| POWER8

| IBM

| 2.5–5 GHz

| 22 nm

| 4200

| 6, 12 / 1, 2

| 8

2014

| Intel "Broadwell"

| Intel

| 1.8-4 GHz

| 14 nm

| 1900

| 2, 4, 6, 8, 12, 16 / 1, 2, 4

| 2

2015

| z13

| IBM

| 5 GHz

| 22 nm

| 3990

| 8 / 1

| 2

2015

| A8-7670K

| AMD

| 3.6 GHz

| 28 nm

| 2410

| 4 / 1

| 1

2016

| RISC-V E31{{cite web |url=https://www.sifive.com/products/hifive1/ |title=SiFive - HiFive1 |archive-url=https://web.archive.org/web/20161130123115/https://www.sifive.com/products/hifive1/ |archive-date=2016-11-30 |url-status=dead}}

| SiFive

| 320 MHz

| 28 nm

| ?

| 1

| 1

2017

| Zen

| AMD

| 3.2–4.1 GHz

| 14 nm

| 4800

| 8, 16 / 1, 2, 4

| 2

2017

| z14

| IBM

| 5.2 GHz

| 14 nm

| 6100

| 10 / 1

| 2

2017

| POWER9

| IBM

| 4 GHz

| 14 nm

| 8000

| 12, 24 / 1

| 4, 8

2017

| SPARC M8{{cite web |title=Sparc M8 processor |url=https://www.oracle.com/us/products/servers-storage/sparc-m8-processor-ds-3864282.pdf |website=Oracle main website |publisher=Oracle Corp |access-date=3 March 2019}}

| Oracle

| 5 GHz

| 20 nm

| ~10,000{{Cite web|url=https://www.nextplatform.com/2017/09/18/m8-last-hurrah-oracle-sparc/|title = Is M8 the Last Hurrah for Oracle Sparc?|date = 18 September 2017}}

| 32

| 8

2017

| RISC-V U54-MC{{cite web |url=https://www.sifive.com/products/risc-v-core-ip/u54-mc/ |title=SiFive - HiFive1 |archive-url=https://web.archive.org/web/20171018135414/https://www.sifive.com/products/risc-v-core-ip/u54-mc/ |archive-date=2017-10-18 |url-status=dead}}

| SiFive

| 1.5 GHz

| 28 nm

| 250

| 4

| 1

2018

| Intel "Cannon Lake"

| Intel

| 2.2–3.2 GHz

| 10 nm

| ?

| 2 / 1

| 2

2018

| Zen+

| AMD

| 2.8–3.7 GHz

| 12 nm

| 4800

| 2, 4, 6, 8 / 1, 2, 4

| 1, 2

2018

| RISC-V U74-MC{{cite web |url=https://www.cnx-software.com/2018/11/02/sifive-7-series-risc-v-cores-e76-s76-u74 |title=SiFive Introduces 7 Series RISC-V Cores |date=2 November 2018 }}

| SiFive

| 1.5 GHz

| ?

| ?

| 4

| 1

2019

| Zen 2

| AMD

| 2–4.7 GHz

| 7 nm, 12nm

| 3900

| 4, 6, 8 / 1, 2, 4, 6, 8

| 2

2019

| z15

| IBM

| 5.2 GHz

| 14 nm

| 9200

| 12 / 1

| 2

2020s

class="wikitable sortable" style="text-align:center"

! Date

! Name

! Developer

! Clock

! Process

! Transistors
(millions)

! Cores per die /
Dies per module

! Threads
per core

2020

| Zen 3

| AMD

| 3.4–4.9 GHz

|7 nm, 12nm

| 6240–35290

| 4, 6, 8 / 1, 2, 4, 8

| 2

2020

| M1 Series

| Apple

| 3.2 GHz

| 5 nm

| 16000–144000

| 4–8P, 2–4E / 1, 2

| 1

2021

|Alder Lake

|Intel

|0.7–5.3 GHz

|7 nm

| ?

|0–8P, 2–8E

|1–2

2022

| IBM Telum

| IBM

| >5 GHz

| 7 nm

| 22000

| 8

| 1

2022

| M2 Series

| Apple

| 3.49/2.42 GHz

| 5 nm (N5P)

| 20000–134000

| 4–8P, 4E / 1, 2

| 1

2022

| Zen 4

| AMD

| 2.0–5.7 GHz

| 5 nm, 7 nm

| 6570

| 4, 6, 8 / 1, 2, 4, 8, 12

| 2

2023

| Zen 4C

| AMD

| 2.0–3.1 GHz

| 5 nm

| 8200

| 4, 6, 8, 12, 14, 16 / 1, 2, 4, 8

| 1, 2

2023

| M3 Series

| Apple

| 4.05/2.75 GHz

| 3 nm

| 25000–92000

| 4–12P, 4–6E

| 1

2023

| Meteor Lake

| Intel

| 0.7–5.0 GHz

| 5 nm, 7 nm

| ?

| 2–6P, 4–8E, 2LP-E

| 1–2

2024

| Oryon

| Qualcomm

| 4.3 GHz

| 4 nm

| ?

| 12

| 1

2024

| Zen 5

| AMD

| 4.3 GHz

| 5 nm

| 8315-20030

| 6, 8, 16 / 2, 3

| 2

See also

{{Portal|Electronics}}

References and notes

;References

{{reflist|30em}}

;Notes

  • [http://www.sandpile.org/ sandpile.org] for x86 processor information
  • {{cite journal |last=Ogdin |first=Jerry |title=Microprocessor scorecard |journal=Euromicro Newsletter |volume=1 |issue=2 |pages=43–77 |date=January 1975 |doi=10.1016/0303-1268(75)90008-5 }}

{{CPU technologies}}

Category:Digital electronics

*Microprocessor

*AAA

Category:Computer performance