DNA and RNA codon tables

{{Short description|List of standard rules to translate DNA encoded information into proteins}}

{{multiple image

| align = right

| direction = vertical

| image1 = Aminoacids table.svg

| width1 = 300

| caption1 = The standard RNA codon table organized in a wheel

| alt1 = A circular diagram is separated into three rings, broken down into sections labeled with the letters: G, U, A, and C. Each represents a nucleotide found in RNA.

}}

A codon table can be used to translate a genetic code into a sequence of amino acids.{{cite web|url=http://sites.science.oregonstate.edu/genbio/otherresources/aminoacidtranslation.htm|title=Amino Acid Translation Table|publisher=Oregon State University|access-date=2 December 2020|archive-date=29 May 2020|archive-url=https://web.archive.org/web/20200529000711/http://sites.science.oregonstate.edu/genbio/otherresources/aminoacidtranslation.htm|url-status=dead}} The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis.{{cite book|last1=Bartee|first1=Lisa|last2=Brook|first2=Jack|title=MHCC Biology 112: Biology for Health Professions|url=https://mhccbiology112.pressbooks.com|publisher=Open Oregon|page=42|access-date=6 December 2020|archive-date=6 December 2020|archive-url=https://web.archive.org/web/20201206173711/https://mhccbiology112.pressbooks.com/|url-status=live}}{{Cite web|title=The Genetic Codes|publisher=National Center for Biotechnology Information|vauthors=Elzanowski A, Ostell J|date=7 January 2019|access-date=21 February 2019| url=https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi|archive-url=https://web.archive.org/web/20201005105339/https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi|archive-date=5 October 2020}} The mRNA sequence is determined by the sequence of genomic DNA.{{cite web|url=https://www.nature.com/scitable/topicpage/rna-functions-352/|title=RNA Functions|website=Scitable|publisher=Nature Education|access-date=5 January 2021|archive-url=https://web.archive.org/web/20081018170459/https://www.nature.com/scitable/topicpage/rna-functions-352/|archive-date=18 October 2008|url-status=live}} In this context, the standard genetic code is referred to as 'translation table 1' among other tables. It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5{{prime}}-to-3{{prime}} direction. Different tables with alternate codons are used depending on the source of the genetic code, such as from a cell nucleus, mitochondrion, plastid, or hydrogenosome.{{cite web|url=https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi|title=The Genetic Codes|publisher=National Center for Biotechnology Information|access-date=2 December 2020|archive-date=13 May 2011|archive-url=https://web.archive.org/web/20110513014234/http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi|url-status=live}}

There are 64 different codons in the genetic code and the below tables; most specify an amino acid.{{cite web|url=https://www.genome.gov/genetics-glossary/Codon|title=Codon|website=National Human Genome Research Institute|access-date=10 October 2020|archive-date=22 October 2020|archive-url=https://web.archive.org/web/20201022081214/https://www.genome.gov/genetics-glossary/Codon|url-status=live}} Three sequences, UAG, UGA, and UAA, known as stop codons,{{efn|group=note|Each stop codon has a specific name: UAG is amber, UGA is opal and UAA is ochre,{{cite web| url=http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/rev-sup/amber-name.html|title=How nonsense mutations got their names|author=Maloy S.|date=29 November 2003|work=Microbial Genetics Course|publisher=San Diego State University|access-date=10 October 2020|archive-url=https://web.archive.org/web/20200923075442/http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/rev-sup/amber-name.html|archive-date=23 September 2020}} (sometimes for UGA, umber is used instead of opal).Stanley Maloy: [https://www.sciencedirect.com/science/article/abs/pii/B9780123749840016004 Umber codon] In DNA, these stop codons are TAG, TGA, and TAA, respectively.}} do not code for an amino acid but instead signal the release of the nascent polypeptide from the ribosome. In the standard code, the sequence AUG—read as methionine—can serve as a start codon and, along with sequences such as an initiation factor, initiates translation.{{cite journal|vauthors=Hinnebusch AG|date=2011|title=Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes|journal= Microbiology and Molecular Biology Reviews|volume=75|issue=3|pages=434–467|doi=10.1128/MMBR.00008-11|pmid=21885680|pmc=3165540|doi-access=free}}{{cite journal |vauthors=Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC, Vagner S| title = Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons|journal=Biology of the Cell|volume=95|issue=3–4|pages=169–78|date=2003|pmid=12867081|doi=10.1016/S0248-4900(03)00033-9|doi-access=free}} In rare instances, start codons in the standard code may also include GUG or UUG; these codons normally represent valine and leucine, respectively, but as start codons they are translated as methionine or formylmethionine.

File:Codon wheels.png

The classical table/wheel of the standard genetic code is arbitrarily organized based on codon position 1. Saier,{{cite journal |last1=Saier |first1=Milton H. Jr. |date=10 July 2019 |title=Understanding the Genetic Code. |journal=J Bacteriol |volume=201 |number=15 |pages=e00091-19 |doi=10.1128/JB.00091-19|pmid=31010904 |pmc=6620406 }} following observations from,{{cite journal |last1=Muto |first1=A. |last2=Osawa |first2=S. |date=January 1987 |title=The guanine and cytosine content of genomic DNA and bacterial evolution. |journal=Proc Natl Acad Sci USA |volume=84 |number=1 |pages=166–9 |doi=10.1073/pnas.84.1.166|doi-access=free |pmid=3467347 |pmc=304163 |bibcode=1987PNAS...84..166M }} showed that reorganizing the wheel based instead on codon position 2 (and reordering from UCAG to UCGA) better arranges the codons by the hydrophobicity of their encoded amino acids. This suggests that early ribosomes read the second codon position most carefully, to control hydrophobicity patterns in protein sequences.

The first table—the standard table—can be used to translate nucleotide triplets into the corresponding amino acid or appropriate signal if it is a start or stop codon. The second table, appropriately called the inverse, does the opposite: it can be used to deduce a possible triplet code if the amino acid is known. As multiple codons can code for the same amino acid, the International Union of Pure and Applied Chemistry's (IUPAC) nucleic acid notation is given in some instances.

Translation table 1

=Standard RNA codon table=

class="wikitable" style="border:none; text-align:center;"

| Amino-acid biochemical properties

| style="background-color:#ffe75f; width: 50px;" | Nonpolar (np)

| style="background-color:#b3dec0; width: 50px;" | Polar (p)

| style="background-color:#bbbfe0; width: 50px;" | Basic (b)

| style="background-color:#f8b7d3; width: 50px;" | Acidic (a)

| style="border:none; width: 100px;" |

| style="background-color:#B0B0B0;" | Termination: stop codon *

| style="border:none; width: 10px;" |

| style="background-color:#97D8F7;" | Initiation: possible start codon ⇒

class="wikitable"

|+ Standard genetic code{{cite web|url=https://www.nature.com/scitable/topicpage/the-information-in-dna-determines-cellular-function-6523228/|title=The Information in DNA Determines Cellular Function via Translation|website=Scitable|publisher=Nature Education|access-date=5 December 2020|archive-date=23 September 2017|archive-url=https://web.archive.org/web/20170923100645/http://www.nature.com/scitable/topicpage/the-information-in-dna-determines-cellular-function-6523228|url-status=live}}

! rowspan=2 | 1st
base

! colspan=8 | 2nd base

! rowspan=2 | 3rd
base

colspan=2 style="width:150px;" | U

! colspan=2 style="width:150px;" | C

! colspan=2 style="width:150px;" | A

! colspan=2 style="width:150px;" | G

rowspan=4 | U

| UUU

|rowspan=2 style="background-color:#ffe75f" | (Phe/F) Phenylalanine (np)

| UCU

|rowspan=4 style="background-color:#b3dec0" | (Ser/S) Serine (p)

| UAU

|rowspan=2 style="background-color:#b3dec0" | (Tyr/Y) Tyrosine (p)

| UGU

|rowspan=2 style="background-color:#b3dec0" | (Cys/C) Cysteine (p)

! U

UUC

| UCC

| UAC

| UGC

! C

UUA

|rowspan=6 style="background-color:#ffe75f" | (Leu/L) Leucine (np)

| UCA

| UAA

| style="background-color:#B0B0B0;" | Stop (Ochre) *{{efn|group=note|name=historical|The historical basis for designating the stop codons as amber, ochre and opal is described in the autobiography of Sydney Brenner{{cite book|last1=Brenner|first1=Sydney|last2=Wolpert|first2=Lewis|date=2001|title=A Life in Science|publisher=Biomed Central Limited|pages=101–104|isbn=9780954027803}} and in a historical article by Bob Edgar.{{cite journal |vauthors=Edgar B |title=The genome of bacteriophage T4: an archeological dig |journal=Genetics |volume=168 |issue=2 |pages=575–82 |year=2004 |doi=10.1093/genetics/168.2.575 |pmid=15514035 |pmc=1448817 }} see pages 580–581}}

| UGA

| style="background-color:#B0B0B0;" | Stop (Opal) *{{efn|group=note|name=historical}}

! A

style="background-color:#97D8F7;" |UUG ⇒

| UCG

| UAG

| style="background-color:#B0B0B0;" | Stop (Amber) *{{efn|group=note|name=historical}}

| UGG

| style="background-color:#ffe75f;" | (Trp/W) Tryptophan (np)

! G

rowspan="4" | C

| CUU

| CCU

|rowspan=4 style="background-color:#ffe75f" | (Pro/P) Proline (np)

| CAU

|rowspan=2 style="background-color:#bbbfe0" | (His/H) Histidine (b)

|CGU

|rowspan=4 style="background-color:#bbbfe0" | (Arg/R) Arginine (b)

! U

CUC

|CCC

|CAC

|CGC

! C

CUA

|CCA

|CAA

|rowspan=2 style="background-color:#b3dec0" | (Gln/Q) Glutamine (p)

|CGA

! A

CUG

|CCG

|CAG

|CGG

! G

rowspan="4" | A

|AUU

|rowspan=3 style="background-color:#ffe75f" | (Ile/I) Isoleucine (np)

|ACU

|rowspan=4 style="background-color:#b3dec0" | (Thr/T) Threonine (p)

|AAU

|rowspan=2 style="background-color:#b3dec0" | (Asn/N) Asparagine (p)

|AGU

|rowspan=2 style="background-color:#b3dec0" | (Ser/S) Serine (p)

! U

AUC

|ACC

|AAC

|AGC

! C

AUA

|ACA

|AAA

|rowspan=2 style="background-color:#bbbfe0" | (Lys/K) Lysine (b)

|AGA

|rowspan=2 style="background-color:#bbbfe0" | (Arg/R) Arginine (b)

! A

style="background-color:#97D8F7;" |AUG ⇒

| style="background-color:#ffe75f;" | (Met/M) Methionine (np)

|ACG

|AAG

|AGG

! G

rowspan="4" | G

|GUU

|rowspan=4 style="background-color:#ffe75f" | (Val/V) Valine (np)

|GCU

|rowspan=4 style="background-color:#ffe75f" | (Ala/A) Alanine (np)

|GAU

|rowspan=2 style="background-color:#f8b7d3" | (Asp/D) Aspartic acid (a)

|GGU

|rowspan=4 style="background-color:#ffe75f" | (Gly/G) Glycine (np)

! U

GUC

|GCC

|GAC

|GGC

! C

GUA

|GCA

|GAA

|rowspan=2 style="background-color:#f8b7d3" | (Glu/E) Glutamic acid (a)

|GGA

! A

style="background-color:#97D8F7;" |GUG ⇒

|GCG

|GAG

|GGG

! G

As shown in the above table, NCBI table 1 includes the less-canonical start codons GUG and UUG.

=Inverse RNA codon table=

class="wikitable" style="vertical-align:top;"

|+ Inverse table for the standard genetic code (compressed using IUPAC notation){{cite web|url=http://publications.iupac.org/pac/1974/pdf/4003x0277.pdf|title=Abbreviations and Symbols for Nucleic Acids, Polynucleotides and Their Constituents|author=IUPAC—IUB Commission on Biochemical Nomenclature|publisher=International Union of Pure and Applied Chemistry|access-date=5 December 2020|archive-date=9 July 2021|archive-url=https://web.archive.org/web/20210709183441/http://publications.iupac.org/pac/1974/pdf/4003x0277.pdf|url-status=live}}

Amino acidRNA codonsCompressed

| rowspan=13 |

! Amino acid

RNA codonsCompressed
style="text-align:center;"| Ala, A

| GCU, GCC, GCA, GCG

| GCN

! style="text-align:center;"| Ile, I

| AUU, AUC, AUA

| AUH

style="text-align:center;"| Arg, R

| CGU, CGC, CGA, CGG; AGA, AGG

| CGN, AGR; or
CGY, MGR

! style="text-align:center;"| Leu, L

| CUU, CUC, CUA, CUG; UUA, UUG

| CUN, UUR; or
CUY, YUR

style="text-align:center;"| Asn, N

| AAU, AAC

| AAY

! style="text-align:center;"| Lys, K

| AAA, AAG

| AAR

style="text-align:center;"| Asp, D

| GAU, GAC

| GAY

! style="text-align:center;| Met, M

|colspan=2| AUG

style="text-align:center;"| Asn or Asp, B

| AAU, AAC; GAU, GAC

| RAY

! style="text-align:center;"| Phe, F

| UUU, UUC

| UUY

style="text-align:center;"| Cys, C

| UGU, UGC

| UGY

! style="text-align:center;"| Pro, P

| CCU, CCC, CCA, CCG

| CCN

style="text-align:center;"| Gln, Q

| CAA, CAG

| CAR

! style="text-align:center;"| Ser, S

| UCU, UCC, UCA, UCG; AGU, AGC

| UCN, AGY

style="text-align:center;"| Glu, E

| GAA, GAG

| GAR

! style="text-align:center;"| Thr, T

| ACU, ACC, ACA, ACG

| ACN

style="text-align:center;"| Gln or Glu, Z

| CAA, CAG; GAA, GAG

| SAR

! style="text-align:center;"| Trp, W

|colspan=2| UGG

style="text-align:center;"| Gly, G

| GGU, GGC, GGA, GGG

| GGN

! style="text-align:center;"| Tyr, Y

| UAU, UAC

| UAY

style="text-align:center;"| His, H

| CAU, CAC

| CAY

! style="text-align:center;"| Val, V

| GUU, GUC, GUA, GUG

| GUN

style="text-align:center;"| START

| AUG, CUG, UUG || HUG

! style="text-align:center;"| STOP

| UAA, UGA, UAG

| URA, UAG; or
UGA, UAR

=Standard DNA codon table=

class="wikitable" style="border:none; text-align:center;"

| Amino-acid biochemical properties

| style="background-color:#ffe75f; width: 50px;" | Nonpolar (np)

| style="background-color:#b3dec0; width: 50px;" | Polar (p)

| style="background-color:#bbbfe0; width: 50px;" | Basic (b)

| style="background-color:#f8b7d3; width: 50px;" | Acidic (a)

| style="border:none; width: 100px;" |

| style="background-color:#B0B0B0;" | Termination: stop codon *

| style="border:none; width: 10px;" |

| style="background-color:#97D8F7;" | Initiation: possible start codon ⇒

class="wikitable"

|+ Standard genetic code{{cite web|url=https://www.yourgenome.org/facts/what-does-dna-do|title=What does DNA do?|website=Your Genome|publisher=Welcome Genome Campus|access-date=12 January 2021|archive-url=https://web.archive.org/web/20201129044637/https://www.yourgenome.org/facts/what-does-dna-do|archive-date=29 November 2020|url-status=dead}}{{efn|group=note|The major difference between DNA and RNA is that thymine (T) is only found in the former. In RNA, it is replaced with uracil (U).{{cite web|url=https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH/DNA-Genetics/DNA-Genetics3.html|title=Genes|website=DNA, Genetics, and Evolution|publisher=Boston University|access-date=10 December 2020|archive-date=28 April 2020|archive-url=https://web.archive.org/web/20200428050259/http://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH/DNA-Genetics/DNA-Genetics3.html|url-status=live}} This is the only difference between the standard RNA codon table and the standard DNA codon table.}}

! rowspan=2 | 1st
base

! colspan=8 | 2nd base

! rowspan=2 | 3rd
base

colspan=2 style="width:150px;" | T

! colspan=2 style="width:150px;" | C

! colspan=2 style="width:150px;" | A

! colspan=2 style="width:150px;" | G

rowspan=4 | T

| {{{T|T}}}{{{T|T}}}{{{T|T}}}

|rowspan=2 style="background-color:#ffe75f" | (Phe/F) Phenylalanine (np)

| {{{T|T}}}C{{{T|T}}}

|rowspan=4 style="background-color:#b3dec0" | (Ser/S) Serine (p)

| {{{T|T}}}A{{{T|T}}}

|rowspan=2 style="background-color:#b3dec0" | (Tyr/Y) Tyrosine (p)

| {{{T|T}}}G{{{T|T}}}

|rowspan=2 style="background-color:#b3dec0" | (Cys/C) Cysteine (p)

! {{{T|T}}}

{{{T|T}}}{{{T|T}}}C

| {{{T|T}}}CC

| {{{T|T}}}AC

| {{{T|T}}}GC

! C

{{{T|T}}}{{{T|T}}}A

|rowspan=6 style="background-color:#ffe75f" | (Leu/L) Leucine (np)

| {{{T|T}}}CA

| {{{T|T}}}AA

| style="background-color:#B0B0B0;" | Stop (Ochre) *{{efn|group=note|name=historical}}

| {{{T|T}}}GA

| style="background-color:#B0B0B0;" | Stop (Opal) *{{efn|group=note|name=historical}}

! A

style="background-color:#97D8F7;" | {{{T|T}}}{{{T|T}}}G ⇒

| {{{T|T}}}CG

| {{{T|T}}}AG

| style="background-color:#B0B0B0;" | Stop (Amber) *{{efn|group=note|name=historical}}

| {{{T|T}}}GG

| style="background-color:#ffe75f;" | (Trp/W) Tryptophan (np)

! G

rowspan="4" | C

| C{{{T|T}}}{{{T|T}}}

| CC{{{T|T}}}

|rowspan=4 style="background-color:#ffe75f" | (Pro/P) Proline (np)

| CA{{{T|T}}}

|rowspan=2 style="background-color:#bbbfe0" | (His/H) Histidine (b)

|CG{{{T|T}}}

|rowspan=4 style="background-color:#bbbfe0" | (Arg/R) Arginine (b)

! {{{T|T}}}

C{{{T|T}}}C

|CCC

|CAC

|CGC

! C

C{{{T|T}}}A

|CCA

|CAA

|rowspan=2 style="background-color:#b3dec0" | (Gln/Q) Glutamine (p)

|CGA

! A

C{{{T|T}}}G

|CCG

|CAG

|CGG

! G

rowspan="4" | A

|A{{{T|T}}}{{{T|T}}}

|rowspan=3 style="background-color:#ffe75f" | (Ile/I) Isoleucine (np)

|AC{{{T|T}}}

|rowspan=4 style="background-color:#b3dec0" | (Thr/T) Threonine (p)

|AA{{{T|T}}}

|rowspan=2 style="background-color:#b3dec0" | (Asn/N) Asparagine (p)

|AG{{{T|T}}}

|rowspan=2 style="background-color:#b3dec0" | (Ser/S) Serine (p)

! {{{T|T}}}

A{{{T|T}}}C

|ACC

|AAC

|AGC

! C

A{{{T|T}}}A

|ACA

|AAA

|rowspan=2 style="background-color:#bbbfe0" | (Lys/K) Lysine (b)

|AGA

|rowspan=2 style="background-color:#bbbfe0" | (Arg/R) Arginine (b)

! A

style="background-color:#97D8F7;" |A{{{T|T}}}G ⇒

| style="background-color:#ffe75f;" | (Met/M) Methionine (np)

|ACG

|AAG

|AGG

! G

rowspan="4" | G

|G{{{T|T}}}{{{T|T}}}

|rowspan=4 style="background-color:#ffe75f" | (Val/V) Valine (np)

|GC{{{T|T}}}

|rowspan=4 style="background-color:#ffe75f" | (Ala/A) Alanine (np)

|GA{{{T|T}}}

|rowspan=2 style="background-color:#f8b7d3" | (Asp/D) Aspartic acid (a)

|GG{{{T|T}}}

|rowspan=4 style="background-color:#ffe75f" | (Gly/G) Glycine (np)

! {{{T|T}}}

G{{{T|T}}}C

|GCC

|GAC

|GGC

! C

G{{{T|T}}}A

|GCA

|GAA

|rowspan=2 style="background-color:#f8b7d3" | (Glu/E) Glutamic acid (a)

|GGA

! A

style="background-color:#97D8F7;" |G{{{T|T}}}G ⇒

|GCG

|GAG

|GGG

! G

=Inverse DNA codon table=

class="wikitable" style="vertical-align:top;"

|+ Inverse table for the standard genetic code (compressed using IUPAC notation)

Amino acidDNA codonsCompressed

| rowspan=13 |

! Amino acid

DNA codonsCompressed
style="text-align:center;"| Ala, A

| GC{{{T|T}}}, GCC, GCA, GCG

| GCN

! style="text-align:center;"| Ile, I

| A{{{T|T}}}{{{T|T}}}, A{{{T|T}}}C, A{{{T|T}}}A

| A{{{T|T}}}H

style="text-align:center;"| Arg, R

| CG{{{T|T}}}, CGC, CGA, CGG; AGA, AGG

| CGN, AGR; or
CGY, MGR

! style="text-align:center;"| Leu, L

| C{{{T|T}}}{{{T|T}}}, C{{{T|T}}}C, C{{{T|T}}}A, C{{{T|T}}}G; {{{T|T}}}{{{T|T}}}A, {{{T|T}}}{{{T|T}}}G

| C{{{T|T}}}N, {{{T|T}}}{{{T|T}}}R; or
C{{{T|T}}}Y, Y{{{T|T}}}R

style="text-align:center;"| Asn, N

| AA{{{T|T}}}, AAC

| AAY

! style="text-align:center;"| Lys, K

| AAA, AAG

| AAR

style="text-align:center;"| Asp, D

| GA{{{T|T}}}, GAC

| GAY

! style="text-align:center;| Met, M

|colspan=2| A{{{T|T}}}G

style="text-align:center;"| Asn or Asp, B

| AA{{{T|T}}}, AAC; GA{{{T|T}}}, GAC

| RAY

! style="text-align:center;"| Phe, F

| {{{T|T}}}{{{T|T}}}{{{T|T}}}, {{{T|T}}}{{{T|T}}}C

| {{{T|T}}}{{{T|T}}}Y

style="text-align:center;"| Cys, C

| {{{T|T}}}G{{{T|T}}}, {{{T|T}}}GC

| {{{T|T}}}GY

! style="text-align:center;"| Pro, P

| CC{{{T|T}}}, CCC, CCA, CCG

| CCN

style="text-align:center;"| Gln, Q

| CAA, CAG

| CAR

! style="text-align:center;"| Ser, S

| {{{T|T}}}C{{{T|T}}}, {{{T|T}}}CC, {{{T|T}}}CA, {{{T|T}}}CG; AG{{{T|T}}}, AGC

| {{{T|T}}}CN, AGY

style="text-align:center;"| Glu, E

| GAA, GAG

| GAR

! style="text-align:center;"| Thr, T

| AC{{{T|T}}}, ACC, ACA, ACG

| ACN

style="text-align:center;"| Gln or Glu, Z

| CAA, CAG; GAA, GAG

| SAR

! style="text-align:center;"| Trp, W

|colspan=2| {{{T|T}}}GG

style="text-align:center;"| Gly, G

| GG{{{T|T}}}, GGC, GGA, GGG

| GGN

! style="text-align:center;"| Tyr, Y

| {{{T|T}}}A{{{T|T}}}, {{{T|T}}}AC

| {{{T|T}}}AY

style="text-align:center;"| His, H

| CA{{{T|T}}}, CAC

| CAY

! style="text-align:center;"| Val, V

| G{{{T|T}}}{{{T|T}}}, G{{{T|T}}}C, G{{{T|T}}}A, G{{{T|T}}}G

| G{{{T|T}}}N

style="text-align:center;"| START

| ATG, TTG, GTG, CTG{{Cite web |title=Choose a start codon |url=https://depts.washington.edu/agro/genomes/students/stanstart.htm |access-date=2024-08-14 |website=depts.washington.edu}}|| NTG

! style="text-align:center;"| STOP

| {{{T|T}}}AA, {{{T|T}}}GA, {{{T|T}}}AG

| {{{T|T}}}RA, {{{T|T}}}AR

Alternative codons in other translation tables

{{Further|List of genetic codes}}

The genetic code was once believed to be universal: a codon would code for the same amino acid regardless of the organism or source. However, it is now agreed that the genetic code evolves, resulting in discrepancies in how a codon is translated depending on the genetic source.{{cite journal|last1=Osawa|first1=A|date=November 1993|title=Evolutionary changes in the genetic code|url=https://pubmed.ncbi.nlm.nih.gov/8281749/|journal=Comparative Biochemistry and Physiology|volume=106|issue=2|pages=489–94|doi=10.1016/0305-0491(93)90122-l|pmid=8281749|access-date=2020-12-05|archive-date=2020-12-06|archive-url=https://web.archive.org/web/20201206173716/https://pubmed.ncbi.nlm.nih.gov/8281749/|url-status=live}}{{cite journal |vauthors=Osawa S, Jukes TH, Watanabe K, Muto A|date=March 1992|title=Recent evidence for evolution of the genetic code|journal= Microbiological Reviews|volume=56|issue=1|pages=229–64|doi=10.1128/MR.56.1.229-264.1992|pmc=372862|pmid=1579111}} For example, in 1981, it was discovered that the use of codons AUA, UGA, AGA and AGG by the coding system in mammalian mitochondria differed from the universal code. Stop codons can also be affected: in ciliated protozoa, the universal stop codons UAA and UAG code for glutamine.{{efn|group=note|Euplotes octacarinatus is an exception.}} Four novel alternative genetic codes (numbered here 34–37) were discovered in bacterial genomes by Shulgina and Eddy, revealing the first sense codon changes in bacteria.{{cite journal |last1=Shulgina |first1=Yekaterina |last2=Eddy |first2=Sean R. |date=9 November 2021 |title=A computational screen for alternative genetic codes in over 250,000 genomes. |journal=eLife |volume=10 |doi=10.7554/eLife.71402|doi-access=free |pmid=34751130 |pmc=8629427 }} The following table displays these alternative codons.

class="wikitable" style="border:none; text-align:center;"

| Amino-acid biochemical properties

| style="background-color:#ffe75f; width: 50px;" | Nonpolar (np)

| style="background-color:#b3dec0; width: 50px;" | Polar (p)

| style="background-color:#bbbfe0; width: 50px;" | Basic (b)

| style="background-color:#f8b7d3; width: 50px;" | Acidic (a)

| style="border:none; width: 100px;" |

| style="background-color:#B0B0B0;" | Termination: stop codon *

class="wikitable sortable" style="text-align: center;"

|+ Comparison between codon translations with alternative and standard genetic codes

! scope="col" style="width: 200px;" | Code

! scope="col" style="width: 25px;" | Translation
table

! scope="col" style="width: 50px;" | DNA codon involved

! scope="col" style="width: 50px;" | RNA codon involved

! scope="col" style="width: 150px;" colspan="3" | Translation
with this code

! scope="col" style="width: 50px;" | Standard translation

! scope="col" class="unsortable" style="width: 100px;" | Notes

scope=row| Standard{{anchor|Translation table 1}}

|rowspan="1" | 1

|

|

|colspan="3" |

|

|Includes translation table 8 (plant chloroplasts).

scope=row rowspan="4"| Vertebrate mitochondrial

|rowspan="4" | 2

|AGA

|AGA

|colspan="3" style="background-color:#B0B0B0;" | Stop *

|style="background-color:#bbbfe0;" | Arg (R) (b)

|rowspan="4" |

AGG

| AGG

|colspan="3" style="background-color:#B0B0B0;" | Stop *

|style="background-color:#bbbfe0;" | Arg (R) (b)

ATA

| AUA

|colspan="3" style="background-color:#ffe75f;" | Met (M) (np)

|style="background-color:#ffe75f;" | Ile (I) (np)

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="8" | Yeast mitochondrial

|rowspan="8" | 3

| ATA

| AUA

|colspan="3" style="background-color:#ffe75f;" | Met (M) (np)

|style="background-color:#ffe75f;" | Ile (I) (np)

|rowspan="8" |

CTT

| CUU

|colspan="3" style="background-color:#b3dec0;" | Thr (T) (p)

|style="background-color:#ffe75f;" | Leu (L) (np)

CTC

| CUC

|colspan="3" style="background-color:#b3dec0;" | Thr (T) (p)

|style="background-color:#ffe75f;" | Leu (L) (np)

CTA

| CUA

|colspan="3" style="background-color:#b3dec0;" | Thr (T) (p)

|style="background-color:#ffe75f;" | Leu (L) (np)

CTG

| CUG

|colspan="3" style="background-color:#b3dec0;" | Thr (T) (p)

|style="background-color:#ffe75f;" | Leu (L) (np)

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

CGA

| CGA

|colspan="3" | absent

|style="background-color:#bbbfe0;" | Arg (R) (b)

CGC

| CGC

|colspan="3" | absent

|style="background-color:#bbbfe0;" | Arg (R) (b)

scope=row rowspan="1" | Mold, protozoan, and coelenterate mitochondrial + Mycoplasma / Spiroplasma

|rowspan="1" | 4

| TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="1" |Includes the translation table 7 (kinetoplasts).

scope=row rowspan="4" | Invertebrate mitochondrial

|rowspan="4" | 5

| AGA

| AGA

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

|rowspan="4" |

AGG

| AGG

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

ATA

| AUA

|colspan="3" style="background-color:#ffe75f;" | Met (M) (np)

|style="background-color:#ffe75f;" | Ile (I) (np)

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="2" | Ciliate, dasycladacean and Hexamita nuclear{{anchor|Translation table 6}}

|rowspan="2" | 6

| TAA

| UAA

|colspan="3" style="background-color:#b3dec0;" | Gln (Q) (p)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="2" |

TAG

| UAG

|colspan="3" style="background-color:#b3dec0;" | Gln (Q) (p)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="4" | Echinoderm and flatworm mitochondrial

|rowspan="4" | 9

| AAA

| AAA

|colspan="3" style="background-color:#b3dec0;" | Asn (N) (p)

|style="background-color:#bbbfe0;" | Lys (K) (b)

|rowspan="4" |

AGA

| AGA

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

AGG

| AGG

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="1" | Euplotid nuclear

|rowspan="1" | 10

| TGA

| UGA

|colspan="3" style="background-color:#b3dec0;" | Cys (C) (p)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="1" |

scope=row rowspan="1" | Bacterial, archaeal and plant plastid{{anchor|Translation table 11}}

|rowspan="1" | 11

|

|

|colspan="3" |

|

|rowspan="1" | See translation table 1.

scope=row rowspan="1" | Alternative yeast nuclear

|rowspan="1" | 12

| CTG

| CUG

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#ffe75f;" | Leu (L) (np)

|rowspan="1" |

scope=row rowspan="4" | Ascidian mitochondrial

|rowspan="4" | 13

| AGA

| AGA

|colspan="3" style="background-color:#ffe75f;" | Gly (G) (np)

|style="background-color:#bbbfe0;" | Arg (R) (b)

|rowspan="4" |

AGG

| AGG

|colspan="3" style="background-color:#ffe75f;" | Gly (G) (np)

|style="background-color:#bbbfe0;" | Arg (R) (b)

ATA

| AUA

|colspan="3" style="background-color:#ffe75f;" | Met (M) (np)

|style="background-color:#ffe75f;" | Ile (I) (np)

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="5" | Alternative flatworm mitochondrial

|rowspan="5" | 14

| AAA

| AAA

|colspan="3" style="background-color:#b3dec0;" | Asn (N) (p)

|style="background-color:#bbbfe0;" | Lys (K) (b)

|rowspan="5" |

AGA

| AGA

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

AGG

| AGG

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

TAA

| UAA

|colspan="3" style="background-color:#b3dec0;" | Tyr (Y) (p)

|style="background-color:#B0B0B0;" | Stop *

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="1" | Blepharisma nuclear

|rowspan="1" | 15

| TAG

| UAG

|colspan="3" style="background-color:#b3dec0;" | Gln (Q) (p)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="1" | As of Nov. 18, 2016: absent from the NCBI update. Similar to translation table 6.

scope=row rowspan="1" | Chlorophycean mitochondrial

|rowspan="1" | 16

| TAG

| UAG

|colspan="3" style="background-color:#ffe75f;" | Leu (L) (np)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="1" |

scope=row rowspan="5" | Trematode mitochondrial

|rowspan="5" | 21

| TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="5" |

ATA

| AUA

|colspan="3" style="background-color:#ffe75f;" | Met (M) (np)

|style="background-color:#ffe75f;" | Ile (I) (np)

AGA

| AGA

|colspan="3" style="background-color:#b3dec0;" | Ser (S)

|style="background-color:#bbbfe0;" | Arg (R) (b)

AGG

| AGG

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

AAA

| AAA

|colspan="3" style="background-color:#b3dec0;" | Asn (N) (p)

|style="background-color:#bbbfe0;" | Lys (K) (b)

scope=row rowspan="2" | Scenedesmus obliquus mitochondrial

|rowspan="2" | 22

| TCA

| UCA

|colspan="3" style="background-color:#B0B0B0;" | Stop *

|style="background-color:#b3dec0;" | Ser (S) (p)

|rowspan="2" |

TAG

| UAG

|colspan="3" style="background-color:#ffe75f;" | Leu (L) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="1" | Thraustochytrium mitochondrial

|rowspan="1" | 23

| TTA

| UUA

|colspan="3" style="background-color:#B0B0B0;" | Stop *

|style="background-color:#ffe75f;" | Leu (L) (np)

|rowspan="1" |Similar to translation table 11.

scope=row rowspan="3" | Pterobranchia mitochondrial{{anchor|Translation table 24}}

|rowspan="3" | 24

| AGA

| AGA

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

|rowspan="3" |

AGG

| AGG

|colspan="3" style="background-color:#bbbfe0;" | Lys (K) (b)

|style="background-color:#bbbfe0;" | Arg (R) (b)

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="1" | Candidate division SR1 and Gracilibacteria

|rowspan="1" | 25

| TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Gly (G) (np)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="1" |

scope=row rowspan="1" | Pachysolen tannophilus nuclear

|rowspan="1" | 26

| CTG

| CUG

|colspan="3" style="background-color:#ffe75f;" | Ala (A) (np)

|style="background-color:#ffe75f;" | Leu (L) (np)

|rowspan="1" |

scope=row rowspan="3" | Karyorelict nuclear

|rowspan="3" scope="col" style="width: 50px;" | 27

| TAA

| UAA

|colspan="3" style="background-color:#b3dec0;" | Gln (Q) (p)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="3" |

TAG

| UAG

|colspan="3" style="background-color:#b3dec0;" | Gln (Q) (p)

|style="background-color:#B0B0B0;" | Stop *

TGA

| UGA

|style="width: 50px; background-color:#B0B0B0;" | Stop *

style="width: 10px;" | orstyle="width: 50px; background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="3" | Condylostoma nuclear

|rowspan="3" | 28

| TAA

| UAA

|style="width: 50px; background-color:#B0B0B0;" | Stop * || or || style="width: 50px; background-color:#b3dec0;" | Gln (Q) (p)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="3" |

TAG

| UAG

|style="width: 50px; background-color:#B0B0B0;" | Stop *

orstyle="width: 50px; background-color:#b3dec0;" | Gln (Q) (p)

|style="background-color:#B0B0B0;" | Stop *

TGA

| UGA

|style="width: 50px; background-color:#B0B0B0;" | Stop *

orstyle="width: 50px; background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="2" | Mesodinium nuclear

|rowspan="2" | 29

| TAA

| UAA

|colspan="3" style="background-color:#b3dec0;" | Tyr (Y) (p)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="2" |

TAG

| UAG

|colspan="3" style="background-color:#b3dec0;" | Tyr (Y) (p)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="2" | Peritrich nuclear

|rowspan="2" | 30

| TA

| UAA

|colspan="3" style="background-color:#f8b7d3;" | Glu (E) (a)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="2" |

TAG

| UAG

|colspan="3" style="background-color:#f8b7d3;" | Glu (E) (a)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="3" | Blastocrithidia nuclear

|rowspan="3" | 31

| TAA

| UAA

|style="width: 50px; background-color:#B0B0B0;" | Stop * || or || style="width: 50px; background-color:#f8b7d3;" | Glu (E) (a)

|style="background-color:#B0B0B0;" | Stop *

|rowspan="3" |

TAG

| UAG

|style="width: 50px; background-color:#B0B0B0;" | Stop *

orstyle="width: 50px; background-color:#f8b7d3;" | Glu (E) (a)

|style="background-color:#B0B0B0;" | Stop *

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="4" | Cephalodiscidae mitochondrial code

|rowspan="4" | 33

| AGA

| AGA

|colspan="3" style="background-color:#b3dec0;" | Ser (S) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

|rowspan="4" |Similar to translation table 24.

AGG

| AGG

|colspan="3" style="background-color:#bbbfe0;" | Lys (K) (b)

|style="background-color:#bbbfe0;" | Arg (R) (b)

TAA

| UAA

|colspan="3" style="background-color:#b3dec0;" | Tyr (Y) (p)

|style="background-color:#B0B0B0;" | Stop *

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#B0B0B0;" | Stop *

scope=row rowspan="1" | Enterosoma

|rowspan="1" | 34

| AGG

| AGG

|colspan="3" style="background-color:#ffe75f;" | Met (M) (np)

|style="background-color:#bbbfe0;" | Arg (R) (b)

scope=row rowspan="1" | Peptacetobacter

|rowspan="1" | 35

| CGG

| CGG

|colspan="3" style="background-color:#b3dec0;" | Gln (Q) (p)

|style="background-color:#bbbfe0;" | Arg (R) (b)

scope=row rowspan="1" | Anaerococcus and Onthovivens

|rowspan="1" | 36

| CGG

| CGG

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#bbbfe0;" | Arg (R) (b)

scope=row rowspan="3" | Absconditabacteraceae

|rowspan="3" | 37

| CGA

| CGA

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#bbbfe0;" | Arg (R) (b)

CGG

| CGG

|colspan="3" style="background-color:#ffe75f;" | Trp (W) (np)

|style="background-color:#bbbfe0;" | Arg (R) (b)

TGA

| UGA

|colspan="3" style="background-color:#ffe75f;" | Gly (G) (np)

|style="background-color:#B0B0B0;" | Stop *

See also

{{Portal|Biology|Evolutionary biology}}

Notes

{{notelist|group=note}}

References

{{Reflist}}

Further reading

  • {{cite journal|vauthors=Chevance FV, Hughes KT|date=2 May 2017|title=Case for the genetic code as a triplet of triplets|url= |journal=Proceedings of the National Academy of Sciences of the United States of America|volume=114|issue=18|pages=4745–4750|doi=10.1073/pnas.1614896114|jstor=26481868|pmid=28416671|pmc=5422812|doi-access=free|bibcode=2017PNAS..114.4745C }}
  • {{cite journal|vauthors=Dever TE|date=29 June 2012|title=A New Start for Protein Synthesis|url=https://zenodo.org/record/1230920|jstor=41585146|journal=Science|publisher=American Association for the Advancement of Science|volume=336|issue=6089|pages=1645–1646|doi=10.1126/science.1224439|pmid=22745408|bibcode=2012Sci...336.1645D|s2cid=44326947|access-date=17 October 2020|archive-date=8 June 2022|archive-url=https://web.archive.org/web/20220608001506/https://zenodo.org/record/1230920|url-status=live}}
  • {{cite journal|vauthors=Gardner RS, Wahba AJ, Basilio C, Miller RS, Lengyel P, Speyer JF|title=Synthetic polynucleotides and the amino acid code. VII|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=48|issue=12|pages=2087–2094|date=December 1962|pmid=13946552|pmc=221128|doi=10.1073/pnas.48.12.2087|bibcode=1962PNAS...48.2087G|doi-access=free}}
  • {{cite journal|vauthors=Nakamoto T|title=Evolution and the universality of the mechanism of initiation of protein synthesis|journal=Gene|volume=432|issue=1–2|pages=1–6|date=March 2009 |pmid=19056476|doi=10.1016/j.gene.2008.11.001}}
  • {{cite journal|vauthors=Wahba AJ, Gardner RS, Basilio C, Miller RS, Speyer JF, Lengyel P|title=Synthetic polynucleotides and the amino acid code. VIII|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=49|issue=1|pages=116–122|date=January 1963|pmid=13998282|pmc=300638|doi=10.1073/pnas.49.1.116|bibcode=1963PNAS...49..116W |doi-access=free}}
  • {{cite journal|vauthors=Yanofsky C|date=9 March 2007|title=Establishing the Triplet Nature of the Genetic Code|journal=Cell|volume=128|issue=5|pages=815–818|doi=10.1016/j.cell.2007.02.029|pmid=17350564|s2cid=14249277|doi-access=free}}
  • {{cite book|vauthors=Zaneveld J, Hamady M, Sueoka N, Knight R|title=Bioinformatics for DNA Sequence Analysis|date=28 February 2009|chapter=CodonExplorer: An Interactive Online Database for the Analysis of Codon Usage and Sequence Composition|series=Methods in Molecular Biology|volume=537|pages=207–232|doi=10.1007/978-1-59745-251-9_10|pmid=19378146|pmc=2953947|isbn=978-1-58829-910-9}}