2019 in paleontology
{{Short description|none}}
{{Year nav topic20|2019|paleontology|paleobotany|arthropod paleontology|paleoentomology|paleomalacology|paleoichthyology|reptile paleontology|archosaur paleontology|mammal paleontology}}
{{Year in paleontology header}}
Flora
=Plants=
{{Main|2019 in paleobotany}}
=Fungi=
==Paleomycological research==
- Fossil sporocarps indistinguishable from sporocarps of members of the extant genus Stemonitis are described from the Cretaceous amber from Myanmar by Rikkinen, Grimaldi & Schmidt (2019).{{Cite journal|author1=Jouko Rikkinen |author2=David A. Grimaldi |author3=Alexander R. Schmidt |year=2019 |title=Morphological stasis in the first myxomycete from the Mesozoic, and the likely role of cryptobiosis |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 19730 |doi=10.1038/s41598-019-55622-9 |pmid=31874965 |pmc=6930221 |bibcode=2019NatSR...919730R }}
- A study on the impact of major historical events such as the Cretaceous–Paleogene extinction event on the evolution of two major subclasses of lichen-forming fungi (Lecanoromycetidae and Ostropomycetidae) is published by Huang et al. (2019).{{Cite journal|author1=Jen-Pan Huang |author2=Ekaphan Kraichak |author3=Steven D. Leavitt |author4=Matthew P. Nelsen |author5=H. Thorsten Lumbsch |year=2019 |title=Accelerated diversifications in three diverse families of morphologically complex lichen-forming fungi link to major historical events |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 8518 |doi=10.1038/s41598-019-44881-1 |pmid=31253825 |pmc=6599062 |bibcode=2019NatSR...9.8518H }}
- Description of crustose lichens from European Paleogene amber is published by Kaasalainen et al. (2019).{{Cite journal|author1=Ulla Kaasalainen |author2=Martin Kukwa |author3=Jouko Rikkinen |author4=Alexander R. Schmidt |year=2019 |title=Crustose lichens with lichenicolous fungi from Paleogene amber |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 10360 |doi=10.1038/s41598-019-46692-w |pmid=31316089 |pmc=6637111 |bibcode=2019NatSR...910360K }}
- Fungi belonging to the genera Periconia, Penicillium and Scopulariopsis, representing the first and the oldest known fossil record of these taxa, are described from the Eocene Baltic amber by Tischer et al. (2019).{{Cite journal|author1=Marta Tischer |author2=Michał Gorczak |author3=Błażej Bojarski |author4=Julia Pawłowska |author5=Christel Hoffeins |author6=Hans Werner Hoffeins |author7=Marta Wrzosek |year=2019 |title=New fossils of ascomycetous anamorphic fungi from Baltic amber |journal=Fungal Biology |volume=123 |issue=11 |pages=804–810 |doi=10.1016/j.funbio.2019.08.003 |pmid=31627856 |bibcode=2019FunB..123..804T |s2cid=202008839 }}
Sponges
=Research=
- Sponge spicules and spicule-like structures that probably represent sponge fossils are described from four sections of the Ediacaran-Cambrian boundary interval in the Yangtze Gorges (China) by Chang et al. (2019).{{Cite journal|author1=Shan Chang |author2=Lei Zhang |author3=Sébastien Clausen |author4=David J. Bottjer |author5=Qinglai Feng |year=2019 |title=The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems |journal=Precambrian Research |volume=333 |pages=Article 105438 |doi=10.1016/j.precamres.2019.105438 |bibcode=2019PreR..33305438C |s2cid=202174665 |doi-access=free }}
- A study evaluating how distribution patterns of non-lithistid spiculate sponges changed during the Cambrian explosion and the Great Ordovician Biodiversification Event is published by Botting & Muir (2019).{{Cite journal|author1=Joseph P. Botting |author2=Lucy A. Muir |year=2019 |title=Dispersal and endemic diversification: Differences in non-lithistid spiculate sponge faunas between the Cambrian Explosion and the GOBE |journal=Palaeoworld |volume=28 |issue=1–2 |pages=24–36 |doi=10.1016/j.palwor.2018.03.002 |s2cid=135439485 }}
=New taxa=
Cnidarians
=Research=
- A study on the growth characteristics of three species of Ordovician corals belonging to the genus Agetolites from the Xiazhen Formation (China), and on their implications for inferring phylogenetic relationships of this genus, is published by Sun, Elias & Lee (2019).{{Cite journal|author1=Ning Sun |author2=Robert J. Elias |author3=Dong-Jin Lee |year=2019 |title=Corallite increase in the Late Ordovician coral Agetolites, and its taxonomic implication |journal=Journal of Paleontology |volume=93 |issue=5 |pages=839–855 |doi=10.1017/jpa.2019.14 |bibcode=2019JPal...93..839S |s2cid=133656532 }}
- A study on a large colonial rugose coral from the Ordovician Kope Formation (Kentucky, United States) is published by Harris et al. (2019).{{Cite journal|author1=Felicia Harris |author2=Heather Alley |author3=Ron Fine |author4=Bradley Deline |year=2019 |title=Rare colonial corals from the Upper Ordovician Kope Formation of Kentucky and their role in ephemeral invasions in the Edenian |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=533 |pages=Article 109279 |doi=10.1016/j.palaeo.2019.109279 |bibcode=2019PPP...53309279H |s2cid=200064214 }}
- A study on the morphology, growth characteristics and phylogenetic relationships of the Silurian tabulate coral Halysites catenularius is published by Liang, Elias & Lee (2019).{{Cite journal|author1=Kun Liang |author2=Robert J. Elias |author3=Dong-Jin Lee |year=2019 |title=Morphometrics, growth characteristics, and phylogenetic implications of Halysites catenularius (Tabulata, Silurian, Estonia) |journal=Journal of Paleontology |volume=93 |issue=2 |pages=215–231 |doi=10.1017/jpa.2018.73 |bibcode=2019JPal...93..215L |s2cid=135341052 }}
- Fossils of tabulate corals without septa, representing the first evidence that unmetamorphosed, slightly indurated Paleozoic sandstones crop out amidst the deposits of the Atlantic Coastal Plain Province of the United States, are reported from South Carolina by Landmeyer et al. (2019).{{Cite journal|author1=James E. Landmeyer |author2=Francis Tourneur |author3=Julien Denayer |author4=Mikołaj K. Zapalski |year=2019 |title=Fossil tabulate corals reveal outcrops of Paleozoic sandstones in the Atlantic Coastal Plain Province, Southeastern USA |journal=PLOS ONE |volume=14 |issue=10 |pages=e0224248 |doi=10.1371/journal.pone.0224248 |pmid=31648249 |pmc=6812764 |bibcode=2019PLoSO..1424248L |doi-access=free }} This finding is strongly disputed because all other rocks of Paleozoic age in the study area are greatly metamorphosed, the rocks where the fossils were found are traditionally mapped as the Cretaceous Middendorf Formation, and it is suggested that the fossils in question are the bark of Cretaceous conifers in Cretaceous sandstone, instead of Paleozoic corals in Paleozoic sandstone.{{Cite journal|doi=10.1371/journal.pone.0224248|title=Fossil tabulate corals reveal outcrops of Paleozoic sandstones in the Atlantic Coastal Plain Province, Southeastern USA|journal=PLOS ONE|date=24 October 2019|volume=14|issue=10|pages=e0224248|last1=Landmeyer|first1=James E.|last2=Tourneur|first2=Francis|last3=Denayer|first3=Julien|last4=Zapalski|first4=Mikołaj K.|pmid=31648249|pmc=6812764|bibcode=2019PLoSO..1424248L|doi-access=free}}
- A study aiming to determine whether ecological selection based on physiology, behavior, habitat, etc. played a role in the long-term survival of corals during the late Paleocene and early Eocene is published by Weiss & Martindale (2019).{{cite journal |author1=Anna M. Weiss |author2=Rowan C. Martindale |year=2019 |title=Paleobiological traits that determined scleractinian coral survival and proliferation during the late Paleocene and early Eocene hyperthermals |journal=Paleoceanography and Paleoclimatology |volume=34 |issue=2 |pages=252–274 |doi=10.1029/2018PA003398 |bibcode=2019PaPa...34..252W |s2cid=92040247 }}
- Fossils of Acropora prolifera dating back to the Pleistocene are reported by Precht et al. (2019).{{Cite journal|author1=William F. Precht |author2=Stephen V. Vollmer |author3=Alexander B. Modys |author4=Les Kaufman |year=2019 |title=Fossil Acropora prolifera (Lamarck, 1816) reveals coral hybridization is not only a recent phenomenon |journal=Proceedings of the Biological Society of Washington |volume=132 |issue=1 |pages=40–55 |doi=10.2988/18-D-18-00011 |s2cid=146062712 }}
- A study on the distribution of reef corals during the last interglacial is published by Jones et al. (2019), who also evaluate the utility of fossil reef coral data for predictions of impact of future climate changes on reef corals.{{Cite journal|author1=Lewis A. Jones |author2=Philip D. Mannion |author3=Alexander Farnsworth |author4=Paul J. Valdes |author5=Sarah-Jane Kelland |author6=Peter A. Allison |year=2019 |title=Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change |journal=Royal Society Open Science |volume=6 |issue=4 |pages=Article ID 182111 |doi=10.1098/rsos.182111 |pmid=31183138 |pmc=6502368 |bibcode=2019RSOS....682111J }}
- A study on a problematic fossil specimen from the Devonian Ponta Grossa Formation (Brazil), assigned by different authors to the species Serpulites sica or Euzebiola clarkei, is published by Van Iten et al. (2019), who interpret this fossil as a medusozoan capable of clonal budding, and transfer it to the genus Sphenothallus.{{Cite journal|author1=Heyo Van Iten |author2=Juliana De Moraes Leme |author3=Marcello G. Simões |author4=Mario Cournoyer |year=2019 |title=Clonal colony in the Early Devonian cnidarian Sphenothallus from Brazil |journal=Acta Palaeontologica Polonica |volume=64 |issue=2 |pages=409–416 |doi=10.4202/app.00576.2018 |s2cid=134452962 |doi-access=free }}
- The oldest mesophotic coral ecosystems, dating back to middle Silurian, from the Lower Visby Beds on Gotland have been described by Zapalski & Berkowski.{{Cite journal|last1=Zapalski|first1=Mikołaj K.|last2=Berkowski|first2=Błażej|date=2019-02-01|title=The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis|journal=Coral Reefs|language=en|volume=38|issue=1|pages=137–147|doi=10.1007/s00338-018-01761-w|issn=1432-0975|bibcode=2019CorRe..38..137Z|s2cid=56895138|doi-access=free}} These communities, dominated by platy corals give also clues about the onset of coral-algal symbiosis.
- Mihaljević (2019) describes new fossil coral collections from the Oligocene and Miocene of Sarawak (Malaysia), Negros Island and Cebu (the Philippines).{{cite journal |author=Morana Mihaljević |year=2019 |title=Oligocene‑Miocene Scleractinians from the Central Indo-Pacific: Malaysian Borneo and the Philippines |journal=Palaeontologia Electronica |volume=22 |issue=3 |pages=Article number 22.3.61 |doi=10.26879/978 |s2cid=207819249 |doi-access=free }}
- A study on the anatomy, ontogeny and taxonomy of the Norian hydrozoan Heterastridium, based on data from fossil specimens from central Iran and south Turkey, is published by Senowbari-Daryan & Link (2019).{{Cite journal|author1=Baba Senowbari-Daryan |author2=Michael Link |year=2019 |title=Heterastridium (Hydrozoa) from the Norian of Iran and Turkey |journal=Palaeontographica Abteilung A |volume=314 |issue=4–6 |pages=81–159 |doi=10.1127/pala/2019/0097 |bibcode=2019PalAA.314...81S |s2cid=213352982 }}
=New taxa=
Arthropods
{{Main|2019 in arthropod paleontology|2019 in insect paleontology}}
Bryozoans
Brachiopods
{{main|2019 in brachiopod paleontology}}
Molluscs
{{Main|2019 in paleomalacology}}
Echinoderms
=Research=
- A study on the morphology and phylogenetic relationships of the putative stem-echinoderm Yanjiahella biscarpa is published by Topper et al. (2019);{{Cite journal|author1=Timothy P. Topper |author2=Junfeng Guo |author3=Sébastien Clausen |author4=Christian B. Skovsted |author5=Zhifei Zhang |year=2019 |title=A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 1366 |doi=10.1038/s41467-019-09059-3 |pmid=30911013 |pmc=6433856 |bibcode=2019NatCo..10.1366T }} the study is subsequently criticized by Zamora et al. (2020).{{Cite journal|author1=Samuel Zamora |author2=David F. Wright |author3=Rich Mooi |author4=Bertrand Lefebvre |author5=Thomas E. Guensburg |author6=Przemysław Gorzelak |author7=Bruno David |author8=Colin D. Sumrall |author9=Selina R. Cole |author10=Aaron W. Hunter |author11=James Sprinkle |author12=Jeffrey R. Thompson |author13=Timothy A. M. Ewin |author14=Oldřich Fatka |author15=Elise Nardin |author16=Mike Reich |author17=Martina Nohejlová |author18=Imran A. Rahman |year=2020 |title=Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella |journal=Nature Communications |volume=11 |issue=1 |pages=Article number 1286 |doi=10.1038/s41467-020-14920-x |pmid=32152310 |pmc=7063041 |bibcode=2020NatCo..11.1286Z }}{{Cite journal|author1=Timothy P. Topper |author2=Junfeng Guo |author3=Sébastien Clausen |author4=Christian B. Skovsted |author5=Zhifei Zhang |year=2020 |title=Reply to "Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella" |journal=Nature Communications |volume=11 |issue=1 |pages=Article number 1287 |doi=10.1038/s41467-020-14922-9 |pmid=32152290 |pmc=7062690 |bibcode=2020NatCo..11.1287T }}
- Soft tissue traces found in conjunction with skeletal molds are described in stylophorans by Lefebvre et al. (2019), who interpret their findings as supporting echinoderm and not hemichordate-like affinities of stylophorans.{{cite journal |author1=Bertrand Lefebvre |author2=Thomas E. Guensburg |author3=Emmanuel L.O. Martin |author4=Rich Mooi |author5=Elise Nardin |author6=Martina Nohejlova |author7=Farid Saleh |author8=Khaoula Kouraïss |author9=Khadija El Hariri |author10=Bruno David |year=2019 |title=Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes |journal=Geobios |volume=52 |pages=27–36 |doi=10.1016/j.geobios.2018.11.001 |bibcode=2019Geobi..52...27L |s2cid=135417114 |url=https://hal.archives-ouvertes.fr/hal-02014812/file/GEOBIO_2018_75_Original_V0.pdf |access-date=2021-02-21 |archive-date=2021-04-29 |archive-url=https://web.archive.org/web/20210429040317/https://hal.archives-ouvertes.fr/hal-02014812/file/GEOBIO_2018_75_Original_V0.pdf |url-status=live }}
- A study on the morphology and phylogenetic relationships of the lepidocystoid echinoderm Vyscystis is published by Nohejlová et al. (2019).{{cite journal |author1=Martina Nohejlová |author2=Elise Nardin |author3=Oldřich Fatka |author4=Libor Kašička |author5=Michal Szabad |year=2019 |title=Morphology, palaeoecology and phylogenetic interpretation of the Cambrian echinoderm Vyscystis (Barrandian area, Czech Republic) |journal=Journal of Systematic Palaeontology |volume=17 |issue=19 |pages=1619–1634 |doi=10.1080/14772019.2018.1541485 |bibcode=2019JSPal..17.1619N |s2cid=92231073 }}
- A study on the phylogenetic relationships of diploporitan blastozoans is published by Sheffield & Sumrall (2019).{{Cite journal|author1=Sarah L. Sheffield |author2=Colin D. Sumrall |year=2019 |title=The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms |journal=Journal of Paleontology |volume=93 |issue=4 |pages=740–752 |doi=10.1017/jpa.2019.2 |bibcode=2019JPal...93..740S |s2cid=133798442 }}
- A study on the morphology of the feeding ambulacral system in the Ordovician diploporitan Eumorphocystis, as indicated by data from well-preserved specimens from the Bromide Formation (Oklahoma, United States), is published by Sheffield & Sumrall (2019), who interpret their findings as indicating that Eumorphocystis was closely related to crinoids and that crinoids are nested within blastozoans;{{Cite journal|author1=Sarah L. Sheffield |author2=Colin D. Sumrall |year=2019 |title=A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids |journal=Palaeontology |volume=62 |issue=1 |pages=163–173 |doi=10.1111/pala.12396 |bibcode=2019Palgy..62..163S |s2cid=134585363 |url=http://osf.io/w4myr/ }} their conclusions about the relationship between Eumorphocystis and crinoids are subsequently contested by Guensburg et al. (2020).{{cite journal |author1=Thomas E. Guensburg |author2=James Sprinkle |author3=Rich Mooi |author4=Bertrand Lefebvre |year=2020 |title=Evolutionary significance of the blastozoan Eumorphocystis and its pseudo-arms |journal=Journal of Paleontology |volume=95 |issue=2 |pages=327–343 |doi=10.1017/jpa.2020.84 |issn=0022-3360 |s2cid=228841638 |url=https://hal.archives-ouvertes.fr/hal-03004489/file/MS%20R1_%232_TG.pdf |access-date=2021-01-21 |archive-date=2021-04-29 |archive-url=https://web.archive.org/web/20210429133433/https://hal.archives-ouvertes.fr/hal-03004489/file/MS%20R1_%232_TG.pdf |url-status=live }}
- A study on the morphology and phylogenetic relationships of Macurdablastus uniplicatus is published by Bauer, Waters & Sumrall (2019).{{Cite journal|author1=Jennifer E. Bauer |author2=Johnny A. Waters |author3=Colin D. Sumrall |year=2019 |title=Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata) |journal=Palaeontology |volume=62 |issue=6 |pages=1003–1013 |doi=10.1111/pala.12439 |bibcode=2019Palgy..62.1003B |s2cid=200031342 |doi-access=free }}
- A study on the morphology and phylogenetic relationships of Hexedriocystis is published online by Zamora & Sumrall (2019), who consider this taxon to be a blastozoan.{{cite book |author1=Samuel Zamora |author2=Colin Sumrall |year=2019 |chapter=Hexedriocystis, an aberrant echinoderm from the Upper Ordovician of Morocco |editor1=A. W. Hunter |editor2=J. J. Álvaro |editor3=B. Lefebvre |editor4=P. van Roy |editor5=S. Zamora |title=The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco |series=Geological Society, London, Special Publications |volume=485 |publisher=The Geological Society of London |pages= SP485–2017–213|doi=10.1144/SP485-2017-213 |s2cid=134603420 }}
- A study on the paleoecology of the specimens of the edrioasteroid Neoisorophusella lanei preserved in limestone slabs from the Carboniferous (Chesterian) Kinkaid Formation (Illinois, United States) is published by Shroat-Lewis, Greenwood & Sumrall (2019).{{Cite journal|author1=René A. Shroat-Lewis |author2=Emily N. Greenwood |author3=Colin D. Sumrall |year=2019 |title=Paleoecologic analysis of edrioasteroid (Echinodermata) encrusted slabs from the Chesterian (upper Mississippian) Kinkaid Limestone of southern Illinois |journal=PALAIOS |volume=34 |issue=3 |pages=146–158 |doi=10.2110/palo.2018.061 |bibcode=2019Palai..34..146S |s2cid=133886514 }}
- A study on the morphology of Cupulocrinus and on its implications for inferring the origin of the flexible crinoids is published by Peter (2019).{{cite journal |author=M.E.Peter |year=2019 |title=Aberrations in the infrabasal circlet of the cladid crinoid genus Cupulocrinus (Echinodermata) and implications for the origin of flexible crinoids |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=522 |pages=52–61 |doi=10.1016/j.palaeo.2019.03.002 |bibcode=2019PPP...522...52P |s2cid=134102417 |doi-access=free }}
- A study on the phylogenetic relationships of diplobathrid crinoids is published by Cole (2019).{{Cite journal|author=Selina R. Cole |year=2019 |title=Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata) |journal=Palaeontology |volume=62 |issue=3 |pages=357–373 |doi=10.1111/pala.12401 |bibcode=2019Palgy..62..357C |s2cid=135180540 |doi-access=free }}
- A study on the biological and ecological controls on duration of diplobathrid crinoid genera is published online by Cole (2019).{{Cite journal|author=Selina R. Cole |year=2019 |title=Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny |journal=Paleobiology |volume=47 |issue=2 |pages=251–270 |doi=10.1017/pab.2019.37 |s2cid=209592152 }}
- A study on the macro-evolutionary patterns of body-size trends of cyrtocrinid crinoids is published by Brom (2019).{{Cite journal|author=Krzysztof R. Brom |year=2019 |title=Body-size trends of cyrtocrinids (Crinoidea, Cyrtocrinida) |journal=Annales de Paléontologie |volume=105 |issue= 2|pages= 109–118|doi=10.1016/j.annpal.2018.12.002 |bibcode=2019AnPal.105..109B |s2cid=134427588 }}
- A study on patterns of paleocommunity structure and niche partitioning in crinoids from the Ordovician (Katian) Brechin Lagerstätte (Ontario, Canada) is published by Cole, Wright & Ausich (2019).{{Cite journal|author1=Selina R. Cole |author2=David F. Wright |author3=William I. Ausich |year=2019 |title=Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician) |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=521 |pages=82–98 |doi=10.1016/j.palaeo.2019.02.006 |bibcode=2019PPP...521...82C |s2cid=135129430 |doi-access=free }}
- A study on the anatomy of the nervous and circulatory systems of the Cretaceous crinoid Decameros ricordeanus and on the phylogenetic relationships of this species is published online by Saulsbury & Zamora (2019).{{Cite journal|author1=James Saulsbury |author2=Samuel Zamora |year=2019 |title=The nervous and circulatory systems of a Cretaceous crinoid: preservation, palaeobiology and evolutionary significance |journal=Palaeontology |volume=63 |issue=2 |pages=243–253 |doi=10.1111/pala.12452 |hdl=2027.42/154347 |s2cid=210622230 |hdl-access=free }}
- A study on the substrate preference in stem group sea urchins during the Carboniferous Period will be published by Thompson & Bottjer (2019).{{cite journal |author1=Jeffrey R. Thompson |author2=David J. Bottjer |year=2019 |title=Quantitative analysis of substrate preference in Carboniferous stem group echinoids |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=513 |pages=35–51 |doi=10.1016/j.palaeo.2018.06.018 |bibcode=2019PPP...513...35T |s2cid=133856254 |doi-access=free }}
- A study on Early Triassic recovery of sea urchins after the Permian–Triassic extinction event is published by Pietsch et al. (2019).{{cite journal |author1=Carlie Pietsch |author2=Kathleen A. Ritterbush |author3=Jeffrey R. Thompson |author4=Elizabeth Petsios |author5=David J. Bottjer |year=2019 |title=Evolutionary models in the Early Triassic marine realm |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=513 |pages=65–85 |doi=10.1016/j.palaeo.2017.12.016 |bibcode=2019PPP...513...65P |s2cid=134281291 }}
- A fossil brittle star belonging to the genus Ophiopetra, representing the first record of articulated brittle star from the Mesozoic of South America reported so far, is described from the Lower Cretaceous Agua de la Mula Member of the Agrio Formation (Argentina) by Fernández et al. (2019), who transfer the genus Ophiopetra to the family Ophionereididae within the order Amphilepidida.{{cite journal |author1=Diana Fernández |author2=Luciana Giachetti |author3=Sabine Stöhr |author4=Ben Thuy |author5=Damián Perez |author6=Marcos Comerio |author7=Pablo Pazos |year=2019 |title=Brittle stars from the Lower Cretaceous of Patagonia: first ophiuroid articulated remains for the Mesozoic of South America |journal=Andean Geology |volume=46 |issue=2 |pages=421–432 |doi=10.5027/andgeoV46n2-3157 |s2cid=198429041 |url=http://www.andeangeology.cl/index.php/revista1/article/view/V46n2-3157/ |doi-access=free |hdl=11336/97700 |hdl-access=free |access-date=2020-03-04 |archive-date=2020-06-02 |archive-url=https://web.archive.org/web/20200602034344/http://www.andeangeology.cl/index.php/revista1/article/view/V46n2-3157 |url-status=live }}
=New taxa=
Conodonts
=Research=
- A study on the feeding habits of conodonts, as indicated by data from calcium stable isotopes, is published by Balter et al. (2019).{{cite journal |author1=V. Balter |author2=J.E. Martin |author3=T. Tacail |author4=G. Suan |author5=S. Renaud |author6=C. Girard |year=2019 |title=Calcium stable isotopes place Devonian conodonts as first level consumers |journal=Geochemical Perspectives Letters |volume=10 |pages=36–39 |doi=10.7185/geochemlet.1912 |s2cid=150154587 |doi-access=free |hdl=1983/cdaaa2aa-9641-4658-bcfb-58d0664c6259 |hdl-access=free }}
- A study on the variation of conodont element crystal structure throughout their evolutionary history is published online by Medici et al. (2019).{{cite journal |author1=Luca Medici |author2=Daniele Malferrari |author3=Martina Savioli |author4=Annalisa Ferretti |year=2019 |title=Mineralogy and crystallization patterns in conodont bioapatite from first occurrence (Cambrian) to extinction (end-Triassic) |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=549 |pages=Article 109098 |doi=10.1016/j.palaeo.2019.02.024 |hdl=11380/1171775 |s2cid=134950999 |hdl-access=free }}
- A study on the evolution of platform-like P1 elements in conodonts, evaluating its possible link to ecology of conodonts, is published by Ginot & Goudemand (2019).{{cite journal |author1=Samuel Ginot |author2=Nicolas Goudemand |year=2019 |title=Conodont size, trophic level, and the evolution of platform elements |journal=Paleobiology |volume=45 |issue=3 |pages=458–468 |doi=10.1017/pab.2019.19 |bibcode=2019Pbio...45..458G |s2cid=196680606 }}
- A study on the impact of early Paleozoic environmental changes on evolution and paleoecology of conodonts from the Canadian part of Laurentia is published online by Barnes (2019).{{cite journal |author=Christopher R. Barnes |year=2019 |title=Impacts of climate-ocean-tectonic changes on early Paleozoic conodont ecology and evolution evidenced by the Canadian part of Laurentia |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=549 |pages=Article 109092 |doi=10.1016/j.palaeo.2019.02.018 |s2cid=133789941 }}
- A study on the morphology, occurrences and biostratigraphical value of Paroistodus horridus is published online by Mestre & Heredia (2019).{{cite journal |author1=Ana Mestre |author2=Susana Heredia |year=2019 |title=The conodont Paroistodus horridus (Barnes and Poplawski) as a new biostratigraphical tool for the middle Darriwilian (Ordovician) |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=549 |pages=Article 109114 |doi=10.1016/j.palaeo.2019.03.015 |hdl=11336/150549 |s2cid=133879757 |hdl-access=free }}
- A revision of the taxonomy and evolutionary relationships of the Late Ordovician genera Tasmanognathus and Yaoxianognathus is published by Yang et al. (2019).{{Cite journal |author1=Zhihua Yang |author2=Xiuchun Jing |author3=Xunlian Wang |author4=Hongrui Zhou |author5=Hui Ren |year=2019 |title=New recognitions on the Late Ordovician conodont genera Tasmanognathus Burrett and Yaoxianognathus An |journal=Acta Micropalaeontologica Sinica |volume=36 |issue=2 |pages=115–129 |doi=10.16087/j.cnki.1000-0674.2019.02.002 |url=http://eng.oversea.cnki.net/kcms/detail/detail.aspx?filename=WSGT201902002&DBName=cjfqtotal&dbcode=cjfq |access-date=2019-08-30 |archive-date=2020-07-24 |archive-url=https://web.archive.org/web/20200724182729/http://eng.oversea.cnki.net/kcms/detail/detail.aspx?filename=WSGT201902002&DBName=cjfqtotal&dbcode=cjfq |url-status=dead }}
- A study on the composition and architecture of the apparatus of Erismodus quadridactylus is published by Dhanda et al. (2019).{{Cite journal|author1=Rosie Dhanda |author2=Duncan J. E. Murdock |author3=John E. Repetski |author4=Philip C. J. Donoghue |author5=M. Paul Smith |year=2019 |title=The apparatus composition and architecture of Erismodus quadridactylus and the implications for element homology in prioniodinin conodonts |journal=Papers in Palaeontology |volume=5 |issue=4 |pages=657–677 |doi=10.1002/spp2.1257 |bibcode=2019PPal....5..657D |hdl=1983/49f0aa70-34e3-48e4-9c00-deadd8689d6b |s2cid=146204818 |url=https://research-information.bris.ac.uk/en/publications/the-apparatus-composition-and-architecture-of-erismodus-quadridactylus-and-the-implications-for-element-homology-in-prioniodinin-conodonts(49f0aa70-34e3-48e4-9c00-deadd8689d6b).html |hdl-access=free }}
- A study on the ontogeny of the Lochkovian conodont species Ancyrodelloides carlsi is published by Corriga & Corradini (2019).{{cite journal |author1=Maria G. Corriga |author2=Carlo Corradini |year=2019 |title=Ontogeny of Ancyrodelloides carlsi (Boersma) and comments on its generic attribution (Conodonta, Lower Devonian) |journal=Geobios |volume=57 |pages=25–32 |doi=10.1016/j.geobios.2019.10.002 |bibcode=2019Geobi..57...25C |s2cid=213372488 }}
- A study on fossils of members of the genus Alternognathus from the Upper Devonian of the Kowala quarry (central Poland), attempting to calibrate the course of their ontogeny in days and documenting cyclic mortality events, is published by Świś (2019).{{cite journal |author=Przemysław Świś |year=2019 |title=Population dynamics of the Late Devonian conodont Alternognathus calibrated in days |journal=Historical Biology: An International Journal of Paleobiology |volume=31 |issue=9 |pages=1161–1169 |doi=10.1080/08912963.2018.1427088 |s2cid=89835464 }}
- The apparatus of Vogelgnathus simplicatus is reconstructed from discrete elements from a sample of limited diversity from the Carboniferous strata from Ireland by Sanz-López, Blanco-Ferrera & Miller (2019).{{Cite journal|author1=Javier Sanz-López |author2=Silvia Blanco-Ferrera |author3=C. Giles Miller |year=2019 |title=The apparatus of the Carboniferous conodont Vogelgnathus simplicatus and the early evolution of the genus |journal=Journal of Paleontology |volume=93 |issue=1 |pages=126–136 |doi=10.1017/jpa.2018.66 |bibcode=2019JPal...93..126S |s2cid=134343300 }}
- Neospathodid conodont elements with partly preserved basal body (one of two main parts of conodont elements, besides the crown) are reported from the Lower Triassic of Oman by Souquet & Goudemand (2019), who interpret their finding as indicating that the absence of basal bodies in post-Devonian conodonts was due to a preservational bias only.{{Cite journal|author1=Louise Souquet |author2=Nicolas Goudemand |year=2019 |title=Exceptional basal-body preservation in some Early Triassic conodont elements from Oman |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=549 |pages=Article 109066 |doi=10.1016/j.palaeo.2019.01.028 |s2cid=133865209 }}
- Natural assemblages of conodonts, preserving possible impressions of "eyes", are described from the Lower Triassic pelagic black claystones of the North Kitakami Belt (Japan) by Takahashi, Yamakita & Suzuki (2019).{{cite journal |author1=Satoshi Takahashi |author2=Satoshi Yamakita |author3=Noritoshi Suzuki |year=2019 |title=Natural assemblages of the conodont Clarkina in lowermost Triassic deep-sea black claystone from northeastern Japan, with probable soft-tissue impressions |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=524 |pages=212–229 |doi=10.1016/j.palaeo.2019.03.034 |bibcode=2019PPP...524..212T |s2cid=134664744 }}
- A study on the composition of the apparatus of Nicoraella, based on data from clusters from the Middle Triassic Luoping Biota (Yunnan, China), is published by Huang et al. (2019).{{Cite journal|author1=Jin-Yuan Huang |author2=Carlos Martínez-Pérez |author3=Shi-Xue Hu |author4=Philip C.J. Donoghue |author5=Qi-Yue Zhang |author6=Chang-Yong Zhou |author7=Wen Wen |author8=Michael J. Benton |author9=Mao Luo |author10=Hua-Zhou Yao |author11=Ke-Xin Zhang |year=2019 |title=Middle Triassic conodont apparatus architecture revealed by synchrotron X-ray microtomography |journal=Palaeoworld |volume=28 |issue= 4|pages= 429–440|doi=10.1016/j.palwor.2018.08.003 |hdl=1983/6c42767e-ca94-44ea-a651-b5a5fc596eb4 |s2cid=133860596 |url=https://research-information.bris.ac.uk/en/publications/middle-triassic-conodont-apparatus-architecture-revealed-by-synchrotron-xray-microtomography(6c42767e-ca94-44ea-a651-b5a5fc596eb4).html |hdl-access=free }}
- The architecture of apparatus of Nicoraella kockeli is reconstructed by Huang et al. (2019), who also evaluate proposed functional interpretations of the conodont feeding apparatus.{{Cite journal |author1=Jinyuan Huang |author2=Carlos Martínez-Pérez |author3=Shixue Hu |author4=Qiyue Zhang |author5=Kexin Zhang |author6=Changyong Zhou |author7=Wen Wen |author8=Tao Xie |author9=Michael J. Benton |author10=Zhong-Qiang Chen |author11=Mao Luo |author12=Philip C. J. Donoghue |year=2019 |title=Apparatus architecture of the conodont Nicoraella kockeli (Gondolelloidea, Prioniodinina) constrains functional interpretations |journal=Palaeontology |volume=62 |issue=5 |pages=823–835 |doi=10.1111/pala.12429 |bibcode=2019Palgy..62..823H |hdl=1983/0b506cea-36b5-4656-8d1a-035cedce151c |s2cid=134405654 |url=https://research-information.bris.ac.uk/ws/files/184956592/Author_Final.pdf |access-date=2020-06-03 |archive-date=2020-07-24 |archive-url=https://web.archive.org/web/20200724174909/https://research-information.bris.ac.uk/ws/files/184956592/Author_Final.pdf |url-status=live }}
- A study on Middle Triassic conodont assemblages from Jenzig section of the Jena Formation and Troistedt section of the Meissner Formation (Germany) is published by Chen et al. (2019), who also study the morphology of the apparatuses of Neogondolella haslachensis and Nicoraella germanica, and review and revise the species Neogondolella mombergensis.{{Cite journal|author1=Yanlong Chen |author2=Frank Scholze |author3=Sylvain Richoz |author4=Zhifei Zhang |year=2019 |title=Middle Triassic conodont assemblages from the Germanic Basin: implications for multi-element taxonomy and biogeography |journal=Journal of Systematic Palaeontology |volume=17 |issue=5 |pages=359–377 |doi=10.1080/14772019.2018.1424260 |bibcode=2019JSPal..17..359C |s2cid=89794841 }}
- A study evaluating the quantitative morphological variation of P1 conodont elements within and between seven conodont morphospecies from the Pizzo Mondello section (Sicily, Italy) and their evolution within 7 million years around the Carnian/Norian boundary is published by Guenser et al. (2019).{{cite journal |author1=Pauline Guenser |author2=Louise Souquet |author3=Sylvain Dolédec |author4=Michele Mazza |author5=Manuel Rigo |author6=Nicolas Goudemand |year=2019 |title=Deciphering the roles of environment and development in the evolution of a Late Triassic assemblage of conodont elements |journal=Paleobiology |volume=45 |issue=3 |pages=440–457 |doi=10.1017/pab.2019.14 |bibcode=2019Pbio...45..440G |hdl=11577/3307206 |s2cid=181539675 }}
- A study on the taphonomy of basal tissue of conodont elements is published online by Suttner & Kido (2019).{{Cite journal|author1=Thomas J. Suttner |author2=Erika Kido |year=2019 |title=Euconodont hard tissue: preservation patterns of the basal body |journal=Palaeontology |volume=63 |issue=1 |pages=29–49 |doi=10.1111/pala.12438 |s2cid=201292631 |doi-access=free }}
=New taxa=
Fishes
{{Main|2019 in paleoichthyology}}
Amphibians
{{main|2019 in amphibian paleontology}}
Reptiles
{{main|2019 in reptile paleontology|2019 in archosaur paleontology}}
Synapsids
=Non-mammalian synapsids=
==Research==
- A study on the morphological diversity and morphological changes of the humeri of Paleozoic and Triassic synapsids through time is published by Lungmus & Angielczyk (2019).{{Cite journal|author1=Jacqueline K. Lungmus |author2=Kenneth D. Angielczyk |year=2019 |title=Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida) |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=14 |pages=6903–6907 |doi=10.1073/pnas.1802543116 |pmid=30886085 |pmc=6452662 |bibcode=2019PNAS..116.6903L |doi-access=free }}
- A study on the diversity of patterns of skull shape (focusing on the relative lengths of the face and braincase regions of the skull) in non-mammalian synapsids is published by Krone, Kammerer & Angielczyk (2019).{{cite journal |author1=Isaac W. Krone |author2=Christian F. Kammerer |author3=Kenneth D. Angielczyk |year=2019 |title=The many faces of synapsid cranial allometry |journal=Paleobiology |volume=45 |issue=4 |pages=531–545 |doi=10.1017/pab.2019.26 |bibcode=2019Pbio...45..531K |s2cid=203409804 |doi-access=free }}
- Two pathologically fused tail vertebrae of a varanopid, likely affected by a metabolic bone disease closely resembling Paget's disease of bone, are described from the early Permian Richards Spur locality (Oklahoma, United States) by Haridy et al. (2019).{{Cite journal|author1=Yara Haridy |author2=Florian Witzmann |author3=Patrick Asbach |author4=Robert R. Reisz |year=2019 |title=Permian metabolic bone disease revealed by microCT: Paget's disease-like pathology in vertebrae of an early amniote |journal=PLOS ONE |volume=14 |issue=8 |pages=e0219662 |doi=10.1371/journal.pone.0219662 |pmid=31390345 |pmc=6685605 |bibcode=2019PLoSO..1419662H |doi-access=free }}
- Description of new skull remains of Echinerpeton intermedium and a study on the phylogenetic relationships of this species is published online by Mann & Paterson (2019).{{cite journal |author1=Arjan Mann |author2=Ryan S. Paterson |year=2019 |title=Cranial osteology and systematics of the enigmatic early 'sail-backed' synapsid Echinerpeton intermedium Reisz, 1972, and a review of the earliest 'pelycosaurs' |journal=Journal of Systematic Palaeontology |volume=18 |issue=6 |pages=529–539 |doi=10.1080/14772019.2019.1648323 |s2cid=202847907 }}
- Fossil material of a large carnivorous synapsid belonging to the family Sphenacodontidae is described from the Torre del Porticciolo locality (Italy) by Romano et al. (2019), representing the first carnivorous non-therapsid synapsid from the Permian of Italy reported so far, and one of the few known from Europe.{{cite journal |author1=Marco Romano |author2=Paolo Citton |author3=Simone Maganuco |author4=Eva Sacchi |author5=Martina Caratelli |author6=Ausonio Ronchi |author7=Umberto Nicosia |year=2019 |title=New basal synapsid discovery at the Permian outcrop of Torre del Porticciolo (Alghero, Italy) |journal=Geological Journal |volume=54 |issue=3 |pages=1554–1566 |doi=10.1002/gj.3250 |bibcode=2019GeolJ..54.1554R |s2cid=133755506 }}
- Description of the morphology and histology of a small neural spine from the Early Permian Richards Spur locality (Oklahoma, United States) attributable to Dimetrodon is published by Brink, MacDougall & Reisz (2019), who also report evidence from fossil teeth indicative of presence of a derived species of Dimetrodon (otherwise typical of later, Kungurian localities of Texas and Oklahoma) at the Richards Spur locality.{{cite journal |author1=Kirstin S. Brink |author2=Mark J. MacDougall |author3=Robert R. Reisz |year=2019 |title=Dimetrodon (Synapsida: Sphenacodontidae) from the cave system at Richards Spur, OK, USA, and a comparison of Early Permian–aged vertebrate paleoassemblages |journal=The Science of Nature |volume=106 |issue=1–2 |pages=Article 2 |doi=10.1007/s00114-018-1598-1 |pmid=30610457 |bibcode=2019SciNa.106....2B |s2cid=57427089 |doi-access=free }}
- A study on the histology of the skull roof of burnetiamorph biarmosuchians is published by Kulik & Sidor (2019).{{cite journal |author1=Zoe T. Kulik |author2=Christian A. Sidor |year=2019 |title=The original boneheads: histologic analysis of the pachyostotic skull roof in Permian burnetiamorphs (Therapsida: Biarmosuchia) |journal=Journal of Anatomy |volume=235 |issue=1 |pages=151–166 |doi=10.1111/joa.12987 |pmid=31070781 |pmc=6580075 |s2cid=148571203}}
- Femur of a specimen of the titanosuchid species Jonkeria parva affected by osteomyelitis is described from the Permian of Karoo Basin (South Africa) by Shelton, Chinsamy & Rothschild (2019).{{cite journal |author1=Christen D. Shelton |author2=Anusuya Chinsamy |author3=Bruce M. Rothschild |year=2019 |title=Osteomyelitis in a 265-million-year-old titanosuchid (Dinocephalia, Therapsida) |journal=Historical Biology: An International Journal of Paleobiology |volume=31 |issue=8 |pages=1093–1096 |doi=10.1080/08912963.2017.1419348 |bibcode=2019HBio...31.1093S |s2cid=90528131 }}
- A study on the adaptations to herbivory in the teeth of members of the family Tapinocephalidae is published by Whitney & Sidor (2019).{{Cite journal|author1=Megan. R. Whitney |author2=Christian A. Sidor |year=2019 |title=Histological and developmental insights into the herbivorous dentition of tapinocephalid therapsids |journal=PLOS ONE |volume=14 |issue=10 |pages=e0223860 |doi=10.1371/journal.pone.0223860 |pmid=31665173 |pmc=6821052 |bibcode=2019PLoSO..1423860W |doi-access=free }}
- An almost complete skeleton of Tapinocaninus pamelae, providing new information on the anatomy of the appendicular skeleton of this species (including the first accurate vertebral count for a dinocephalian), is described from the lowermost Beaufort Group of South Africa by Rubidge, Govender & Romano (2019).{{cite journal |author1=Bruce S. Rubidge |author2=Romala Govender |author3=Marco Romano |year=2019 |title=The postcranial skeleton of the basal tapinocephalid dinocephalian Tapinocaninus pamelae (Synapsida: Therapsida) from the South African Karoo Supergroup |journal=Journal of Systematic Palaeontology |volume=17 |issue=20 |pages=1767–1789 |doi=10.1080/14772019.2018.1559244 |bibcode=2019JSPal..17.1767R |s2cid=92677126 }}
- Romano & Rubidge (2019) present body mass estimates for a well preserved and complete skeleton of Tapinocaninus pamelae from the lowermost Beaufort Group of South Africa.{{cite journal |author1=Marco Romano |author2=Bruce Rubidge |year=2019 |title=First 3D reconstruction and volumetric body mass estimate of the tapinocephalid dinocephalian Tapinocaninus pamelae (Synapsida: Therapsida) |journal=Historical Biology: An International Journal of Paleobiology |volume=33 |issue=4 |pages=498–505 |doi=10.1080/08912963.2019.1640219 |s2cid=203881268 }}
- A study on the skull anatomy and phylogenetic relationships of Styracocephalus platyrhynchus is published by Fraser-King et al. (2019).{{Cite journal|author1=Simon W. Fraser-King |author2=Julien Benoit |author3=Michael O. Day |author4=Bruce S. Rubidge |year=2019 |title=Cranial morphology and phylogenetic relationship of the enigmatic dinocephalian Styracocephalus platyrhynchus from the Karoo Supergroup, South Africa |journal=Palaeontologia Africana |volume=54 |pages=14–29 |hdl=10539/28128 }}
- A study on the evolution of the sacral vertebrae of dicynodonts is published by Griffin & Angielczyk (2019).{{cite journal |author1=Christopher T. Griffin |author2=Kenneth D. Angielczyk |year=2019 |title=The evolution of the dicynodont sacrum: constraint and innovation in the synapsid axial column |journal=Paleobiology |volume=45 |issue=1 |pages=201–220 |doi=10.1017/pab.2018.49 |bibcode=2019Pbio...45..201G |s2cid=91615798 }}
- A study on the diversity of dicynodonts from the Upper Permian Naobaogou Formation (China) is published by Liu (2019).{{Cite journal|author=Jun Liu |year=2019 |title=The tetrapod fauna of the upper Permian Naobaogou Formation of China— 4. the diversity of dicynodonts |journal=Vertebrata PalAsiatica |volume=57 |issue=3 |pages=173–180 |doi=10.19615/j.cnki.1000-3118.190522 }}
- A study on skulls of South American dicynodonts, aiming to determine whether the differences in skull morphology were related to differences in feeding function, is published by Ordonez et al. (2019).{{Cite journal|author1=Maria de los Angeles Ordonez |author2=Guillermo H. Cassini |author3=Sergio F. Vizcaíno |author4=Claudia A. Marsicano |year=2019 |title=A geometric morphometric approach to the analysis of skull shape in Triassic dicynodonts (Therapsida, Anomodontia) from South America |journal=Journal of Morphology |volume=280 |issue=12 |pages=1808–1820 |doi=10.1002/jmor.21066 |pmid=31621947 |s2cid=204755666 }}
- New fossil material of Endothiodon tolani is described from the Permian K5 Formation of the Metangula Graben (Mozambique) by Macungo et al. (2019).{{cite journal |author1=Z. Macungo |author2=I. Loide |author3=S. Zunguza |author4=N. Nhamutole |author5=I.E.M. Maharaj |author6=J. Mugabe |author7=K.D. Angielczyk |author8=R. Araújo |year=2020 |title=Endothiodon (Therapsida, Anomodontia) specimens from the middle/late Permian of the Metangula Graben (Niassa Province, Mozambique) increase complexity to the taxonomy of the genus |journal=Journal of African Earth Sciences |volume=163 |pages=Article 103647 |doi=10.1016/j.jafrearsci.2019.103647 |bibcode=2020JAfES.16303647M |s2cid=210616960 }}
- A study on the anatomy of the postcranial skeleton of Endothiodon bathystoma, based on data from a new specimen from the uppermost Pristerognathus Assemblage Zone of the Karoo Supergroup (South Africa), is published online by Maharaj, Chinsamy & Smith (2019).{{Cite journal|author1=Iyra E. M. Maharaj |author2=Anusuya Chinsamy |author3=Roger M. H. Smith |year=2019 |title=The postcranial anatomy of Endothiodon bathystoma (Anomodontia, Therapsida) |journal=Historical Biology: An International Journal of Paleobiology |volume=33 |issue=7 |pages=1066–1088 |doi=10.1080/08912963.2019.1679128 |s2cid=209607275 }}
- Small dicynodont skull assigned to the genus Digalodon is described from the Lopingian upper Madumabisa Mudstone Formation (Zambia) by Angielczyk (2019), expanding known geographic range of this genus.{{Cite journal|author=Kenneth D. Angielczyk |year=2019 |title=First occurrence of the dicynodont Digalodon (Therapsida, Anomodontia) from the Lopingian upper Madumabisa Mudstone Formation, Luangwa Basin, Zambia |journal=Palaeontologia Africana |volume=53 |pages=219–225 |hdl=10539/26832 }}
- Digital endocast of Rastodon procurvidens is reconstructed by de Simão-Oliveira, Kerber & Pinheiro (2019), who evaluate biological implications of the endocast morphology of this species.{{cite journal |author1=Daniel de Simão-Oliveira |author2=Leonardo Kerber |author3=Felipe L. Pinheiro |year=2019 |title=Endocranial morphology of the Brazilian Permian dicynodont Rastodon procurvidens (Therapsida: Anomodontia) |journal=Journal of Anatomy |volume=236 |issue=3 |pages=384–397 |doi=10.1111/joa.13107 |pmid=31670465 |pmc=7018630 |s2cid=204975400 }}
- Mancuso & Irmis (2019) describe an ulna of a member of the genus Stahleckeria from the Chañares Formation (Argentina), and evaluate the implications of this finding for the knowledge of the Triassic Gondwanan biostratigraphy and biogeography.{{Cite journal|author1=Adriana C. Mancuso |author2=Randall B. Irmis |year=2020 |title=A large-bodied stahleckeriine dicynodont (Synapsida, Anomodontia) from the Upper Triassic (Carnian) Chañares Formation (Argentina); new data for Triassic Gondwanan biogeography |journal=Ameghiniana |volume=57 |issue=1 |pages=45–57 |doi=10.5710/AMGH.20.12.2019.3302 |s2cid=213000821 }}
- A study on the body mass of Lisowicia bojani is published online by Romano & Manucci (2019).{{Cite journal|author1=Marco Romano |author2=Fabio Manucci |year=2019 |title=Resizing Lisowicia bojani: volumetric body mass estimate and 3D reconstruction of the giant Late Triassic dicynodont |journal=Historical Biology: An International Journal of Paleobiology |volume=33 |issue=4 |pages=474–479 |doi=10.1080/08912963.2019.1631819 |s2cid=196679837 }}
- A study on fossils of a putative Cretaceous dicynodont from Australia reported by Thulborn & Turner (2003){{cite journal|author1=Tony Thulborn |author2=Susan Turner |title=The last dicynodont: an Australian Cretaceous relict |journal=Proceedings of the Royal Society B: Biological Sciences |volume=270 |issue=1518 |year=2003 |pages=985–993 |doi=10.1098/rspb.2002.2296 |jstor=3558635 |pmid=12803915 |pmc=1691326}} is published online by Knutsen & Oerlemans (2019), who consider these fossils to be of Pliocene-Pleistocene age, and reinterpret it as fossils of a large mammal, probably a diprotodontid.{{cite journal |author1=Espen M. Knutsen |author2=Emma Oerlemans |year=2020 |title=The last dicynodont? Re-assessing the taxonomic and temporal relationships of a contentious Australian fossil |journal=Gondwana Research |volume=77 |pages= 184–203|doi=10.1016/j.gr.2019.07.011 |bibcode=2020GondR..77..184K |s2cid=202908716 }}
- A study aiming to determine patterns of morphological and phylogenetic diversity of therocephalians throughout their evolutionary history is published by Grunert, Brocklehurst & Fröbisch (2019).{{Cite journal|author1=Henrik Richard Grunert |author2=Neil Brocklehurst |author3=Jörg Fröbisch |year=2019 |title=Diversity and disparity of Therocephalia: macroevolutionary patterns through two mass extinctions |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 5063 |doi=10.1038/s41598-019-41628-w |pmid=30911058 |pmc=6433905 |bibcode=2019NatSR...9.5063G }}
- A study on variation in rates of body size evolution of therocephalians is published by Brocklehurst (2019).{{Cite journal|author=Neil Brocklehurst |year=2019 |title=Morphological evolution in therocephalians breaks the hypercarnivore ratchet |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1900 |pages=Article ID 20190590 |doi=10.1098/rspb.2019.0590 |pmid=30966993 |pmc=6501669 }}
- A study on the morphology of the manus of a new therocephalian specimen referable to the genus Tetracynodon from the Early Triassic of South Africa, and on the evolution of the manus morphology of therocephalians, is published by Fontanarrosa et al. (2019).{{cite journal |author1=Gabriela Fontanarrosa |author2=Fernando Abdala |author3=Susanna Kümmell |author4=Robert Gess |year=2019 |title=The manus of Tetracynodon (Therapsida: Therocephalia) provides evidence for survival strategies following the Permo-Triassic extinction |journal=Journal of Vertebrate Paleontology |volume=38 |issue=4 |pages=(1)–(13) |doi=10.1080/02724634.2018.1491404 |hdl=11336/91246 |s2cid=109228166 |hdl-access=free }}
- A study on patterns of nonmammalian cynodont species richness and the quality of their fossil record is published by Lukic-Walther et al. (2019).{{cite journal |author1=Marcus Lukic-Walther |author2=Neil Brocklehurst |author3=Christian F. Kammerer |author4=Jörg Fröbisch |year=2019 |title=Diversity patterns of nonmammalian cynodonts (Synapsida, Therapsida) and the impact of taxonomic practice and research history on diversity estimates |journal=Paleobiology |volume=45 |issue=1 |pages=56–69 |doi=10.1017/pab.2018.38 |bibcode=2019Pbio...45...56L |s2cid=91197045 |url=http://edoc.hu-berlin.de/18452/22404 }}
- A study on the morphology and bone histology of the postcranial skeleton of Galesaurus planiceps is published by Butler, Abdala & Botha-Brink (2019).{{Cite journal|author1=Elize Butler |author2=Fernando Abdala |author3=Jennifer Botha-Brink |year=2019 |title=Postcranial morphology of the Early Triassic epicynodont Galesaurus planiceps (Owen) from the Karoo Basin, South Africa |journal=Papers in Palaeontology |volume=5 |issue=1 |pages=1–32 |doi=10.1002/spp2.1220 |s2cid=134080723 |doi-access=free |bibcode=2019PPal....5....1B |hdl=11336/86180 |hdl-access=free }}
- Redescription of the anatomy of the skull of Galesaurus planiceps is published by Pusch, Kammerer & Fröbisch (2019).{{Cite journal|author1=Luisa C. Pusch |author2=Christian F. Kammerer |author3=Jörg Fröbisch |year=2019 |title=Cranial anatomy of the early cynodont Galesaurus planiceps and the origin of mammalian endocranial characters |journal=Journal of Anatomy |volume=234 |issue=5 |pages=592–621 |doi=10.1111/joa.12958 |pmid=30772942 |pmc=6481412 |s2cid=73457058 }}
- Description of teeth of all known diademodontid and trirachodontid cynodont taxa is published by Hendrickx, Abdala & Choiniere (2019), who also propose a standardized list of anatomical terms and abbreviations in the study of gomphodont teeth, assign Sinognathus and Beishanodon to the family Trirachodontidae, and consider all specimens previously referred to the species Cricodon kannemeyeri to be younger individuals of Trirachodon berryi.{{Cite journal|author1=Christophe Hendrickx |author2=Fernando Abdala |author3=Jonah N. Choiniere |year=2019 |title=A proposed terminology for the dentition of gomphodont cynodonts and dental morphology in Diademodontidae and Trirachodontidae |journal=PeerJ |volume=7 |pages=e6752 |doi=10.7717/peerj.6752 |pmid=31223521 |pmc=6571134 |doi-access=free }}
- A study on the bone histology of the traversodontid cynodonts Protuberum cabralense and Exaeretodon riograndesis is published by Veiga, Botha-Brink & Soares (2019).{{cite journal |author1=Fábio Hiratsuka Veiga |author2=Jennifer Botha-Brink |author3=Marina Bento Soares |year=2019 |title=Osteohistology of the non-mammaliaform traversodontids Protuberum cabralense and Exaeretodon riograndensis from southern Brazil |journal=Historical Biology: An International Journal of Paleobiology |volume=31 |issue=9 |pages=1231–1241 |doi=10.1080/08912963.2018.1441292 |s2cid=89832937 }}
- Hypsodont postcanine teeth of Menadon besairiei are described by Melo et al. (2019), who also study patterns of dental growth and replacement in this species.{{Cite journal|author1=Tomaz P. Melo |author2=Ana Maria Ribeiro |author3=Agustín G. Martinelli |author4=Marina Bento Soares |year=2019 |title=Early evidence of molariform hypsodonty in a Triassic stem-mammal |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 2841 |doi=10.1038/s41467-019-10719-7 |pmid=31253810 |pmc=6598982 |bibcode=2019NatCo..10.2841M }}
- Digital endocasts of Massetognathus ochagaviae and Probelesodon kitchingi are reconstructed by Hoffmann et al. (2019).{{cite journal |author1=Carolina A. Hoffmann |author2=P. G. Rodrigues |author3=M. B. Soares |author4=M. B. de Andrade |year=2019 |title=Brain endocast of two non-mammaliaform cynodonts from southern Brazil: an ontogenetic and evolutionary approach |journal=Historical Biology: An International Journal of Paleobiology |volume=33 |issue=8 |pages=1196–1207 |doi=10.1080/08912963.2019.1685512 |hdl=10923/19658 |s2cid=209571873 |hdl-access=free }}
- A skull of a member of the species Massetognathus ochagaviae is described from the Carnian Santacruzodon Assemblage Zone of the Santa Maria Supersequence (Rio Grande do Sul, Brazil) by Schmitt et al. (2019).{{cite journal |author1=Maurício Rodrigo Schmitt |author2=Agustín G. Martinelli |author3=Tomaz Panceri Melo |author4=Marina Bento Soares |year=2019 |title=On the occurrence of the traversodontid Massetognathus ochagaviae (Synapsida, Cynodontia) in the early late Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence, southern Brazil): Taxonomic and biostratigraphic implications |journal=Journal of South American Earth Sciences |volume=93 |pages=36–50 |doi=10.1016/j.jsames.2019.04.011 |bibcode=2019JSAES..93...36S |s2cid=150326079 }}
- Description of brain endocasts of Siriusgnathus niemeyerorum and Exaeretodon riograndensis, using virtual models based on computed tomography scan data, is published by Pavanatto, Kerber & Dias-da-Silva (2019).{{Cite journal|author1=Ane E. B. Pavanatto |author2=Leonardo Kerber |author3=Sérgio Dias-da-Silva |year=2019 |title=Virtual reconstruction of cranial endocasts of traversodontid cynodonts (Eucynodontia: Gomphodontia) from the upper Triassic of Southern Brazil |journal=Journal of Morphology |volume=280 |issue=9 |pages=1267–1281 |doi=10.1002/jmor.21029 |pmid=31241801 |s2cid=195658515 }}
- Description of new fossil material of Siriusgnathus niemeyerorum from the Upper Triassic Caturrita Formation (Brazil) and a study on the age of its fossils is published online by Miron et al. (2019).{{Cite journal|author1=Lívia Roese Miron |author2=Ane Elise Branco Pavanatto |author3=Flávio Augusto Pretto |author4=Rodrigo Temp Müller |author5=Sérgio Dias-da-Silva |author6=Leonardo Kerber |year=2020 |title=Siriusgnathus niemeyerorum (Eucynodontia: Gomphodontia): The youngest South American traversodontid? |journal=Journal of South American Earth Sciences |volume=97 |pages=Article 102394 |doi=10.1016/j.jsames.2019.102394 |bibcode=2020JSAES..9702394M |s2cid=210628164 }}
- A study on the evolution of infraorbital maxillary canal in probainognathian cynodonts and on its implications for the knowledge of evolution of mobile whiskers in non-mammalian synapsids, as indicated by data from skulls of non-mammalian probainognathian cynodonts and early mammaliaforms, is published online by Benoit et al. (2019).{{cite journal |author1=Julien Benoit |author2=Irina Ruf |author3=Juri A. Miyamae |author4=Vincent Fernandez |author5=Pablo Gusmão Rodrigues |author6=Bruce S. Rubidge |year=2019 |title=The evolution of the maxillary canal in Probainognathia (Cynodontia, Synapsida): reassessment of the homology of the infraorbital foramen in mammalian ancestors |journal=Journal of Mammalian Evolution |volume=27 |issue=3 |pages=329–348 |doi=10.1007/s10914-019-09467-8 |s2cid=156055693 }}
- Digital skull endocast of a specimen of Riograndia guaibensis is reconstructed by Rodrigues et al. (2019).{{cite journal |author1=Pablo Gusmão Rodrigues |author2=Agustín G. Martinelli |author3=Cesar Leandro Schultz |author4=Ian J. Corfe |author5=Pamela G. Gill |author6=Marina B. Soares |author7=Emily J. Rayfield |year=2019 |title=Digital cranial endocast of Riograndia guaibensis (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts |journal=Historical Biology: An International Journal of Paleobiology |volume=31 |issue=9 |pages=1195–1212 |doi=10.1080/08912963.2018.1427742 |hdl=1983/4f437b31-8913-4699-a3f5-b800384c68e0 |s2cid=89841123 |url=https://research-information.bris.ac.uk/en/publications/digital-cranial-endocast-of-riograndia-guaibensis-late-triassic-brazil-sheds-light-on-the-evolution-of-the-brain-in-nonmammalian-cynodonts(4f437b31-8913-4699-a3f5-b800384c68e0).html |hdl-access=free }}
- Description of the anatomy of the first postcranial specimens referable to Riograndia guaibensis is published by Guignard, Martinelli & Soares (2019).{{cite journal |author1=Morgan L. Guignard |author2=Agustin G. Martinelli |author3=Marina B. Soares |year=2019 |title=Postcranial anatomy of Riograndia guaibensis (Cynodontia: Ictidosauria) |journal=Geobios |volume=53 |pages=9–21 |doi=10.1016/j.geobios.2019.02.006 |bibcode=2019Geobi..53....9G |s2cid=134305282 }}
- A study on the anatomy of the postcranial skeleton of Brasilodon quadrangularis is published by Guignard, Martinelli & Soares (2019).{{cite journal |author1=Morgan L. Guignard |author2=Agustin G. Martinelli |author3=Marina B. Soares |year=2019 |title=The postcranial anatomy of Brasilodon quadrangularis and the acquisition of mammaliaform traits among non-mammaliaform cynodonts |journal=PLOS ONE |volume=14 |issue=5 |pages=e0216672 |doi=10.1371/journal.pone.0216672 |pmid=31075140 |pmc=6510408 |bibcode=2019PLoSO..1416672G |doi-access=free }}
- A study on tooth wear patterns of members of the family Tritylodontidae and on their possible diet is published by Kalthoff et al. (2019).{{Cite journal|author1=Daniela C. Kalthoff |author2=Ellen Schulz-Kornas |author3=Ian Corfe |author4=Thomas Martin |author5=Stephen McLoughlin |author6=Julia A. Schultz |year=2019 |title=Complementary approaches to tooth wear analysis in Tritylodontidae (Synapsida, Mammaliamorpha) reveal a generalist diet |journal=PLOS ONE |volume=14 |issue=7 |pages=e0220188 |doi=10.1371/journal.pone.0220188 |pmid=31344085 |pmc=6658083 |bibcode=2019PLoSO..1420188K |doi-access=free }}
- Possible cynodont teeth, which might be the most recent non-mammaliaform cynodont fossils from Africa reported so far, are described from the Late Jurassic or earliest Cretaceous locality of Ksar Metlili (Anoual Syncline, eastern Morocco) by Lasseron (2019).{{cite journal |author=Maxime Lasseron |year=2019 |title=Enigmatic teeth from the Jurassic–Cretaceous transition of Morocco: The latest known non-mammaliaform cynodonts (Synapsida, Cynodontia) from Africa? |journal=Comptes Rendus Palevol |volume=18 |issue=7 |pages=897–907 |doi=10.1016/j.crpv.2019.05.002 |bibcode=2019CRPal..18..897L |s2cid=199103372 |doi-access=free }}
- A study on the origin of the mammalian middle ear ossicles, as indicated by the anatomy of the jaw-otic complex in 43 synapsid taxa, is published by Navarro-Díaz, Esteve-Altava & Rasskin-Gutman (2019).{{cite journal |author1=Aitor Navarro-Díaz |author2=Borja Esteve-Altava |author3=Diego Rasskin-Gutman |year=2019 |title=Disconnecting bones within the jaw-otic network modules underlies mammalian middle ear evolution |journal=Journal of Anatomy |volume=235 |issue=1 |pages=15–33 |doi=10.1111/joa.12992 |pmid=30977522 |pmc=6579944 |s2cid=109941017}}
- A study on the evolution of the morphological complexity of the mammalian vertebral column, as indicated by data from mammals and non-mammalian synapsids, is published by Jones, Angielczyk & Pierce (2019).{{Cite journal|author1=Katrina E. Jones |author2=Kenneth D. Angielczyk |author3=Stephanie E. Pierce |year=2019 |title=Stepwise shifts underlie evolutionary trends in morphological complexity of the mammalian vertebral column |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 5071 |doi=10.1038/s41467-019-13026-3 |pmid=31699978 |pmc=6838112 |bibcode=2019NatCo..10.5071J }}
==New taxa==
=Mammals=
{{main|2019 in mammal paleontology|2019 in primate paleontology}}
Other animals
=New taxa=
=Research=
- A study on moulds of animals belonging to the group Proarticulata from the southeastern White Sea area (Russia), and on their implications for the knowledge of the morphology of integuments of members of Proarticulata, is published by Ivantsov, Zakrevskaya & Nagovitsyn (2019).{{Cite journal|author1=A.Yu. Ivantsov |author2=M.A. Zakrevskaya |author3=A.L. Nagovitsyn |year=2019 |title=Morphology of integuments of the Precambrian animals, Proarticulata |journal=Invertebrate Zoology |volume=16 |issue=1 |pages=19–26 |doi=10.15298/invertzool.16.1.03 |s2cid=204258422 |doi-access=free }}
- A study on accumulations of Ernietta from the Witputs subbasin (Namibia), and on their implications for the knowledge of ecology of these organisms, is published by Gibson et al. (2019).{{Cite journal|author1=Brandt M. Gibson |author2=Imran A. Rahman |author3=Katie M. Maloney |author4=Rachel A. Racicot |author5=Helke Mocke |author6=Marc Laflamme |author7=Simon A. F. Darroch |year=2019 |title=Gregarious suspension feeding in a modular Ediacaran organism |journal=Science Advances |volume=5 |issue=6 |pages=eaaw0260 |doi=10.1126/sciadv.aaw0260 |pmid=31223655 |pmc=6584682 |bibcode=2019SciA....5..260G }}
- A diverse assemblage of tubular fossils – dominated by typical Ediacaran organisms such as Cloudina and Sinotubulites, but also preserving fossils showing similarities to early Cambrian shelly fossils – is described from the Ediacaran Dengying Formation (China) by Cai et al. (2019).{{Cite journal|author1=Yaoping Cai |author2=Shuhai Xiao |author3=Guoxiang Li |author4=Hong Hua |s2cid=134736452 |year=2019 |title=Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion |journal=Geology |volume=47 |issue=4 |pages=380–384 |doi=10.1130/G45949.1 |bibcode=2019Geo....47..380C }}
- Letsch et al. (2019) report late Ediacaran discoidal Ediacara-type fossils and latest Ediacaran to early Cambrian microfossils from the Tabia and the Tifnout members of the Adoudou Formation (Morocco), constituting the oldest known direct evidence for presumably animal life from Northwest Africa.{{Cite journal|author1=Dominik Letsch |author2=Simon J.E. Large |author3=Stefano M. Bernasconi |author4=Christian Klug |author5=Thomas M. Blattmann |author6=Wilfried Winkler |author7=Albrecht von Quadt |year=2019 |title=Northwest Africa's Ediacaran to early Cambrian fossil record, its oldest metazoans and age constraints for the basal Taroudant Group (Morocco) |journal=Precambrian Research |volume=320 |pages=438–453 |doi=10.1016/j.precamres.2018.11.016 |bibcode=2019PreR..320..438L |s2cid=133866590 }}
- A study delineating different types of the asexual reproduction for Cloudina and Multiconotubus is published by Min et al. (2019).{{Cite journal|author1=Xiao Min |author2=Hong Hua |author3=Yaoping Cai |author4=Bo Sun |year=2019 |title=Asexual reproduction of tubular fossils in the terminal Neoproterozoic Dengying Formation, South China |journal=Precambrian Research |volume=322 |pages=18–23 |doi=10.1016/j.precamres.2018.12.009 |bibcode=2019PreR..322...18M |s2cid=134376877 }}
- A study on the anatomy of Charnia masoni is published by Dunn et al. (2019).{{Cite journal|author1=Frances S. Dunn |author2=Philip R. Wilby |author3=Charlotte G. Kenchington |author4=Dmitriy V. Grazhdankin |author5=Philip C. J. Donoghue |author6=Alexander G. Liu |year=2019 |title=Anatomy of the Ediacaran rangeomorph Charnia masoni |journal=Papers in Palaeontology |volume=5 |issue=1 |pages=157–176 |doi=10.1002/spp2.1234 |pmid=31007942 |pmc=6472560 |bibcode=2019PPal....5..157D }}
- A study evaluating whether Dickinsonia was capable of mobility is published by Evans, Gehling & Droser (2019).{{Cite journal|author1=Scott D. Evans |author2=James G. Gehling |author3=Mary L. Droser |year=2019 |title=Slime travelers: Early evidence of animal mobility and feeding in an organic mat world |journal=Geobiology |volume=17 |issue=5 |pages=490–509 |doi=10.1111/gbi.12351 |pmid=31180184 |bibcode=2019Gbio...17..490E |s2cid=182948176 }}
- A study comparing the biomechanical responses of tissues of Dickinsonia to various forces with those typical of modern organisms is published by Evans et al. (2019).{{Cite journal|author1=Scott D. Evans |author2=Wei Huang |author3=Jim G. Gehling |author4=David Kisailus |author5=Mary L. Droser |year=2019 |title=Stretched, mangled, and torn: Responses of the Ediacaran fossil Dickinsonia to variable forces |journal=Geology |volume=47 |issue=11 |pages=1049–1053 |doi=10.1130/G46574.1 |bibcode=2019Geo....47.1049E |s2cid=204257942 }}
- A study on the anatomy, growth and phylogenetic relationships of Arborea arborea is published by Dunn, Liu & Gehling (2019).{{Cite journal|author1=Frances S. Dunn |author2=Alexander G. Liu |author3=James G. Gehling |year=2019 |title=Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa |journal=Palaeontology |volume=62 |issue=5 |pages=851–865 |doi=10.1111/pala.12431 |bibcode=2019Palgy..62..851D |s2cid=134473478 |doi-access=free |hdl=1983/5677888d-1cd1-4e92-8aa8-57940f30626a |hdl-access=free }}
- Xiao et al. (2019) describe a new trace fossil from the Ediacaran Dengying Formation (China), interpreted as produced by a bilaterian animal exploring an oxygen oasis in microbial mats, and name a new ichnotaxon Yichnus levis.{{Cite journal|author1=Shuhai Xiao |author2=Zhe Chen |author3=Chuanming Zhou |author4=Xunlai Yuan |year=2019 |title=Surfing in and on microbial mats: Oxygen-related behavior of a terminal Ediacaran bilaterian animal |journal=Geology |volume=47 |issue=11 |pages=1054–1058 |doi=10.1130/G46474.1 |bibcode=2019Geo....47.1054X |s2cid=204257384 |doi-access=free }}
- A study on fossil molds and casts from the Ordovician of Morocco and the Devonian of New York, as well as on Ediacaran mold and cast fossils from South Australia, the White Sea region of Russia, Namibia and Newfoundland, is published by MacGabhann et al. (2019), who evaluate how faithfully the fossils represent the original organisms, and whether the first animals to evolve on Earth could have been fossilized in a way similar to eldoniids from the Tafilalt Lagerstätte of Morocco.{{Cite journal|author1=Breandán Anraoi MacGabhann |author2=James D. Schiffbauer |author3=James W. Hagadorn |author4=Peter Van Roy |author5=Edward P. Lynch |author6=Liam Morrison |author7=John Murray |year=2019 |title=Resolution of the earliest metazoan record: Differential taphonomy of Ediacaran and Paleozoic fossil molds and casts |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=513 |pages=146–165 |doi=10.1016/j.palaeo.2018.11.009 |bibcode=2019PPP...513..146M |s2cid=135003752 }}
- Exceptionally preserved phosphatized archaeocyaths and small shelly fossils are reported from the Lower Cambrian Salaagol Formation of southwestern Mongolia by Pruss et al. (2019).{{cite journal |author1=Sara B. Pruss |author2=Camille H. Dwyer |author3=Emily F. Smith |author4=Francis A. Macdonald |author5=Nicholas J. Tosca |year=2019 |title=Phosphatized early Cambrian archaeocyaths and small shelly fossils (SSFs) of southwestern Mongolia |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=513 |pages=166–177 |doi=10.1016/j.palaeo.2017.07.002 |bibcode=2019PPP...513..166P |s2cid=134404563 |url=https://ora.ox.ac.uk/objects/uuid:066f71a0-25a4-4e7f-9cc7-abb5510cdff6 |access-date=2020-11-11 |archive-date=2023-10-03 |archive-url=https://web.archive.org/web/20231003200327/https://ora.ox.ac.uk/objects/uuid:066f71a0-25a4-4e7f-9cc7-abb5510cdff6 |url-status=live }}
- A study on the timing of the development of reef biodiversity, based on data from microbial-archaeocyathan reefs of the Salaagol Formation in Mongolia and other early Paleozoic reefs, is published by Cordie et al. (2019).{{cite journal |author1=David R. Cordie |author2=Stephen Q. Dornbos |author3=Pedro J. Marenco |author4=Tatsuo Oji |author5=Sersmaa Gonchigdorj |year=2019 |title=Depauperate skeletonized reef-dwelling fauna of the early Cambrian: Insights from archaeocyathan reef ecosystems of western Mongolia |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=514 |pages=206–221 |doi=10.1016/j.palaeo.2018.10.027 |bibcode=2019PPP...514..206C |s2cid=134513460 |doi-access=free }}
- A study on the morphological diversity of archaeocyaths is published by Cordie & Dornbos (2019).{{Cite journal|author1=David R. Cordie |author2=Stephen Q. Dornbos |year=2019 |title=Restricted morphospace occupancy of early Cambrian reef-building archaeocyaths |journal=Paleobiology |volume=45 |issue=2 |pages=331–346 |doi=10.1017/pab.2019.5 |bibcode=2019Pbio...45..331C |s2cid=91937105 }}
- Evidence of extensive burrowing in laminated claystone from the Cambrian (Drumian) Ravens Throat River Lagerstätte in the Rockslide Formation (Canada) is presented by Pratt & Kimmig (2019).{{Cite journal|author1=Brian R. Pratt |author2=Julien Kimmig |year=2019 |title=Extensive bioturbation in a middle Cambrian Burgess Shale–type fossil Lagerstätte in northwestern Canada |journal=Geology |volume=47 |issue=3 |pages=231–234 |doi=10.1130/G45551.1 |bibcode=2019Geo....47..231P |s2cid=133857064 }}
- Description of jaw apparatus of Plumulites bengtsoni from the Fezouata Formation of Morocco, evaluating its implications for the knowledge of the phylogenetic relationships of machaeridians, is published by Parry et al. (2019).{{Cite journal|author1=Luke A. Parry |author2=Gregory D. Edgecombe |author3=Dan Sykes |author4=Jakob Vinther |year=2019 |title=Jaw elements in Plumulites bengtsoni confirm that machaeridians are extinct armoured scaleworms |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1907 |pages=Article ID 20191247 |doi=10.1098/rspb.2019.1247 |pmid=31337310 |pmc=6661337 }}
- Description of internal anatomical features of Canadia spinosa identified as remnants of the nervous system is published by Parry & Caron (2019).{{Cite journal|author1=Luke Parry |author2=Jean-Bernard Caron |year=2019 |title=Canadia spinosa and the early evolution of the annelid nervous system |journal=Science Advances |volume=5 |issue=9 |pages=eaax5858 |doi=10.1126/sciadv.aax5858 |pmid=31535028 |pmc=6739095 |bibcode=2019SciA....5.5858P }}
- A study on the chemical composition, morphology and phylogeny of fossil (Cenozoic, Mesozoic and Paleozoic) annelid tubes and tubes formerly thought to have been made by annelids, recovered from hydrothermal vent and cold seep environments, is published by Georgieva et al. (2019).{{Cite journal|author1=Magdalena N. Georgieva |author2=Crispin T. S. Little |author3=Jonathan S. Watson |author4=Mark A. Sephton |author5=Alexander D. Ball |author6=Adrian G. Glover |year=2019 |title=Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps |journal=Journal of Systematic Palaeontology |volume=17 |issue=4 |pages=287–329 |doi=10.1080/14772019.2017.1412362 |s2cid=91049004 |doi-access=free |bibcode=2019JSPal..17..287G |hdl=10141/622324 |hdl-access=free }}
- A massive deposit composed of fossil serpulid worm tubes dating to the late Pleistocene is reported from the Santa Monica Basin off the coast of southern California by Georgieva et al. (2019).{{Cite journal|author1=Magdalena N. Georgieva |author2=Charles K. Paull |author3=Crispin T. S. Little |author4=Mary McGann |author5=Diana Sahy |author6=Daniel Condon |author7=Lonny Lundsten |author8=Jack Pewsey |author9=David W. Caress |author10=Robert C. Vrijenhoek |year=2019 |title=Discovery of an extensive deep-sea fossil serpulid reef associated with a cold seep, Santa Monica Basin, California |journal=Frontiers in Marine Science |volume=6 |pages=Article 115 |doi=10.3389/fmars.2019.00115 |s2cid=81982495 |doi-access=free |bibcode=2019FrMaS...6..115G }}
- A study on the microstructure of hyolith conchs and opercula from the lower Cambrian Xinji Formation of North China, and on its implications for inferring the phylogenetic relationships of Hyolitha, is published by Li et al. (2019).{{Cite journal|author1=Luoyang Li |author2=Xingliang Zhang |author3=Christian B. Skovsted |author4=Hao Yun |author5=Bing Pan |author6=Guoxiang Li |year=2019 |title=Homologous shell microstructures in Cambrian hyoliths and molluscs |journal=Palaeontology |volume=62 |issue=4 |pages=515–532 |doi=10.1111/pala.12406 |bibcode=2019Palgy..62..515L |s2cid=134098738 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3374 }}
- Description of soft parts associated with the feeding apparatus of the hyolith Triplicatella opimus from the Chengjiang biota of South China, and a study on the implications of this finding for the knowledge of the phylogenetic affinities of hyoliths, is published online by Liu et al. (2019).{{Cite journal|author1=Fan Liu |author2=Christian B. Skovsted |author3=Timothy P. Topper |author4=Zhifei Zhang |author5=Degan Shu |year=2019 |title=Are hyoliths Palaeozoic lophophorates? |journal=National Science Review |volume=7 |issue=2 |pages=453–469 |doi=10.1093/nsr/nwz161|pmid=34692060 | pmc=8289160 }}
- A study on changes of conch size in tentaculitoids from the Silurian and Devonian strata is published by Wei (2019).{{Cite journal|author=Fan Wei |year=2019 |title=Conch size evolution of Silurian–Devonian tentaculitoids |journal=Lethaia |volume=52 |issue=4 |pages=454–463 |doi=10.1111/let.12324 |bibcode=2019Letha..52..454W |s2cid=133803449 }}
- A study on the anatomy of Amiskwia sagittiformis is published by Vinther & Parry (2019), who interpret two reflective patches present in fossils of this species, previously interpreted as paired cerebral ganglia, as a pair of pharyngeal jaws similar to those of gnathiferans.{{Cite journal|author1=Jakob Vinther |author2=Luke A. Parry |year=2019 |title=Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between gnathiferans and chaetognaths |journal=Current Biology |volume=29 |issue=5 |pages=881–888.e1 |doi=10.1016/j.cub.2019.01.052 |pmid=30799238 |s2cid=72332845 |doi-access=free |bibcode=2019CBio...29E.881V |hdl=1983/51b1b6c1-0220-4469-977f-480e847a9101 |hdl-access=free }}
- A study on the anatomy and phylogenetic affinities of Amiskwia sagittiformis is published by Caron & Cheung (2019).{{Cite journal|author1=Jean-Bernard Caron |author2=Brittany Cheung |year=2019 |title=Amiskwia is a large Cambrian gnathiferan with complex gnathostomulid-like jaws |journal=Communications Biology |volume=2 |pages=Article number 164 |doi=10.1038/s42003-019-0388-4 |pmid=31069273 |pmc=6499802 }}
- The oldest record of acanthocephalan parasite eggs described so far is reported from probable crocodyliform coprolites from the Upper Cretaceous Adamantina Formation (Brazil) by Cardia et al. (2019).{{cite journal |author1=Daniel F.F. Cardia |author2=Reinaldo J. Bertini |author3=Lucilene G. Camossi |author4=Luiz A. Letizio |year=2019 |title=First record of Acanthocephala parasites eggs in coprolites preliminary assigned to Crocodyliformes from the Adamantina Formation (Bauru Group, Upper Cretaceous), São Paulo, Brazil |journal=Anais da Academia Brasileira de Ciências |volume=91 |issue=Suppl. 2 |pages=e20170848 |doi=10.1590/0001-3765201920170848 |pmid=31090797 |s2cid=155091017 |doi-access=free |hdl=11449/189712 |hdl-access=free }}
- Exceptionally preserved trace and body fossils are described from the Cambrian File Haidar Formation (Sweden) by Kesidis et al. (2019), who interpret these fossils as made by priapulid-like scalidophorans.{{Cite journal|author1=Giannis Kesidis |author2=Ben J. Slater |author3=Sören Jensen |author4=Graham E. Budd |year=2019 |title=Caught in the act: priapulid burrowers in early Cambrian substrates |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1894 |pages=Article ID 20182505 |doi=10.1098/rspb.2018.2505 |pmid=30963879 |pmc=6367179 }}
- Description of exuviae of microscopic scalidophoran worms from the lowermost Cambrian Kuanchuanpu Formation (China) is published by Wang et al. (2019), who interpret this finding as the oldest record of moulting in ecdysozoans reported so far.{{Cite journal|author1=Deng Wang |author2=Jean Vannier |author3=Isabell Schumann |author4=Xing Wang |author5=Xiao-Guang Yang |author6=Tsuyoshi Komiya |author7=Kentaro Uesugi |author8=Jie Sun |author9=Jian Han |year=2019 |title=Origin of ecdysis: fossil evidence from 535-million-year-old scalidophoran worms |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1906 |pages=Article ID 20190791 |doi=10.1098/rspb.2019.0791 |pmid=31288707 |pmc=6650709 }}
- A reassessment of radiodontan fossils known from the Cambrian Kinzers Formation (Pennsylvania, United States) is published by Pates & Daley (2019), who argue that at least four radiodontan taxa are known from this formation, and confirm that Anomalocaris pennsylvanica is a distinct species from A. canadensis.{{cite journal |author1=Stephen Pates |author2=Allison C. Daley |year=2019 |title=The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts |journal=Geological Magazine |volume=156 |issue=7 |pages=1233–1246 |doi=10.1017/S0016756818000547 |bibcode=2019GeoM..156.1233P |s2cid=134299859 |url=http://osf.io/hsrpn/ }}
- A study on the moulting behaviour of the chengjiangocaridid fuxianhuiid Alacaris mirabilis is published by Yang et al. (2019).{{Cite journal|author1=Jie Yang |author2=Javier Ortega-Hernández |author3=Harriet B. Drage |author4=Kun-sheng Du |author5=Xi-guang Zhang |year=2019 |title=Ecdysis in a stem-group euarthropod from the early Cambrian of China |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 5709 |doi=10.1038/s41598-019-41911-w |pmid=30952888 |pmc=6450865 |bibcode=2019NatSR...9.5709Y }}
- A study on the anatomy and phylogenetic relationships of a stem-arthropod Guangweicaris spinatus is published by Wu & Liu (2019).{{Cite journal|author1=Yichen Wu |author2=Jianni Liu |year=2019 |title=Anatomy and relationships of the fuxianhuiid euarthropod Guangweicaris from the early Cambrian Guanshan Biota in Kunming, Yunnan, Southwest China revisited |journal=Acta Palaeontologica Polonica |volume=64 |issue=3 |pages=543–548 |doi=10.4202/app.00542.2018 |s2cid=201291723 |doi-access=free }}
- A fossil interpreted as a partial mold of a specimen of Paropsonema cryptophya is described from the Middle-Upper Devonian of New York by Hagadorn & Allmon (2019), representing the most recent occurrence of the paropsonemids reported so far.{{Cite journal|author1=James W. Hagadorn |author2=Warren D. Allmon |year=2019 |title=Paleobiology of a three-dimensionally preserved paropsonemid from the Devonian of New York |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=513 |pages=208–214 |doi=10.1016/j.palaeo.2018.08.007 |bibcode=2019PPP...513..208H |s2cid=133683311 }}
- A study evaluating the utility of eye melanosomes for determination of the phylogenetic affinities of Tullimonstrum is published by Rogers et al. (2019).{{Cite journal|author1=Christopher S. Rogers |author2=Timothy I. Astrop |author3=Samuel M. Webb |author4=Shosuke Ito |author5=Kazumasa Wakamatsu |author6=Maria E. McNamara |year=2019 |title=Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: implications for the affinity of Tullimonstrum |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1913 |pages=Article ID 20191649 |doi=10.1098/rspb.2019.1649 |pmid=31640518 |pmc=6834042 }}
Foraminifera
=Research=
- A study on the morphological complexity of planktic foraminifer tests after the Cretaceous–Paleogene extinction event is published by Lowery & Fraass (2019).{{Cite journal|author1=Christopher M. Lowery |author2=Andrew J. Fraass |year=2019 |title=Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction |journal=Nature Ecology & Evolution |volume=3 |issue=6 |pages=900–904 |doi=10.1038/s41559-019-0835-0 |pmid=30962557 |bibcode=2019NatEE...3..900L |hdl=1983/fb08c3c1-c203-4780-bc90-5994ec1030ff |s2cid=102354122 |url=http://osf.io/wn8g6/ |hdl-access=free }}
- A study on the response of the larger benthic foraminifera from the Tethys Ocean to the Paleocene–Eocene Thermal Maximum, based on fossil evidence from south Tibet, is published by Zhang et al. (2019).{{Cite journal|author1=Qinghai Zhang |author2=Helmut Willems |author3=Lin Ding |author4=Xiaoxia Xu |year=2019 |title=Response of larger benthic foraminifera to the Paleocene-Eocene thermal maximum and the position of the Paleocene/Eocene boundary in the Tethyan shallow benthic zones: Evidence from south Tibet |journal=GSA Bulletin |volume=131 |issue=1–2 |pages=84–98 |doi=10.1130/B31813.1 |bibcode=2019GSAB..131...84Z |s2cid=134560025 }}
=New taxa=
Other organisms
=New taxa=
=Research=
- Putative traces of life older than 3.95 Ga, reported from northern Labrador (Canada) by Tashiro et al. (2017){{Cite journal|author1=Takayuki Tashiro |author2=Akizumi Ishida |author3=Masako Hori |author4=Motoko Igisu |author5=Mizuho Koike |author6=Pauline Méjean |author7=Naoto Takahata |author8=Yuji Sano |author9=Tsuyoshi Komiya |year=2017 |title=Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada |journal=Nature |volume=549 |issue=7673 |pages=516–518 |doi=10.1038/nature24019 |pmid=28959955 |bibcode=2017Natur.549..516T |s2cid=4470796 }} are reevaluated by Whitehouse et al. (2019).{{Cite journal|author1=Martin J. Whitehouse |author2=Daniel J. Dunkley |author3=Monika A. Kusiak |author4=Simon A. Wilde |year=2019 |title=On the true antiquity of Eoarchean chemofossils – assessing the claim for Earth's oldest biogenic graphite in the Saglek Block of Labrador |journal=Precambrian Research |volume=323 |pages=70–81 |doi=10.1016/j.precamres.2019.01.001 |bibcode=2019PreR..323...70W |hdl=20.500.11937/74140 |s2cid=134499370 |url=https://zenodo.org/record/3871628 }}
- Description of cellularly preserved microfossils from ~3.4 Ga-old deposits of the Kromberg Formation (South Africa), providing information on reproduction patterns of these organisms, is published by Kaźmierczak & Kremer (2019).{{Cite journal|author1=Józef Kaźmierczak |author2=Barbara Kremer |year=2019 |title=Pattern of cell division in ~3.4 Ga-old microbes from South Africa |journal=Precambrian Research |volume=331 |pages=Article 105357 |doi=10.1016/j.precamres.2019.105357 |bibcode=2019PreR..33105357K |s2cid=189977450 }}
- El Albani et al. (2019) describe 2.1 billion-year-old fossils belonging to the Francevillian biota of Gabon, including pyritized string-shaped structures interpreted as produced by a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources.{{Cite journal|author1=Abderrazak El Albani |author2=M. Gabriela Mangano |author3=Luis A. Buatois |author4=Stefan Bengtson |author5=Armelle Riboulleau |author6=Andrey Bekker |author7=Kurt Konhauser |author8=Timothy Lyons |author9=Claire Rollion-Bard |author10=Olabode Bankole |author11=Stellina Gwenaelle Lekele Baghekema |author12=Alain Meunier |author13=Alain Trentesaux |author14=Arnaud Mazurier |author15=Jeremie Aubineau |author16=Claude Laforest |author17=Claude Fontaine |author18=Philippe Recourt |author19=Ernest Chi Fru |author20=Roberto Macchiarelli |author21=Jean Yves Reynaud |author22=François Gauthier-Lafaye |author23=Donald E. Canfield |year=2019 |title=Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=9 |pages=3431–3436 |doi=10.1073/pnas.1815721116 |pmid=30808737 |pmc=6397584 |bibcode=2019PNAS..116.3431E |doi-access=free }}
- A study on ca. 1.9 Ga hairpin-shaped trace fossils and discoid fossils from the Stirling Range Formation (Western Australia) is published by Retallack & Mao (2019), who interpret these fossils as evidence of early life on land.{{Cite journal|author1=Gregory Retallack |author2=Xuegang Mao |year=2019 |title=Paleoproterozoic (ca. 1.9 Ga) megascopic life on land in Western Australia |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=532 |pages=Article 109266|doi=10.1016/j.palaeo.2019.109266 |bibcode=2019PPP...53209266R |s2cid=199094301 }}
- A study on organic-walled microfossils from the Cailleach Head Formation (Torridon Group, Scotland) is published by Wacey et al. (2019), who report exceptional preservation of sub-cellular detail in selected cells.{{Cite journal|author1=David Wacey |author2=Eva Sirantoine |author3=Martin Saunders |author4=Paul Strother |year=2019 |title=1 billion-year-old cell contents preserved in monazite and xenotime |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 9068 |doi=10.1038/s41598-019-45575-4 |pmid=31227773 |pmc=6588638 |bibcode=2019NatSR...9.9068W }}
- Phosphatized three-dimensional fossil of a putative calcimicrobe Epiphyton are reported from the Neoproterozoic Dengying Formation (China) by Min et al. (2019).{{Cite journal|author1=Xiao Min |author2=Hong Hua |author3=Lijing Liu |author4=Bo Sun |author5=Zaihang Cui |author6=Tongchang Jiang |year=2019 |title=Phosphatized Epiphyton from the terminal Neoproterozoic and its significance |journal=Precambrian Research |volume=331 |pages=Article 105358 |doi=10.1016/j.precamres.2019.105358 |bibcode=2019PreR..33105358M |s2cid=189983017 }}
- A study on the affinities of tubular microfossils from the Ediacaran Doushantuo Formation (China), i.e. Crassitubus, Quadratitubus, Ramitubus and Sinocyclocyclicus, is published by Sun et al. (2019), who reject the interpretation of these taxa as early animals.{{Cite journal|author1=Wei-Chen Sun |author2=Zong-Jun Yin |author3=Philip Donoghue |author4=Peng-Ju Liu |author5=Xiao-Dong Shang |author6=Mao-Yan Zhu |year=2019 |title=Tubular microfossils from the Ediacaran Weng'an Biota (Doushantuo Formation, South China) are not early animals |journal=Palaeoworld |volume=28 |issue= 4|pages= 469–477|doi=10.1016/j.palwor.2019.04.004 |hdl=1983/2fa05771-9d96-4663-8438-29d52f2cc197 |s2cid=150258707 |url=https://research-information.bris.ac.uk/en/publications/tubular-microfossils-from-the-ediacaran-wengan-biota-doushantuo-formation-south-china-are-not-early-animals(2fa05771-9d96-4663-8438-29d52f2cc197).html |hdl-access=free }}
- Lehn, Horodyski & Paim (2019) report the first known occurrence of Ediacaran organic-walled microfossils preserved in fine-grained siliciclastic strata of the Camaquã Basin (southernmost Brazil).{{Cite journal|author1=Ilana Lehn |author2=Rodrigo Scalise Horodyski |author3=Paulo Sérgio Gomes Paim |year=2019 |title=Marine and non-marine strata preserving Ediacaran microfossils |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 9809 |doi=10.1038/s41598-019-46304-7 |pmid=31285486 |pmc=6614404 |bibcode=2019NatSR...9.9809L }}
- A study on the structure, developmental biology and affinities of Caveasphaera costata from the Ediacaran Doushantuo Formation (China) is published by Yin et al. (2019).{{Cite journal|author1=Zongjun Yin |author2=Kelly Vargas |author3=John Cunningham |author4=Stefan Bengtson |author5=Maoyan Zhu |author6=Federica Marone |author7=Philip Donoghue |year=2019 |title=The early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology |journal=Current Biology |volume=29 |issue=24 |pages=4307–4314.e2 |doi=10.1016/j.cub.2019.10.057 |pmid=31786065 |s2cid=208332041 |doi-access=free |bibcode=2019CBio...29E4307Y |hdl=1983/13fb76e4-5d57-4e39-b222-14f8a8fae303 |hdl-access=free }}
- A study on possible cells and their appendages in fossils of Epiphyton from the Wuliuan of the North China Platform, and on their implications for the classification of this taxon, is published by Zhang et al. (2019).{{Cite journal|author1=Xiyang Zhang |author2=Mingyue Dai |author3=Min Wang |author4=Yong'an Qi |year=2019 |title=Calcified coccoid from Cambrian Miaolingian: Revealing the potential cellular structure of Epiphyton |journal=PLOS ONE |volume=14 |issue=3 |pages=e0213695 |doi=10.1371/journal.pone.0213695 |pmid=30870473 |pmc=6417771 |bibcode=2019PLoSO..1413695Z |doi-access=free }}
- A study on the morphology and colony organization of Rhyniococcus uniformis (a Devonian organism resembling extant cyanobacteria in the genus Merismopedia), based on data from new specimens, is published by Krings & Harper (2019).{{Cite journal|author1=Michael Krings |author2=Carla J. Harper |year=2019 |title=A microfossil resembling Merismopedia (Cyanobacteria) from the 410-million-yr-old Rhynie and Windyfield cherts – Rhyniococcus uniformis revisited |journal=Nova Hedwigia |volume=108 |issue=1–2 |pages=17–35 |doi=10.1127/nova_hedwigia/2018/0507 |s2cid=92784831 }}
- A new method of assessing the morphology of fossil radiolarian specimens is presented by Kachovich, Sheng & Aitchison (2019), who apply their method to six specimens from the Cambrian Inca Formation (Australia) and Ordovician Piccadilly Formation (Canada) and evaluate the implications of their method for the studies of radiolarian evolution.{{Cite journal|author1=Sarah Kachovich |author2=Jiani Sheng |author3=Jonathan C. Aitchison |year=2019 |title=Adding a new dimension to investigations of early radiolarian evolution |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 6450 |doi=10.1038/s41598-019-42771-0 |pmid=31015493 |pmc=6478871 |bibcode=2019NatSR...9.6450K }}
Trace fossils
{{main|2019 in ichnology}}
History of life in general
Research related to paleontology that concerns multiple groups of the organisms listed above.
- Experiments indicating that abiotic chemical gardening can mimic structures interpreted as the oldest known fossil microorganisms in both morphology and composition are conducted by McMahon (2019).{{Cite journal|author=Sean McMahon |year=2019 |title=Earth's earliest and deepest purported fossils may be iron-mineralized chemical gardens |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1916 |pages=Article ID 20192410 |doi=10.1098/rspb.2019.2410 |pmid=31771469 |pmc=6939263 }}
- A study on biomarkers recovered from cap dolomites of the Araras Group (Brazil), interpreted as evidence of the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation, likely caused by massive bacterivorous grazing by ciliates, is published by van Maldegem et al. (2019).{{Cite journal|author1=Lennart M. van Maldegem |author2=Pierre Sansjofre |author3=Johan W. H. Weijers |author4=Klaus Wolkenstein |author5=Paul K. Strother |author6=Lars Wörmer |author7=Jens Hefter |author8=Benjamin J. Nettersheim |author9=Yosuke Hoshino |author10=Stefan Schouten |author11=Jaap S. Sinninghe Damsté |author12=Nilamoni Nath |author13=Christian Griesinger |author14=Nikolay B. Kuznetsov |author15=Marcel Elie |author16=Marcus Elvert |author17=Erik Tegelaar |author18=Gerd Gleixner |author19=Christian Hallmann |year=2019 |title=Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 476 |doi=10.1038/s41467-019-08306-x |pmid=30696819 |pmc=6351664 |bibcode=2019NatCo..10..476V }}
- Biomarkers thought to be diagnostic for demosponges and cited as evidence of rise of animals to ecological importance prior to the Cambrian radiation are reported to be also synthesized by rhizarians by Nettersheim et al. (2019), who place the oldest unambiguous evidence for animals closer to the Cambrian Explosion.{{Cite journal|author1=Benjamin J. Nettersheim |author2=Jochen J. Brocks |author3=Arne Schwelm |author4=Janet M. Hope |author5=Fabrice Not |author6=Michael Lomas |author7=Christiane Schmidt |author8=Ralf Schiebel |author9=Eva C. M. Nowack |author10=Patrick De Deckker |author11=Jan Pawlowski |author12=Samuel S. Bowser |author13=Ilya Bobrovskiy |author14=Karin Zonneveld |author15=Michal Kucera |author16=Marleen Stuhr |author17=Christian Hallmann |year=2019 |title=Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals |journal=Nature Ecology & Evolution |volume=3 |issue=4 |pages=577–581 |doi=10.1038/s41559-019-0806-5 |pmid=30833757 |bibcode=2019NatEE...3..577N |s2cid=71148672 }}{{Cite journal|author1=Gordon D. Love |author2=J. Alex Zumberge |author3=Paco Cárdenas |author4=Erik A. Sperling |author5=Megan Rohrssen |author6=Emmanuelle Grosjean |author7=John P. Grotzinger |author8=Roger E. Summons |year=2020 |title=Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils |journal=Nature Ecology & Evolution |volume=4 |issue=1 |pages=34–36 |doi=10.1038/s41559-019-1048-2 |pmid=31768019 |pmc=7236378 }}{{Cite journal|author1=Christian Hallmann |author2=Benjamin J. Nettersheim |author3=Jochen J. Brocks |author4=Arne Schwelm |author5=Janet M. Hope |author6=Fabrice Not |author7=Michael Lomas |author8=Christiane Schmidt |author9=Ralf Schiebel |author10=Eva C. M. Nowack |author11=Patrick De Deckker |author12=Jan Pawlowski |author13=Samuel S. Bowser |author14=Ilya Bobrovskiy |author15=Karin Zonneveld |author16=Michal Kucera |author17=Marleen Stuhr |year=2020 |title=Reply to: Sources of C30 steroid biomarkers in Neoproterozoic–Cambrian rocks and oils |journal=Nature Ecology & Evolution |volume=4 |issue=1 |pages=37–39 |doi=10.1038/s41559-019-1049-1 |pmid=31768020 |hdl=1885/219294 |s2cid=208279461 |url=https://openresearch-repository.anu.edu.au/bitstream/1885/219294/3/01_Hallmann%2526%25238202%253B_Reply_to%253A_Sources_of_C30_2020.pdf.jpg |hdl-access=free }}
- A study on crucial conditions affecting the evolution of a proto-metabolism in early life is published by Goldford et al. (2019).{{Cite journal|author1=Joshua E. Goldford |author2=Hyman Hartman |author3=Robert Marsland III |author4=Daniel Segrè |year=2019 |title=Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism |journal=Nature Ecology & Evolution |volume=3 |issue= 12|pages= 1715–1724|doi=10.1038/s41559-019-1018-8 |pmid=31712697 |pmc=6881557 |bibcode=2019NatEE...3.1715G }}
- A study on the age of the Ediacaran fossils from the Podolya Basin (southwestern Ukraine) is published by Soldatenko et al. (2019).{{Cite journal|author1=Y. Soldatenko |author2=A. El Albani |author3=M. Ruzina |author4=C. Fontaine |author5=V. Nesterovsky |author6=J.-L. Paquette |author7=A. Meunier |author8=M. Ovtcharova |year=2019 |title=Precise U-Pb age constrains on the Ediacaran biota in Podolia, East European Platform, Ukraine |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 1675 |doi=10.1038/s41598-018-38448-9 |pmid=30737449 |pmc=6368556 |bibcode=2019NatSR...9.1675S }}
- A study on occurrences of body and trace fossils in Ediacaran and lower Cambrian (Fortunian) rocks around the world is published by Muscente et al. (2019), who report evidence indicative of existence of a global, cosmopolitan assemblage unique to terminal Ediacaran strata, living between two episodes of biotic turnover which might be the earliest mass extinctions of complex life.{{Cite journal|author1=A. D. Muscente |author2=Natalia Bykova |author3=Thomas H. Boag |author4=Luis A. Buatois |author5=M. Gabriela Mángano |author6=Ahmed Eleish |author7=Anirudh Prabhu |author8=Feifei Pan |author9=Michael B. Meyer |author10=James D. Schiffbauer |author11=Peter Fox |author12=Robert M. Hazen |author13=Andrew H. Knoll |year=2019 |title=Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 911 |doi=10.1038/s41467-019-08837-3 |pmid=30796215 |pmc=6384941 |bibcode=2019NatCo..10..911M }}
- A study on the diversification of animals and their behaviour in the Ediacaran–Cambrian interval, as indicated by fossil and environmental proxy records, is published by Wood et al. (2019), who interpret the fossil record as indicating that the rise of early animals was more likely a series of successive, transitional radiation events which extended from the Ediacaran to the early Paleozoic, rather than competitive or biotic replacement of the latest Ediacaran biotas by markedly distinct Cambrian ones.{{Cite journal|author1=Rachel Wood |author2=Alexander G. Liu |author3=Frederick Bowyer |author4=Philip R. Wilby |author5=Frances S. Dunn |author6=Charlotte G. Kenchington |author7=Jennifer F. Hoyal Cuthill |author8=Emily G. Mitchell |author9=Amelia Penny |year=2019 |title=Integrated records of environmental change and evolution challenge the Cambrian Explosion |journal=Nature Ecology & Evolution |volume=3 |issue=4 |pages=528–538 |doi=10.1038/s41559-019-0821-6 |pmid=30858589 |bibcode=2019NatEE...3..528W |s2cid=73728430 |url=https://www.repository.cam.ac.uk/handle/1810/289089 |hdl=20.500.11820/a4e98e0f-a350-40f6-9ee6-49d4f816835f |hdl-access=free }}
- A study comparing the variability of Ediacaran faunal assemblages to that of more recent fossil and modern benthic assemblages is published by Finnegan, Gehling & Droser (2019).{{Cite journal|author1=Seth Finnegan |author2=James G. Gehling |author3=Mary L. Droser |year=2019 |title=Unusually variable paleocommunity composition in the oldest metazoan fossil assemblages |journal=Paleobiology |volume=45 |issue=2 |pages=235–245 |doi=10.1017/pab.2019.1 |bibcode=2019Pbio...45..235F |s2cid=91812415 |doi-access=free }}
- A study on the intensity of animal bioturbation and ecosystem engineering in trace fossil assemblages throughout the latest Ediacaran Nama Group (Namibia), evaluating the implications of this data for the knowledge of the causes of the disappearance of the Ediacaran biota, is published by Cribb et al. (2019).{{Cite journal|author1=Alison T. Cribb |author2=Charlotte G. Kenchington |author3=Bryce Koester |author4=Brandt M. Gibson |author5=Thomas H. Boag |author6=Rachel A. Racicot |author7=Helke Mocke |author8=Marc Laflamme |author9=Simon A. F. Darroch |year=2019 |title=Increase in metazoan ecosystem engineering prior to the Ediacaran–Cambrian boundary in the Nama Group, Namibia |journal=Royal Society Open Science |volume=6 |issue=9 |pages=Article ID 190548 |doi=10.1098/rsos.190548 |pmid=31598294 |pmc=6774933 |bibcode=2019RSOS....690548C }}
- A study on mechanisms of skeletal biomineralization in early animals (focusing on Cloudina and Cambrian hyoliths and halkieriids) is published by Gilbert et al. (2019).{{Cite journal|author1=Pupa U. P. A. Gilbert |author2=Susannah M. Porter |author3=Chang-Yu Sun |author4=Shuhai Xiao |author5=Brandt M. Gibson |author6=Noa Shenkar |author7=Andrew H. Knoll |year=2019 |title=Biomineralization by particle attachment in early animals |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=36 |pages=17659–17665 |doi=10.1073/pnas.1902273116 |pmid=31427519 |pmc=6731633 |bibcode=2019PNAS..11617659G |doi-access=free }}
- A study on the relationship between atmospheric oxygen oscillations, the extent of shallow-ocean oxygenation and the animal biodiversity in the Cambrian period is published by He et al. (2019).{{Cite journal|author1=Tianchen He |author2=Maoyan Zhu |author3=Benjamin J. W. Mills |author4=Peter M. Wynn |author5=Andrey Yu. Zhuravlev |author6=Rosalie Tostevin |author7=Philip A. E. Pogge von Strandmann |author8=Aihua Yang |author9=Simon W. Poulton |author10=Graham A. Shields |year=2019 |title=Possible links between extreme oxygen perturbations and the Cambrian radiation of animals |journal=Nature Geoscience |volume=12 |issue=6 |pages=468–474 |doi=10.1038/s41561-019-0357-z |pmid=31178922 |pmc=6548555 |bibcode=2019NatGe..12..468H }}
- A study on the course of the transition from microbial-dominated reef environments to animal-based reefs in the early Cambrian, as indicated by data from strata in the western Basin and Range of California and Nevada, is published by Cordie, Dornbos & Marenco (2019).{{Cite journal|author1=David R. Cordie |author2=Stephen Q. Dornbos |author3=Pedro J. Marenco |year=2019 |title=Increase in carbonate contribution from framework-building metazoans through early Cambrian reefs of the western Basin and Range, USA |journal=PALAIOS |volume=34 |issue=3 |pages=159–174 |doi=10.2110/palo.2018.085 |bibcode=2019Palai..34..159C |s2cid=133876711 }}
- An assemblage of early Cambrian small carbonaceous fossils and acritarchs, including possible oldest known annelid remains, is described from the siltstones of the Lappajärvi impact structure (Finland) by Slater & Willman (2019).{{Cite journal|author1=Ben J. Slater |author2=Sebastian Willman |year=2019 |title=Early Cambrian small carbonaceous fossils (SCFs) from an impact crater in western Finland |journal=Lethaia |volume=52 |issue= 4|pages= 570–582|doi=10.1111/let.12331 |bibcode=2019Letha..52..570S |s2cid=146235711 }}
- A study aiming to explain the occurrence of the variety of trace fossils associated with Tuzoia carapaces from the Cambrian Burgess Shale (British Columbia, Canada) is published by Mángano, Hawkes & Caron (2019).{{Cite journal|author1=M. Gabriela Mángano |author2=Christopher David Hawkes |author3=Jean-Bernard Caron |year=2019 |title=Trace fossils associated with Burgess Shale non-biomineralized carapaces: bringing taphonomic and ecological controls into focus |journal=Royal Society Open Science |volume=6 |issue=1 |pages=Article ID 172074 |doi=10.1098/rsos.172074 |pmid=30800334 |pmc=6366168 |bibcode=2019RSOS....672074M }}
- Cambrian Lagerstätte from the Qingjiang biota (Shuijingtou Formation; Hubei, China), preserving fossils of diverse, ~518 million years old biota, is reported by Fu et al. (2019).{{Cite journal|author1=Dongjing Fu |author2=Guanghui Tong |author3=Tao Dai |author4=Wei Liu |author5=Yuning Yang |author6=Yuan Zhang |author7=Linhao Cui |author8=Luoyang Li |author9=Hao Yun |author10=Yu Wu |author11=Ao Sun |author12=Cong Liu |author13=Wenrui Pei |author14=Robert R. Gaines |author14-link=Robert R. Gaines |author15=Xingliang Zhang |year=2019 |title=The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China |journal=Science |volume=363 |issue=6433 |pages=1338–1342 |doi=10.1126/science.aau8800 |pmid=30898931 |bibcode=2019Sci...363.1338F |s2cid=85448914 |doi-access=free }}{{cite news |last1=Cheung |first1=Helier |title=Huge fossil discovery made in China's Hubei province |url=https://www.bbc.co.uk/news/world-asia-china-47667880 |access-date=24 March 2019 |publisher=BBC News |date=24 March 2019}}
- A study aiming to infer whether a marked drop in known diversity of marine life during the period between the Cambrian explosion and the Great Ordovician Biodiversification Event (the Furongian Gap) is apparent, due to sampling failure or lack of rock, or real, is published by Harper et al. (2019).{{Cite journal|author1=David A.T. Harper |author2=Timothy P. Topper |author3=Borja Cascales-Miñana |author4=Thomas Servais |author5=Yuan-Dong Zhang |author6=Per Ahlberg |year=2019 |title=The Furongian (late Cambrian) Biodiversity Gap: Real or apparent? |journal=Palaeoworld |volume=28 |issue=1–2 |pages=4–12 |doi=10.1016/j.palwor.2019.01.007 |s2cid=134062318 |url=http://dro.dur.ac.uk/27433/ |hdl=20.500.12210/34395 |hdl-access=free }}
- A study on the marine biodiversity changes throughout the first 120 million years of the Phanerozoic is published by Rasmussen et al. (2019).{{Cite journal|author1=Christian M. Ø. Rasmussen |author2=Björn Kröger |author3=Morten L. Nielsen |author4=Jorge Colmenar |year=2019 |title=Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=15 |pages=7207–7213 |doi=10.1073/pnas.1821123116 |pmid=30910963 |pmc=6462056 |bibcode=2019PNAS..116.7207R |doi-access=free }}
- A study aiming to determine factors influencing early Palaeozoic marine biodiversity is published by Penny & Kröger (2019).{{Cite journal|author1=Amelia Penny |author2=Björn Kröger |year=2019 |title=Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity |journal=Nature Ecology & Evolution |volume=3 |issue=12 |pages=1655–1660 |doi=10.1038/s41559-019-1035-7 |pmid=31740841 |bibcode=2019NatEE...3.1655P |hdl=10138/325369 |s2cid=208145315 }}
- A study on rates of origination and extinction at the genus level throughout early Paleozoic is published by Kröger, Franeck & Rasmussen (2019), who also present estimates of longevity, taxon age and taxon life expectancy of early Paleozoic marine genera.{{Cite journal|author1=Björn Kröger |author2=Franziska Franeck |author3=Christian M. Ø. Rasmussen |year=2019 |title=The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1909 |pages=Article ID 20191634 |doi=10.1098/rspb.2019.1634 |pmid=31455187 |pmc=6732384 }}
- A review of biodiversity curves of marine organisms throughout early Paleozoic, indicating the occurrence of a large-scale, long-term radiation of life that started during late Precambrian time and was only finally interrupted in the Devonian Period, is published online by Harper, Cascales-Miñana & Servais (2019).{{Cite journal|author1=David A.T. Harper |author2=Borja Cascales-Miñana |author3=Thomas Servais |year=2019 |title=Early Palaeozoic diversifications and extinctions in the marine biosphere: a continuum of change |journal=Geological Magazine |volume=157 |issue=1 |pages=5–21 |doi=10.1017/S0016756819001298 |s2cid=212893855 |url=http://dro.dur.ac.uk/30335/1/30335.pdf }}
- A study on processes causing fluctuations of biodiversity of marine invertebrates throughout the Phanerozoic is published by Rominger, Fuentes & Marquet (2019).{{Cite journal|author1=Andrew J. Rominger |author2=Miguel A. Fuentes |author3=Pablo A. Marquet |year=2019 |title=Nonequilibrium evolution of volatility in origination and extinction explains fat-tailed fluctuations in Phanerozoic biodiversity |journal=Science Advances |volume=5 |issue=6 |pages=eaat0122 |doi=10.1126/sciadv.aat0122 |pmid=31249860 |pmc=6594772 |bibcode=2019SciA....5..122R }}
- A study on the impact of environmental changes on the biodiversity of North American marine organisms throughout the Phanerozoic is published by Roberts & Mannion (2019).{{Cite journal|author1=Gareth G. Roberts |author2=Philip D. Mannion |year=2019 |title=Timing and periodicity of Phanerozoic marine biodiversity and environmental change |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 6116 |doi=10.1038/s41598-019-42538-7 |pmid=30992505 |pmc=6467882 |bibcode=2019NatSR...9.6116R }}
- A study testing the hypothesis that the influence of ocean chemistry and climate on the ecological success of marine calcifiers decreased throughout the Phanerozoic is published by Eichenseer et al. (2019).{{Cite journal|author1=Kilian Eichenseer |author2=Uwe Balthasar |author3=Christopher W. Smart |author4=Julian Stander |author5=Kristian A. Haaga |author6=Wolfgang Kiessling |year=2019 |title=Jurassic shift from abiotic to biotic control on marine ecological success |journal=Nature Geoscience |volume=12 |issue=8 |pages=638–642 |doi=10.1038/s41561-019-0392-9 |bibcode=2019NatGe..12..638E |hdl=10026.1/14472 |s2cid=197402218 |hdl-access=free }}
- A study on genus origination and extinction rates in the Ordovician on a global scale, for the paleocontinents Baltica and Laurentia, and for onshore and offshore areas, is published by Franeck & Liow (2019).{{Cite journal|author1=Franziska Franeck |author2=Lee Hsiang Liow |year=2019 |title=Dissecting the paleocontinental and paleoenvironmental dynamics of the great Ordovician biodiversification |journal=Paleobiology |volume=45 |issue=2 |pages=221–234 |doi=10.1017/pab.2019.4 |bibcode=2019Pbio...45..221F |s2cid=91403245 |doi-access=free |hdl=10852/79941 |hdl-access=free }}
- First Middle Ordovician (Dapingian–Darriwilian) soft-bodied fossils from northern Gondwana (fossils of medusozoan possibly belonging to the genus Patanacta, possible members of the family Wiwaxiidae and an arthropod possibly belonging to the family Pseudoarctolepidae) are described from the Valongo Formation (Portugal) by Kimmig et al. (2019).{{Cite journal|author1=Julien Kimmig |author2=Helena Couto |author3=Wade W. Leibach |author4=Bruce S. Lieberman |year=2019 |title=Soft-bodied fossils from the upper Valongo Formation (Middle Ordovician: Dapingian-Darriwilian) of northern Portugal |journal=The Science of Nature |volume=106 |issue=5–6 |pages=Article 27 |doi=10.1007/s00114-019-1623-z |pmid=31129730 |bibcode=2019SciNa.106...27K |s2cid=164217158 }}
- New Konservat-Lagerstätte containing exceptionally preserved soft-bodied organisms, including the earliest record of Acoelomorpha, Turbellaria, Nemertea and Nematoda reported so far, is described from the Ordovician (Katian) Vauréal Formation (Canada) by Knaust & Desrochers (2019).{{Cite journal|author1=Dirk Knaust |author2=André Desrochers |year=2019 |title=Exceptionally preserved soft-bodied assemblage in Ordovician carbonates of Anticosti Island, eastern Canada |journal=Gondwana Research |volume=71 |pages=117–128 |doi=10.1016/j.gr.2019.01.016 |bibcode=2019GondR..71..117K |s2cid=134814852 }}
- A review of occurrence data of latest Ordovician benthic marine organisms is published by Wang, Zhan & Percival (2019), who evaluate the implications of the studied data for the knowledge of the course of the end-Ordovician mass extinction.{{Cite journal|author1=Guangxu Wang |author2=Renbin Zhan |author3=Ian G. Percival |year=2019 |title=The end-Ordovician mass extinction: A single-pulse event? |journal=Earth-Science Reviews |volume=192 |pages=15–33 |doi=10.1016/j.earscirev.2019.01.023 |bibcode=2019ESRv..192...15W |s2cid=134266940 |doi-access=free }}
- A revision of Silurian fauna from the Pentland Hills (Scotland) described by Archibald Lamont in 1978 is published by Candela & Crighton (2019).{{cite journal |author1=Yves Candela |author2=William R.B. Crighton |year=2019 |title=Synoptic revision of the Silurian fauna from the Pentland Hills, Scotland described by Lamont (1978) |journal=Palaeontologia Electronica |volume=22 |issue=2 |pages=Article number 22.2.19 |doi=10.26879/868 |s2cid=155184624 |doi-access=free }}
- A study on the course of graptolite extinctions during the middle Homerian biotic crisis and on the impact of this crisis on other marine invertebrates, as indicated by data from the Kosov Quarry section of the Prague Synform (Czech Republic), is published by Manda et al. (2019).{{Cite journal|author1=Štěpán Manda |author2=Petr Štorch |author3=Jiří Frýda |author4=Ladislav Slavík |author5=Zuzana Tasáryová |year=2019 |title=The mid-Homerian (Silurian) biotic crisis in offshore settings of the Prague Synform, Czech Republic: Integration of the graptolite fossil record with conodonts, shelly fauna and carbon isotope data |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=528 |pages=14–34 |doi=10.1016/j.palaeo.2019.04.026 |bibcode=2019PPP...528...14M |s2cid=155234754 }}
- Well-preserved fossil cryptic biota is reported from the submarine cavities of the Devonian (Emsian to Givetian) mud mounds in the Hamar Laghdad area (Morocco) by Berkowski et al. (2019).{{Cite journal|author1=Błażej Berkowski |author2=Michał Jakubowicz |author3=Zdzisław Belka |author4=Jan J. Król |author5=Mikołaj K. Zapalski |year=2019 |title=Recurring cryptic ecosystems in Lower to Middle Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco) |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=523 |pages=1–17 |doi=10.1016/j.palaeo.2019.03.011 |bibcode=2019PPP...523....1B |s2cid=133662623 }}
- A study aiming to test and quantify the classification of Devonian biogeographic areas, based on distributional data of Devonian trilobite, brachiopod and fish taxa, is published by Dowding & Ebach (2019).{{Cite journal|author1=Elizabeth M. Dowding |author2=Malte C. Ebach |year=2019 |title=Evaluating Devonian bioregionalization: quantifying biogeographic areas |journal=Paleobiology |volume=45 |issue=4 |pages=636–651 |doi=10.1017/pab.2019.30 |bibcode=2019Pbio...45..636D |s2cid=204162465 }}
- A study on patterns of local richness of terrestrial tetrapods throughout the Phanerozoic is published by Close et al. (2019).{{Cite journal|author1=Roger A. Close |author2=Roger B. J. Benson |author3=John Alroy |author4=Anna K. Behrensmeyer |author5=Juan Benito |author6=Matthew T. Carrano |author7=Terri J. Cleary |author8=Emma M. Dunne |author9=Philip D. Mannion |author10=Mark D. Uhen |author11=Richard J. Butler |year=2019 |title=Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale |journal=Nature Ecology & Evolution |volume=3 |issue=4 |pages=590–597 |doi=10.1038/s41559-019-0811-8 |pmid=30778186 |bibcode=2019NatEE...3..590C |s2cid=66884562 |url=http://pure-oai.bham.ac.uk/ws/files/56905059/Close_et_al._local_richness_accepted_version.pdf }}
- Description of tetrapod and fish fossils from the coastal locality of Burnmouth, Scotland (Ballagan Formation), associated plant material and sedimentological context of these fossils is published by Clack et al. (2019), who interpret these fossils as evidence of the potential richness of the Tournaisian fauna, running counter to the assumption of a depauperate nonmarine fauna following the end-Devonian Hangenberg event.{{Cite journal|author1=Jennifer A. Clack |author2=Carys E. Bennett |author3=Sarah J. Davies |author4=Andrew C. Scott |author5=Janet E. Sherwin |author6=Timothy R. Smithson |year=2019 |title=A Tournaisian (earliest Carboniferous) conglomerate-preserved non-marine faunal assemblage and its environmental and sedimentological context |journal=PeerJ |volume=6 |pages=e5972 |doi=10.7717/peerj.5972 |pmid=30627480 |pmc=6321757 |doi-access=free }}
- A study on the impact of climate changes during the Carboniferous–Permian transition on the evolution of land-living vertebrates is published by Pardo et al. (2019).{{Cite journal|author1=Jason D. Pardo |author2=Bryan J. Small |author3=Andrew R. Milner |author4=Adam K. Huttenlocker |year=2019 |title=Carboniferous–Permian climate change constrained early land vertebrate radiations |journal=Nature Ecology & Evolution |volume=3 |issue=2 |pages=200–206 |doi=10.1038/s41559-018-0776-z |pmid=30664698 |bibcode=2019NatEE...3..200P |s2cid=58572291 }}
- A study aiming to test one of the scenarios proposed by Robert L. Carroll in 1970 to explain the origin of the amniotic egg, based on data from Permo-Carboniferous tetrapods, is published by Didier, Chabrol & Laurin (2019).{{Cite journal|author1=Gilles Didier |author2=Olivier Chabrol |author3=Michel Laurin |year=2019 |title=Parsimony-based test for identifying changes in evolutionary trends for quantitative characters: implications for the origin of the amniotic egg |journal=Cladistics |volume=35 |issue=5 |pages=576–599 |doi=10.1111/cla.12371 |pmid=34618939 |s2cid=92735742 |url=https://hal.archives-ouvertes.fr/hal-01609238/file/manuscript.pdf }}
- An overview of the studies researching biodiversity changes in the Permian and their links to volcanism is published by Chen & Xu (2019).{{Cite journal|author1=Jun Chen |author2=Yi-gang Xu |year=2019 |title=Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies |journal=Gondwana Research |volume=75 |pages=68–96 |doi=10.1016/j.gr.2019.04.008 |bibcode=2019GondR..75...68C |s2cid=189968466 }}
- Haridy et al. (2019) report the occurrence of overgrowth of palatal dentition of Cacops and Captorhinus by a new layer of bone to which the newest teeth are then attached (the overgrowth pattern also documented in early fishes), and evaluate the implications of this finding for the knowledge of the origin of teeth.{{Cite journal|author1=Yara Haridy |author2=Bryan M. Gee |author3=Florian Witzmann |author4=Joseph J. Bevitt |author5=Robert R. Reisz |year=2019 |title=Retention of fish-like odontode overgrowth in Permian tetrapod dentition supports outside-in theory of tooth origins |journal=Biology Letters |volume=15 |issue=9 |pages=Article ID 20190514 |doi=10.1098/rsbl.2019.0514 |pmid=31506034 |pmc=6769137 }}
- A study on the severity of the end-Guadalupian extinction event is published online by Rampino & Shen (2019).{{cite journal |author1=Michael R. Rampino |author2=Shu-Zhong Shen |year=2019 |title=The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction? |journal=Historical Biology: An International Journal of Paleobiology |volume=33 |issue=5 |pages=716–722 |doi=10.1080/08912963.2019.1658096 |s2cid=202858078 }}
- A study on the ecology of Permian tetrapods from the Abrahamskraal Formation (South Africa), as indicated by stable oxygen isotope compositions of phosphate from teeth and bones used as a proxy for water dependence, is published online by Rey et al. (2019).{{Cite journal|author1=Kévin Rey |author2=Michael O. Day |author3=Romain Amiot |author4=François Fourel |author5=Julie Luyt |author6=Marc J. Van den Brandt |author7=Christophe Lécuyer |author8=Bruce S. Rubidge |year=2020 |title=Oxygen isotopes and ecological inferences of Permian (Guadalupian) tetrapods from the main Karoo Basin of South Africa |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=538 |pages=Article 109485 |doi=10.1016/j.palaeo.2019.109485 |bibcode=2020PPP...53809485R |s2cid=214085715 |url=https://hal.archives-ouvertes.fr/hal-02991787/file/Rey%20et%20al.%20%282020a%29%20pre-proof.pdf }}
- Two Permian tetrapod assemblages, recovered from the northernmost point at which the lowest Beaufort Group has been targeted for collecting fossils, are reported from the southern Free State (South Africa) by Groenewald, Day & Rubidge (2019), who evaluate the implications of these fossils for the knowledge of faunal provincialism within the Middle to Late Permian Karoo Basin.{{Cite journal|author1=David P. Groenewald|author2=Michael O. Day|author3=Bruce S. Rubidge|year=2019|title=Vertebrate assemblages from the north-central Main Karoo Basin, South Africa, and their implications for mid-Permian biogeography|url=https://pubs.geoscienceworld.org/gsa/geology/article/567983/Biotic-responses-to-volatile-volcanism-and|journal=Lethaia|volume=52|issue=4|pages=486–501|doi=10.1111/let.12326|bibcode=2019Letha..52..486G |s2cid=155384983}} [http://eprints.whiterose.ac.uk/142783/ Alt URL]
- A study aiming to determine which Permian tetrapod assemblage zones are present in the vicinity of Victoria West (Northern Cape, South Africa), and to reassess the biostratigraphic provenance of specimens collected historically in this area (including the holotype of Lycaenops ornatus), is published by Day & Rubidge (2019).{{Cite journal|author1=Michael O. Day |author2=Bruce S. Rubidge |year=2019 |title=Biesiespoort revisited: a case study on the relationship between tetrapod assemblage zones and Beaufort lithostratigraphy south of Victoria West |journal=Palaeontologia Africana |volume=53 |pages=51–65 |hdl=10539/26240 }}
- A study on the course of the turnover from the Daptocephalus to Lystrosaurus Assemblage Zones of the Karoo Basin is published by Gastaldo et al. (2019).{{Cite journal|author1=Robert A. Gastaldo |author2=Johann Neveling |author3=John W. Geissman |author4=Cindy V. Looy |year=2019 |title=Testing the Daptocephalus and Lystrosaurus Assemblage Zones in a lithostratographic, magnetostratigraphic, and palynological framework in the Free State, South Africa |journal=PALAIOS |volume=34 |issue=11 |pages=542–561 |doi=10.2110/palo.2019.019 |bibcode=2019Palai..34..542G |s2cid=208268646 }}
- A study on the timing of the extinction of latest Permian vertebrates in the Karoo Basin of South Africa is published online by Rampino et al. (2019).{{Cite journal|author1=Michael R. Rampino |author2=Yoram Eshet-Alkalai |author3=Athanasios Koutavas |author4=Sedelia Rodriguez |year=2019 |title=End-Permian stratigraphic timeline applied to the timing of marine and non-marine extinctions |journal=Palaeoworld |volume=29 |issue=3 |pages= 577–589|doi=10.1016/j.palwor.2019.10.002 |s2cid=210267038 }}
- A study on the identification and position of the terrestrial end-Permian mass extinction in southern African sediments, based on data from a new site in the South African Karoo Basin, is published online by Botha et al. (2019).{{Cite journal|author1=Jennifer Botha |author2=Adam K. Huttenlocker |author3=Roger M.H. Smith |author4=Rose Prevec |author5=Pia Viglietti |author6=Sean P. Modesto |year=2020 |title=New geochemical and palaeontological data from the Permian-Triassic boundary in the South African Karoo Basin test the synchronicity of terrestrial and marine extinctions |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=540 |pages=Article 109467 |doi=10.1016/j.palaeo.2019.109467 |bibcode=2020PPP...54009467B |s2cid=213349989 }}
- A study on the functional diversity of middle Permian and Early Triassic marine paleocommunities in the area of present-day western United States, and on its implications for the knowledge of functional re-organization of these communities in the aftermath of the Permian–Triassic extinction event, is published by Dineen, Roopnarine & Fraiser (2019).{{Cite journal|author1=Ashley A. Dineen |author2=Peter D. Roopnarine |author3=Margaret L. Fraiser |year=2019 |title=Ecological continuity and transformation after the Permo-Triassic mass extinction in northeastern Panthalassa |journal=Biology Letters |volume=15 |issue=3 |pages=Article ID 20180902 |doi=10.1098/rsbl.2018.0902 |pmid=30862310 |pmc=6451382 }}
- A study aiming to explain high biodiversity preserved in the Triassic Cassian Formation (Italy) is published online by Roden et al. (2019).{{Cite journal|author1=Vanessa Julie Roden |author2=Imelda M. Hausmann |author3=Alexander Nützel |author4=Barbara Seuss |author5=Mike Reich |author6=Max Urlichs |author7=Hans Hagdorn |author8=Wolfgang Kiessling |year=2019 |title=Fossil liberation: a model to explain high biodiversity in the Triassic Cassian Formation |journal=Palaeontology |volume=63 |issue=1 |pages=85–102 |doi=10.1111/pala.12441 |s2cid=202911879 }}
- A study on shark, sizable carnivorous archosaur, big herbivorous tetrapod and probable turtle bromalites (coprolites and possibly some cololites) from a turtle-dominated fossil assemblage from the Upper Triassic Poręba site (Poland) is published by Bajdek et al. (2019), who evaluate the implications of their findings for inferring the diet of the Triassic turtle Proterochersis porebensis.{{Cite journal|author1=Piotr Bajdek |author2=Tomasz Szczygielski |author3=Agnieszka Kapuścińska |author4=Tomasz Sulej |year=2019 |title=Bromalites from a turtle-dominated fossil assemblage from the Triassic of Poland |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=520 |pages=214–228 |doi=10.1016/j.palaeo.2019.02.002 |bibcode=2019PPP...520..214B |s2cid=135287034 }}
- A study on seawater oxygenation during the Early Jurassic and its impact on the recovery of marine benthos after the Triassic–Jurassic extinction event, as indicated by data from Blue Lias Formation (United Kingdom), is published by Atkinson & Wignall (2019).{{Cite journal|author1=J.W. Atkinson |author2=P.B. Wignall |year=2019 |title=How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play? |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=528 |pages=99–119 |doi=10.1016/j.palaeo.2019.05.011 |bibcode=2019PPP...528...99A |s2cid=164911938 |url=http://eprints.whiterose.ac.uk/148131/1/Atkinson%20%26%20Wignall%202019%20author%20accepted.pdf }}
- A study on the patterns and processes of recovery of marine fauna after the Toarcian oceanic anoxic event, as indicated by data from the Cleveland Basin (Yorkshire, United Kingdom), is published by Caswell & Dawn (2019).{{Cite journal|author1=Bryony A. Caswell |author2=Stephanie J. Dawn |year=2019 |title=Recovery of benthic communities following the Toarcian oceanic anoxic event in the Cleveland Basin, UK |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=521 |pages=114–126 |doi=10.1016/j.palaeo.2019.02.014 |bibcode=2019PPP...521..114C |hdl=10072/384441 |s2cid=134807954 |url=https://hull-repository.worktribe.com/file/1323909/1/Article |hdl-access=free }}
- A study on changes of land vegetation resulting from the Toarcian oceanic anoxic event is published by Slater et al. (2019).{{Cite journal|author1=Sam M. Slater |author2=Richard J. Twitchett |author3=Silvia Danise |author4=Vivi Vajda |year=2019 |title=Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia |journal=Nature Geoscience |volume=12 |issue=6 |pages=462–467 |doi=10.1038/s41561-019-0349-z |bibcode=2019NatGe..12..462S |s2cid=155624907 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-3420 }}
- Skeletal elements of Oxfordian ichthyosaurs and plesiosaurs are reported from the Kingofjeld mountain (north-east Greenland) by Delsett & Alsen (2019).{{Cite journal|author1=L.L. Delsett |author2=P. Alsen |year=2019 |title=New marine reptile fossils from the Oxfordian (Late Jurassic) of Greenland |journal=Geological Magazine |volume=157 |issue=10 |pages=1612–1621 |doi=10.1017/S0016756819000724 |s2cid=199098887 }}
- New marine reptile-bearing localities documenting the Tithonian–Berriasian transition at the High Andes (Mendoza Province, Argentina) are reported by Fernández et al. (2019).{{Cite journal|author1=Marta S. Fernández |author2=Yanina Herrera |author3=Verónica V. Vennari |author4=Lisandro Campos |author5=Marcelo de la Fuente |author6=Marianella Talevi |author7=Beatriz Aguirre-Urreta |year=2019 |title=Marine reptiles from the Jurassic/Cretaceous transition at the High Andes, Mendoza, Argentina |journal=Journal of South American Earth Sciences |volume=92 |pages=658–673 |doi=10.1016/j.jsames.2019.03.013 |bibcode=2019JSAES..92..658F |s2cid=134577778 |url=https://rid.unrn.edu.ar/jspui/handle/20.500.12049/5093 }}
- A study on microvertebrate fossils from the Upper Jurassic or Lower Cretaceous of Ksar Metlili (Anoual Syncline, Morocco), evaluating their palaeobiogeographical implications, and on the age of this fauna, is published online by Lasseron et al. (2019).{{Cite journal|author1=Maxime Lasseron |author2=Ronan Allain |author3=Emmanuel Gheerbrant |author4=Hamid Haddoumi |author5=Nour-Eddine Jalil |author6=Grégoire Métais |author7=Jean-Claude Rage |author8=Romain Vullo |author9=Samir Zouhri |year=2019 |title=New data on the microvertebrate fauna from the Upper Jurassic or lowest Cretaceous of Ksar Metlili (Anoual Syncline, eastern Morocco) |journal=Geological Magazine |volume=157 |issue=3 |pages=367–392 |doi=10.1017/S0016756819000761 |s2cid=204263709 |url=https://hal-insu.archives-ouvertes.fr/insu-03004245/file/Lasseron%20et%20al.%20-%20New%20data%20on%20the%20microvertebrate%20fauna%20from%20the%20Lat.pdf }}
- Description of mid-Cretaceous invertebrate fauna from Batavia Knoll (eastern Indian Ocean), and a study on its similarities to other Cretaceous faunas from around the Indian Ocean, is published by Wild & Stilwell (2019).{{Cite journal|author1=Toban J. Wild |author2=Jeffrey D. Stilwell |year=2019 |title=Palaeobiogeographic and tectonic significance of mid-Cretaceous invertebrate taxa from Batavia Knoll, eastern Indian Ocean |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=522 |pages=89–97 |doi=10.1016/j.palaeo.2019.03.014 |bibcode=2019PPP...522...89W |s2cid=134962178 }}
- A study on the age of the vertebrate fauna from the Cretaceous Cerro Barcino Formation (Argentina) is published online by Krause et al. (2019).{{Cite journal|author1=J. Marcelo Krause |author2=Jahandar Ramezani |author3=Aldo M. Umazano |author4=Diego Pol |author5=José L. Carballido |author6=Juliana Sterli |author7=Pablo Puerta |author8=N. Rubén Cúneo |author9=Eduardo S. Bellosi |year=2020 |title=High-resolution chronostratigraphy of the Cerro Barcino Formation (Patagonia): Paleobiologic implications for the mid-cretaceous dinosaur-rich fauna of South America |journal=Gondwana Research |volume=80 |pages= 33–49|doi=10.1016/j.gr.2019.10.005 |bibcode=2020GondR..80...33K |s2cid=210265289 }}
- Possible amphibian, gastropod and insect egg masses are described from the Cretaceous amber from Myanmar by Xing et al. (2019).{{Cite journal|author1=Lida Xing |author2=Donghao Wang |author3=Gang Li |author4=Ryan C. McKellar |author5=Ming Bai |author6=Huarong Chen |author7=Susan E. Evans |year=2019 |title=Possible egg masses from amphibians, gastropods, and insects in mid-Cretaceous Burmese amber |journal=Historical Biology: An International Journal of Paleobiology |volume=33 |issue=7 |pages=1043–1052 |doi=10.1080/08912963.2019.1677642 |s2cid=208565653 |url=https://discovery.ucl.ac.uk/id/eprint/10089774/1/Final%20Xing%20et%20al.%20Egg%20paper.pdf }}
- A study on coprolites from the Upper Cretaceous deposits in the Münster Basin (northwestern Germany), evaluating their implications for the knowledge of Cretaceous trophic structures and predator–prey interactions, is published by Qvarnström et al. (2019).{{Cite journal|author1=Martin Qvarnström |author2=Stavros Anagnostakis |author3=Anders Lindskog |author4=Udo Scheer |author5=Vivi Vajda |author6=Bo W. Rasmussen |author7=Johan Lindgren |author8=Mats E. Eriksson |year=2019 |title=Multi-proxy analyses of Late Cretaceous coprolites from Germany |journal=Lethaia |volume=52 |issue= 4|pages= 550–569|doi=10.1111/let.12330 |bibcode=2019Letha..52..550Q |s2cid=155939790 |url=https://lup.lub.lu.se/record/8df22c03-b82b-4551-abe7-279a8d7e9b56 }}
- New vertebrate assemblage from the upper Turonian Schönleiten Formation of Gams bei Hieflau (Austria) is described by Ősi et al. (2019).{{Cite journal|author1=Attila Ősi |author2=Márton Szabó |author3=Heinz Kollmann |author4=Michael Wagreich |author5=Réka Kalmár |author6=László Makádi |author7=Zoltán Szentesi |author8=Herbert Summesberger |year=2019 |title=Vertebrate remains from the Turonian (Upper Cretaceous) Gosau Group of Gams, Austria |journal=Cretaceous Research |volume=99 |pages=190–208 |doi=10.1016/j.cretres.2019.03.001 |bibcode=2019CrRes..99..190O |s2cid=134929335 |url=http://real.mtak.hu/103220/7/Osi_et_al_MS_corrected_Gosau_vertebrates.pdf }}
- Turonian marine vertebrate fossils from the Huehuetla quarry (Puebla, Mexico) are described by Alvarado-Ortega et al. (2019).{{cite journal |author1=Jesús Alvarado-Ortega |author2=Kleyton Magno Cantalice Severiano |author3=Jair Israel Barrientos-Lara |author4=Jesús Alberto Díaz-Cruz |author5=Bruno Andrés Than-Marchese |year=2019 |title=The Huehuetla quarry, a Turonian deposit of marine vertebrates in the Sierra Norte of Puebla, central Mexico |journal=Palaeontologia Electronica |volume=22 |issue=1 |pages=Article number 22.1.13 |doi=10.26879/921 |doi-access=free }}
- A study on the biogeography of Cretaceous terrestrial tetrapods is published by Kubo (2019).{{Cite journal|author=Tai Kubo |year=2019 |title=Biogeographical network analysis of Cretaceous terrestrial tetrapods: a phylogeny-based approach |journal=Systematic Biology |volume=68 |issue=6 |pages=1034–1051 |doi=10.1093/sysbio/syz024 |pmid=31135923 }}
- A study on the structure and contents of a large piece of amber attached to a jaw of a specimen of Prosaurolophus maximus from the Cretaceous Dinosaur Park Formation (Alberta, Canada), evaluating the implications of this finding for the knowledge of the habitat and taphonomy of the dinosaur, is published by McKellar et al. (2019).{{Cite journal|author1=Ryan C. McKellar |author2=Emma Jones |author3=Michael S. Engel |author4=Ralf Tappert |author5=Alexander P. Wolfe |author6=Karlis Muehlenbachs |author7=Pierre Cockx |author8=Eva B. Koppelhus |author9=Philip J. Currie |year=2019 |title=A direct association between amber and dinosaur remains provides paleoecological insights |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 17916 |doi=10.1038/s41598-019-54400-x |pmid=31784622 |pmc=6884503 |bibcode=2019NatSR...917916M }}
- An accumulation of fossil eggshells of bird, crocodylomorph and gekkotan eggs is reported from the Late Cretaceous Oarda de Jos locality in the vicinity of the city of Sebeș (Romania) by Fernández et al. (2019).{{Cite journal|author1=Mariela Soledad Fernández |author2=Xia Wang |author3=Mátyás Vremir |author4=Chris Laurent |author5=Darren Naish |author6=Gary Kaiser |author7=Gareth Dyke |year=2019 |title=A mixed vertebrate eggshell assemblage from the Transylvanian Late Cretaceous |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 1944 |doi=10.1038/s41598-018-36305-3 |pmid=30760740 |pmc=6374508 |bibcode=2019NatSR...9.1944F }}
- A review of the fossil record of Late Cretaceous and Paleogene vertebrates from the Seymour Island (Antarctica) is published by Reguero (2019).{{cite journal |author=Marcelo A. Reguero |year=2019 |title=Antarctic paleontological heritage: Late Cretaceous–Paleogene vertebrates from Seymour (Marambio) Island, Antarctic Peninsula |journal=Advances in Polar Science |volume=30 |issue=3 |pages=328–355 |doi=10.13679/j.advps.2019.0015 |url=http://www.aps-polar.org/paper/2019/30/03/A190814000004 |access-date=2019-09-06 |archive-date=2019-09-06 |archive-url=https://web.archive.org/web/20190906164429/http://www.aps-polar.org/paper/2019/30/03/A190814000004 |url-status=dead }}
- A study on the evolutionary history of the family Pospiviroidae, aiming to assess possible impact of the Cretaceous–Paleogene extinction event on the divergence rates in this family, is published by Bajdek (2019).{{Cite journal|author=Piotr Bajdek |year=2019 |title=Divergence rates of subviral pathogens of angiosperms abruptly decreased at the Cretaceous-Paleogene boundary |journal=Rethinking Ecology |volume=4 |pages=89–101 |doi=10.3897/rethinkingecology.4.33014 |s2cid=196664424 |doi-access=free }}
- A study on calcareous nanoplankton and planktic foraminiferal assemblages in a Cretaceous-Paleogene section from the peak ring of the Chicxulub crater, and on their implications for the knowledge of recovery of plankton after the Cretaceous–Paleogene extinction event, is published by Jones, Lowery & Bralower (2019).{{Cite journal|author1=Heather L. Jones |author2=Christopher M. Lowery |author3=Timothy J. Bralower |year=2019 |title=Delayed calcareous nannoplankton boom-bust successions in the earliest Paleocene Chicxulub (Mexico) impact crater |journal=Geology |volume=47 |issue=8 |pages=753–756 |doi=10.1130/G46143.1 |bibcode=2019Geo....47..753J |s2cid=200028577 }}
- A study on the course of recovery of the nanoplankton communities after the Cretaceous–Paleogene extinction event is published by Alvarez et al. (2019), who report evidence indicative of 1.8 million years of exceptional volatility of post-extinction communities and indicating that the emergence of a more stable equilibrium-state community coincided with indicators of carbon cycle restoration and a fully functioning biological pump.{{Cite journal|author1=Sarah A. Alvarez |author2=Samantha J. Gibbs |author3=Paul R. Bown |author4=Hojung Kim |author5=Rosie M. Sheward |author6=Andy Ridgwell |year=2019 |title=Diversity decoupled from ecosystem function and resilience during mass extinction recovery |journal=Nature |volume=574 |issue=7777 |pages=242–245 |doi=10.1038/s41586-019-1590-8 |pmid=31554971 |bibcode=2019Natur.574..242A |s2cid=202760217 |url=https://eprints.soton.ac.uk/434760/1/reboot_accepted.pdf }}
- A study on the timing and nature of recovery of benthic marine ecosystems of Antarctica after the Cretaceous–Paleogene mass extinction, as indicated by data from fossils of benthic molluscs, is published by Whittle et al. (2019).{{Cite journal|author1=Rowan J. Whittle |author2=James D. Witts |author3=Vanessa C. Bowman |author4=J. Alistair Crame |author5=Jane E. Francis |author6=Jon Ineson |year=2019 |title=Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous–Palaeogene mass extinction |journal=Palaeontology |volume=62 |issue=6 |pages=919–934 |doi=10.1111/pala.12434 |bibcode=2019Palgy..62..919W |s2cid=197558669 |doi-access=free |hdl=1983/664225b7-7261-41b0-b453-7b6a5c860e8a |hdl-access=free }}
- A study on the drivers and tempo of biotic recovery after Cretaceous–Paleogene mass extinction, as indicated by data from the Corral Bluffs section of the Denver Basin (Colorado, United States), is published by Lyson et al. (2019).{{Cite journal|author1=T. R. Lyson |author2=I. M. Miller |author3=A. D. Bercovici |author4=K. Weissenburger |author5=A. J. Fuentes |author6=W. C. Clyde |author7=J. W. Hagadorn |author8=M. J. Butrim |author9=K. R. Johnson |author10=R. F. Fleming |author11=R. S. Barclay |author12=S. A. Maccracken |author13=B. Lloyd |author14=G. P. Wilson |author15=D. W. Krause |author16=S. G. B. Chester |year=2019 |title=Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction |journal=Science |volume=366 |issue=6468 |pages=977–983 |doi=10.1126/science.aay2268 |pmid=31649141 |s2cid=204883579 |doi-access=free }}
- Description of the vertebrate assemblage from the Oligocene Shine Us locality in the Khaliun Basin (Mongolia) is published by Daxner-Höck et al. (2019).{{Cite journal|author1=Gudrun Daxner-Höck |author2=Margarita A. Erbajeva |author3=Ursula B. Göhlich |author4=Paloma López-Guerrero |author5=Tserendash Narantsetseg |author6=Bastien Mennecart |author7=Adriana Oliver |author8=Davit Vasilyan |author9=Reinhard Ziegler |year=2019 |title=The Oligocene vertebrate assemblage of Shine Us (Khaliun Basin, south western Mongolia) |journal=Annalen des Naturhistorischen Museums in Wien, Serie A |volume=121 |pages=195–256 |url=http://verlag.nhm-wien.ac.at/pdfs/121A_195256_Daxner-Hoeck.pdf |jstor=26595691 }}
- Description of reptile and amphibian fossils from the early Miocene localities of the Kilçak section (Turkey) is published by Syromyatnikova et al. (2019).{{Cite journal|author1=Elena Syromyatnikova |author2=Georgios L. Georgalis |author3=Serdar Mayda |author4=Tanju Kaya |author5=Gerçek Saraç |year=2019 |title=A new early Miocene herpetofauna from Kilçak, Turkey |journal=Russian Journal of Herpetology |volume=26 |issue=4 |pages=205–224 |doi=10.30906/1026-2296-2019-26-4-205-224 |s2cid=204646324 |url=https://www.zora.uzh.ch/id/eprint/191266/1/Syromyatnikova_et_al._2019._Herpetofauna_Kilcak-1.pdf }}
- Description of fossil fish, amphibian and reptilian fauna from the middle Miocene locality Gračanica (Bosnia and Herzegovina) is published online by Vasilyan (2019).{{cite journal |author=Davit Vasilyan |year=2019 |title=Fish, amphibian and reptilian assemblage from the middle Miocene locality Gračanica—Bugojno palaeolake, Bosnia and Herzegovina |journal=Palaeobiodiversity and Palaeoenvironments |volume=100 |issue=2 |pages=437–455 |doi=10.1007/s12549-019-00381-8 |s2cid=195225145 |url=http://doc.rero.ch/record/328842/files/vas_far.pdf }}
- A study on the vertebrate fossils from the early Clarendonian localities within the Goliad Formation in Bee and Live Oak Counties in Texas (comprising the Lapara Creek Fauna), and on the stratigraphic context of these localities, is published by May (2019).{{cite journal |author=Steven R. May |year=2019 |title=The Lapara Creek Fauna: Early Clarendonian of south Texas, USA |journal=Palaeontologia Electronica |volume=22 |issue=1 |pages=Article number 22.1.15 |doi=10.26879/929 |s2cid=146390137 |doi-access=free }}
- New late Miocene vertebrate assemblage, including turtle, rodent and xenarthran fossils (among which is the oldest record of an armadillo belonging to the genus Dasypus reported so far), is described from the Los Alisos locality (Guanaco Formation, Argentina) by Ercoli et al. (2019).{{Cite journal|author1=Marcos D. Ercoli |author2=Alicia Álvarez |author3=Carla Santamans |author4=Sonia A. González Patagua |author5=Juan Pablo Villalba Ulberich |author6=Ornela E. Constantini |year=2019 |title=Los Alisos, a new fossiliferous locality for Guanaco Formation (late Miocene) in Jujuy (Argentina), and a first approach of its paleoecological and biochronology implications |journal=Journal of South American Earth Sciences |volume=93 |pages=203–213 |doi=10.1016/j.jsames.2019.04.024 |bibcode=2019JSAES..93..203E |hdl=11336/121466 |s2cid=155281728 |hdl-access=free }}
- Description of a diverse late Miocene marine fauna from the Bloomfield Quarry (Wilson Grove Formation; California, United States), including the most diverse assemblage of fossil walruses yet reported worldwide from a single locality, is published by Powell et al. (2019).{{Cite journal|author1=Charles L. Powell |author2=Robert W. Boessenecker |author3=N. Adam Smith |author4=Robert J. Fleck |author5=Sandra J. Carlson |author6=James R. Allen |author7=Douglas J. Long |author8=Andrei M. Sarna-Wojcicki |author9=Raj B. Guruswami-Naidu |year=2019 |title=Geology and paleontology of the late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California |journal=U.S. Geological Survey Scientific Investigations Report |volume=2019–5021 |pages=1–77 |doi=10.3133/sir20195021 |series=Scientific Investigations Report |s2cid=155285057 |doi-access=free |bibcode=2019usgs.rept...25P }}
- Fish, turtle and mammals fossils are described from a locality near Whitehorse (Yukon, Canada), probably of Miocene age, by Eberle et al. (2019).{{Cite journal|author1=Jaelyn Eberle |author2=J. Howard Hutchison |author3=Kristen Kennedy |author4=Wighart Von Koenigswald |author5=Ross D.E. MacPhee |author6=Grant Zazula |year=2019 |title=The first Tertiary fossils of mammals, turtles, and fish from Canada's Yukon |journal=American Museum Novitates |issue=3943 |pages=1–28 |doi=10.1206/3943.1 |hdl=2246/6967 |s2cid=204965404 |url=https://scholar.colorado.edu/downloads/x633f206c }}
- A study on microscopic traces of hominin and animal activities in the Denisova Cave (Russia), providing the information on the use of this cave over the last 300,000 years, is published by Morley et al. (2019).{{cite journal |author1=Mike W. Morley |author2=Paul Goldberg |author3=Vladimir A. Uliyanov |author4=Maxim B. Kozlikin |author5=Michael V. Shunkov |author6=Anatoly P. Derevianko |author7=Zenobia Jacobs |author8=Richard G. Roberts |year=2019 |title=Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia) |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 13785 |doi=10.1038/s41598-019-49930-3 |pmid=31558742 |pmc=6763451 |bibcode=2019NatSR...913785M }}
- A study on the age of the Pleistocene vertebrate assemblage from the Khok Sung locality (Thailand) is published by Duval et al. (2019).{{cite journal |author1=Mathieu Duval |author2=Fang Fang |author3=Kantapon Suraprasit |author4=Jean-Jacques Jaeger |author5=Mouloud Benammi |author6=Yaowalak Chaimanee |author7=Javier Iglesias Cibanal |author8=Rainer Grün |year=2019 |title=Direct ESR dating of the Pleistocene vertebrate assemblage from Khok Sung locality, Nakhon Ratchasima Province, Northeast Thailand |journal=Palaeontologia Electronica |volume=22 |issue=3 |pages=Article number 22.3.69 |doi=10.26879/941 |s2cid=208990001 |doi-access=free |hdl=1885/258582 |hdl-access=free }}
- Revision of reptile and amphibian fossils from the late Pleistocene collection of the "Caverne Marie-Jeanne" (Hastière-Lavaux, Namur Province, Belgium) is published by Blain et al. (2019).{{Cite journal|author1=Hugues-Alexandre Blain |author2=Almudena Martínez Monzón |author3=Juan Manuel López-García |author4=Iván Lozano-Fernández |author5=Annelise Folie |year=2019 |title=Amphibians and squamate reptiles from the late Pleistocene of the "Caverne Marie-Jeanne" (Hastière-Lavaux, Namur, Belgium): Systematics, paleobiogeography, and paleoclimatic and paleoenvironmental reconstructions |journal=Comptes Rendus Palevol |volume=18 |issue=7 |pages=849–875 |doi=10.1016/j.crpv.2019.04.006 |bibcode=2019CRPal..18..849B |s2cid=197564252 }}
- New late Pleistocene site Tsaramody (Sambaina basin, Madagascar), preserving diverse subfossil remains of vertebrates, is reported by Samonds et al. (2019).{{Cite journal|author1=Karen E. Samonds |author2=Brooke E. Crowley |author3=Tojoarilala Rinasoa Nadia Rasolofomanana |author4=Miora Christelle Andriambelomanana |author5=Harimalala Tsiory Andrianavalona |author6=Tolotra Niaina Ramihangihajason |author7=Ravoniaina Rakotozandry |author8=Zafindratsaravelo Bototsemily Nomenjanahary |author9=Mitchell T. Irwin |author10=Neil A. Wells |author11=Laurie R. Godfrey |year=2019 |title=A new late Pleistocene subfossil site (Tsaramody, Sambaina basin, central Madagascar) with implications for the chronology of habitat and megafaunal community change on Madagascar's Central Highlands |journal=Journal of Quaternary Science |volume=34 |issue=6 |pages=379–392 |doi=10.1002/jqs.3096 |bibcode=2019JQS....34..379S |s2cid=201320848 }}
- A study on the paleoecology and diet of late Pleistocene terrestrial vertebrates known from an asphalt deposit (Project 23, Deposit 1) at Rancho La Brea (California, United States) is published online by Fuller et al. (2019).{{Cite journal|author1=Benjamin T. Fuller |author2=John R. Southon |author3=Simon M. Fahrni |author4=Aisling B. Farrell |author5=Gary T. Takeuchi |author6=Olaf Nehlich |author7=Eric J. Guiry |author8=Michael P. Richards |author9=Emily L. Lindsey |author10=John M. Harris |year=2020 |title=Pleistocene paleoecology and feeding behavior of terrestrial vertebrates recorded in a pre-LGM asphaltic deposit at Rancho La Brea, California |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=537 |pages=Article 109383 |doi=10.1016/j.palaeo.2019.109383 |bibcode=2020PPP...53709383F |s2cid=210297351 |url=https://figshare.com/articles/journal_contribution/12665480 }}
- A study on changes of vegetation in southern Borneo over the past 40,000 calibrated years BP, as indicated by data from Saleh Cave (South Kalimantan, Indonesia), is published by Wurster et al. (2019).{{Cite journal|author1=Christopher M. Wurster |author2=Hamdi Rifai |author3=Bin Zhou |author4=Jordahna Haig |author5=Michael I. Bird |year=2019 |title=Savanna in equatorial Borneo during the late Pleistocene |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 6392 |doi=10.1038/s41598-019-42670-4 |pmid=31024024 |pmc=6483998 |bibcode=2019NatSR...9.6392W }}
- Late Quaternary fossils of vertebrates are described from caves in the Manning Karst Region of eastern New South Wales (Australia) by Price et al. (2019).{{Cite journal|author1=Gilbert J. Price |author2=Julien Louys |author3=Garry K. Smith |author4=Jonathan Cramb |year=2019 |title=Shifting faunal baselines through the Quaternary revealed by cave fossils of eastern Australia |journal=PeerJ |volume=6 |pages=e6099 |doi=10.7717/peerj.6099 |pmid=30697475 |pmc=6346992 |doi-access=free }}
- A study aiming to determine the relationships between extinctions of megafauna, climatic changes and patterns of human appearance in south-eastern Australia over the last 120,000 years is published by Saltré et al. (2019).{{Cite journal|author1=Frédérik Saltré |author2=Joël Chadoeuf |author3=Katharina J. Peters |author4=Matthew C. McDowell |author5=Tobias Friedrich |author6=Axel Timmermann |author-link6= Axel Timmermann|author7=Sean Ulm |author8=Corey J. A. Bradshaw |year=2019 |title=Climate-human interaction associated with southeast Australian megafauna extinction patterns |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 5311 |doi=10.1038/s41467-019-13277-0 |pmid=31757942 |pmc=6876570 |bibcode=2019NatCo..10.5311S }}
- A study on the causes of Holocene extinction of megafauna of Madagascar is published by Godfrey et al. (2019).{{cite journal |author1=Laurie R. Godfrey |author2=Nick Scroxton |author3=Brooke E. Crowley |author4=Stephen J. Burns |author5=Michael R. Sutherland |author6=Ventura R. Pérez |author7=Peterson Faina |author8=David McGee |author9=Lovasoa Ranivoharimanana |year=2019 |title=A new interpretation of Madagascar's megafaunal decline: The "Subsistence Shift Hypothesis" |journal=Journal of Human Evolution |volume=130 |pages=126–140 |doi=10.1016/j.jhevol.2019.03.002 |pmid=31010539 |s2cid=128362254 |doi-access=free |bibcode=2019JHumE.130..126G }}
- A review discussing possible links between the fossil record of marine biodiversity, nutrient availability and primary productivity is published online by Martin & Servais (2019).{{cite journal |author1=Ronald E. Martin |author2=Thomas Servais |year=2019 |title=Did the evolution of the phytoplankton fuel the diversification of the marine biosphere? |journal=Lethaia |volume=53 |issue=1 |pages=5–31 |doi=10.1111/let.12343 |s2cid=197563329 }}
- A study on factors which determined the relative intensity of marine extinctions during greenhouse–icehouse transitions in the Late Ordovician and the Cenozoic is published online by Saupe et al. (2019).{{Cite journal|author1=Erin E. Saupe |author2=Huijie Qiao |author3=Yannick Donnadieu |author4=Alexander Farnsworth |author5=Alan T. Kennedy-Asser |author6=Jean-Baptiste Ladant |author7=Daniel J. Lunt |author8=Alexandre Pohl |author9=Paul Valdes |author10=Seth Finnegan |year=2019 |title=Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography |journal=Nature Geoscience |volume=13 |issue=1 |pages=65–70 |doi=10.1038/s41561-019-0504-6 |bibcode=2020NatGe..13...65S |hdl=1983/c88c3d46-e95d-43e6-aeaf-685580089635 |s2cid=209381464 |url=https://research-information.bris.ac.uk/ws/files/218675504/Saupe_et_al._Suppl_Materials_GCM_ENM_FINAL_CLEAN2.pdf }}
- A study on the possible relationship between speciation and extinction rates of different groups of organisms and the ages of these groups, as indicated by data from extant and fossil species, is published by Henao Diaz et al. (2019).{{Cite journal|author1=L. Francisco Henao Diaz |author2=Luke J. Harmon |author3=Mauro T. C. Sugawara |author4=Eliot T. Miller |author5=Matthew W. Pennell |year=2019 |title=Macroevolutionary diversification rates show time dependency |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=15 |pages=7403–7408 |doi=10.1073/pnas.1818058116 |pmid=30910958 |pmc=6462100 |bibcode=2019PNAS..116.7403H |doi-access=free }}{{Cite journal|author1=John J. Wiens |author2=Joshua P. Scholl |year=2019 |title=Diversification rates, clade ages, and macroevolutionary methods |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue= 49|pages= 24400|doi=10.1073/pnas.1915908116 |pmid=31719201 |pmc=6900499 |bibcode=2019PNAS..11624400W |doi-access=free }}{{Cite journal|author1=L. Francisco Henao Diaz |author2=Luke J. Harmon |author3=Mauro T. C. Sugawara |author4=Eliot T. Miller |author5=Matthew W. Pennell |year=2019 |title=Reply to Wiens and Scholl: The time dependency of diversification rates is a widely observed phenomenon |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue= 49|pages= 24401|doi=10.1073/pnas.1917189116 |pmid=31719200 |pmc=6900524 |bibcode=2019PNAS..11624401H |doi-access=free }}
- A study on the evolution of bite force of amniotes, as indicated by data from extant and fossil taxa, is published by Sakamoto, Ruta & Venditti (2019).{{Cite journal|author1=Manabu Sakamoto |author2=Marcello Ruta |author3=Chris Venditti |year=2019 |title=Extreme and rapid bursts of functional adaptations shape bite force in amniotes |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1894 |pages=Article ID 20181932 |doi=10.1098/rspb.2018.1932 |pmid=30963871 |pmc=6367170 }}
- A study on the phylogenetic distribution, morphological variation and functions of apicobasal ridges (elevated ridges of tooth enamel) in aquatic reptiles and mammals, as indicated by data from extant and fossil taxa, is published by McCurry et al. (2019).{{Cite journal|author1=Matthew R. McCurry |author2=Alistair R. Evans |author3=Erich M. G. Fitzgerald |author4=Colin R. McHenry |author5=Joseph Bevitt |author6=Nicholas D. Pyenson |author6-link=Nicholas Pyenson|year=2019 |title=The repeated evolution of dental apicobasal ridges in aquatic-feeding mammals and reptiles |journal=Biological Journal of the Linnean Society |volume=127 |issue=2 |pages=245–259 |doi=10.1093/biolinnean/blz025 |doi-access=free }}
- A study on the impact of uncertainty of stratigraphic age of fossils on studies estimating species divergence times which incorporate fossil taxa, based on data from the fossil record of North American mammals and from the dataset of extant and fossil cetaceans, is published by Barido-Sottani et al. (2019).{{Cite journal|author1=Joëlle Barido-Sottani |author2=Gabriel Aguirre-Fernández |author3=Melanie J. Hopkins |author4=Tanja Stadler |author5=Rachel Warnock |year=2019 |title=Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1902 |pages=Article ID 20190685 |doi=10.1098/rspb.2019.0685 |pmid=31064306 |pmc=6532507 }}
- A study evaluating the impact of information about stratigraphic ranges of fossil taxa on the analyses of timing of evolutionary divergence is published online by Püschel et al. (2019).{{Cite journal|author1=Hans P. Püschel |author2=Joseph E. O'Reilly |author3=Davide Pisani |author4=Philip C. J. Donoghue |year=2019 |title=The impact of fossil stratigraphic ranges on tip-calibration, and the accuracy and precision of divergence time estimates |journal=Palaeontology |volume=63 |issue=1 |pages=67–83 |doi=10.1111/pala.12443 |hdl=1983/04b0c77b-7d07-4555-aec0-9c19161e1770 |s2cid=199111737 |url=https://research-information.bris.ac.uk/en/publications/04b0c77b-7d07-4555-aec0-9c19161e1770 |doi-access=free |hdl-access=free }}
- A study on anatomical distribution, abundance, geometry, melanin chemistry and elemental inventory of melanosomes in tissues of extant vertebrates, evaluating their implications for reconstructions of internal soft-tissue anatomy in fossil vertebrates, is published by Rossi et al. (2019).{{Cite journal|author1=Valentina Rossi |author2=Maria E. McNamara |author3=Sam M. Webb |author4=Shosuke Ito |author5=Kazumasa Wakamatsu |year=2019 |title=Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=36 |pages=17880–17889 |doi=10.1073/pnas.1820285116 |pmid=31427524 |pmc=6731645 |bibcode=2019PNAS..11617880R |doi-access=free }}
- A study on the chronostratigraphy and biostratigraphy of Cenozoic vertebrate (mostly mammal) fossils from the South Carolina Coastal Plain is published by Albright et al. (2019).{{Cite journal|author1=L. Barry Albright III |author2=Albert E. Sanders |author3=Robert E. Weems |author4=David J. Cicimurri |author5=James L. Knight |year=2019 |title=Cenozoic vertebrate biostratigraphy of South Carolina, U.S.A., and additions to the fauna |journal=Bulletin of the Florida Museum of Natural History |volume=57 |issue=2 |pages=77–236 |doi=10.58782/flmnh.qqgg4577 |url=https://www.floridamuseum.ufl.edu/wp-content/uploads/sites/35/2019/10/Vol57No2archival.pdf }}
Other research
Other research related to paleontology, including research related to geology, palaeogeography, paleoceanography and paleoclimatology.
- A study on the biological oxygen production during the Mesoarchean, as indicated by data from Mesoarchean shales of the Mozaan Group (Pongola Supergroup, South Africa) preserving record of a shallow ocean "oxygen oasis", is published by Ossa Ossa et al. (2019).{{Cite journal|author1=Frantz Ossa Ossa |author2=Axel Hofmann |author3=Jorge E. Spangenberg |author4=Simon W. Poulton |author5=Eva E. Stüeken |author6=Ronny Schoenberg |author7=Benjamin Eickmann |author8=Martin Wille |author9=Mike Butler |author10=Andrey Bekker |year=2019 |title=Limited oxygen production in the Mesoarchean ocean |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=14 |pages=6647–6652 |doi=10.1073/pnas.1818762116 |pmid=30894492 |pmc=6452703 |bibcode=2019PNAS..116.6647O |doi-access=free }}
- A study on the extent of the oxygenation of ocean waters over continental shelves before the Great Oxidation Event, as indicated by data from 2.5-billion-year-old Mount McRae Shale (Australia), is published by Ostrander et al. (2019).{{Cite journal|author1=Chadlin M. Ostrander |author2=Sune G. Nielsen |author3=Jeremy D. Owens |author4=Brian Kendall |author5=Gwyneth W. Gordon |author6=Stephen J. Romaniello |author7=Ariel D. Anbar |year=2019 |title=Fully oxygenated water columns over continental shelves before the Great Oxidation Event |journal=Nature Geoscience |volume=12 |issue=3 |pages=186–191 |doi=10.1038/s41561-019-0309-7 |pmid=30847006 |pmc=6398953 |bibcode=2019NatGe..12..186O }}
- A study on the extent of the oxygenation of shallow oceans 2.45 billion years ago is published by Rasmussen et al. (2019), who interpret their findings as indicating that oxygen levels both the surface oceans and atmosphere were exceedingly low before the Great Oxidation Event, which the authors interpret as directly caused by evolution of oxygenic photosynthesis.{{Cite journal|author1=Birger Rasmussen |author2=Janet R. Muhling |author3=Nicholas J. Tosca |author4=Harilaos Tsikos |year=2019 |title=Evidence for anoxic shallow oceans at 2.45 Ga: Implications for the rise of oxygenic photosynthesis |journal=Geology |volume=47 |issue= 7|pages= 622–626|doi=10.1130/G46162.1 |bibcode=2019Geo....47..622R |s2cid=155825490 |doi-access=free }}
- A study aiming to determine whether the overall size of the biosphere decreased at the end of the Great Oxidation Event, based on data on isotope geochemistry of sulfate minerals from the Belcher Group (subarctic Canada), is published by Hodgskiss et al. (2019).{{Cite journal|author1=Malcolm S. W. Hodgskiss |author2=Peter W. Crockford |author3=Yongbo Peng |author4=Boswell A. Wing |author5=Tristan J. Horner |year=2019 |title=A productivity collapse to end Earth's Great Oxidation |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=35 |pages=17207–17212 |doi=10.1073/pnas.1900325116 |pmid=31405980 |pmc=6717284 |bibcode=2019PNAS..11617207H |doi-access=free }}
- Evidence of a burst of mantle activity at the end of the Archean (around 2.5 billion years ago) is presented by Marty et al. (2019), who interpret their findings as lending credence to models advocating a magmatic origin for environmental changes such as the Great Oxidation Event.{{Cite journal|author1=Bernard Marty |author2=David V. Bekaert |author3=Michael W. Broadley |author4=Claude Jaupart |year=2019 |title=Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean |journal=Nature |volume=575 |issue=7783 |pages=485–488 |doi=10.1038/s41586-019-1745-7 |pmid=31748723 |bibcode=2019Natur.575..485M |s2cid=208190652 |url=https://hal-insu.archives-ouvertes.fr/insu-03586608/file/Marty2019.pdf }}
- A study aiming to determine the effects of competition of early anoxygenic phototrophs and primitive oxygenic phototrophs on the Earth system, especially on the large-scale oxygenation of Earth's atmosphere ~2.3 billion years ago, is published by Ozaki et al. (2019).{{Cite journal|author1=Kazumi Ozaki |author2=Katharine J. Thompson |author3=Rachel L. Simister |author4=Sean A. Crowe |author5=Christopher T. Reinhard |year=2019 |title=Anoxygenic photosynthesis and the delayed oxygenation of Earth's atmosphere |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 3026 |doi=10.1038/s41467-019-10872-z |pmid=31289261 |pmc=6616575 |bibcode=2019NatCo..10.3026O |arxiv=1907.13001 }}
- A study on the geochemistry of mat-related structures and their host sediments from the Francevillian Formation (Gabon) is published by Aubineau et al. (2019), who evaluate the implications of their findings for the knowledge whether ancient microbes induced illitisation (conversion of smectite to illite–smectite mixed-layer minerals), and for the knowledge of Earth's climate and ocean chemistry in the Paleoproterozoic.{{Cite journal|author1=Jérémie Aubineau |author2=Abderrazak El Albani |author3=Andrey Bekker |author4=Andrea Somogyi |author5=Olabode M. Bankole |author6=Roberto Macchiarelli |author7=Alain Meunier |author8=Armelle Riboulleau |author9=Jean-Yves Reynaud |author10=Kurt O. Konhauser |year=2019 |title=Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 2670 |doi=10.1038/s41467-019-10620-3 |pmid=31209248 |pmc=6572813 |bibcode=2019NatCo..10.2670A }}
- A study on the organic geochemical (biomarker) signatures of the 1.38-billion-years-old black siltstones of the Velkerri Formation (Australia), and on their implications for inferring the microbial diversity and palaeoenvironment of the Proterozoic Roper Seaway, is published by Jarrett et al. (2019).{{Cite journal|author1=Amber J. M. Jarrett |author2=Grant M. Cox |author3=Jochen J. Brocks |author4=Emmanuelle Grosjean |author5=Chris J. Boreham |author6=Dianne S. Edwards |year=2019 |title=Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia |journal=Geobiology |volume=17 |issue=4 |pages=360–380 |doi=10.1111/gbi.12331 |pmid=30734481 |pmc=6618112 |bibcode=2019Gbio...17..360J }}
- A study on the origins of putative stromatolites and associated carbonate minerals from lacustrine sedimentary rocks of the 1.1-billion-years-old Stoer Group is published by Brasier et al. (2019).{{Cite journal|author1=A.T. Brasier |author2=P.F. Dennis |author3=J. Still |author4=J. Parnell |author5=T.Culwick |author6=M.D. Brasier |author7=D. Wacey |author8=S.A. Bowden |author9=S. Crook |author10=A.J. Boyce |author11=D.K. Muirhead |year=2019 |title=Detecting ancient life: Investigating the nature and origin of possible stromatolites and associated calcite from a one billion year old lake |journal=Precambrian Research |volume=328 |pages=309–320 |doi=10.1016/j.precamres.2019.04.025 |bibcode=2019PreR..328..309B |hdl=2164/14227 |s2cid=155354410 |url=http://eprints.gla.ac.uk/185038/1/185038.pdf }}
- A study suggesting a link between early evolution and diversification of animals and high availability of copper in the late Neoproterozoic is published by Parnell & Boyce (2019).{{Cite journal|author1=J. Parnell |author2=A. J. Boyce |year=2019 |title=Neoproterozoic copper cycling, and the rise of metazoans |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 3638 |doi=10.1038/s41598-019-40484-y |pmid=30842538 |pmc=6403403 |bibcode=2019NatSR...9.3638P }}
- A study aiming to determine the cause of the uniquely high amplitudes of Neoproterozoic δ13C excursions is published by Shields et al. (2019).{{Cite journal|author1=Graham A. Shields |author2=Benjamin J. W. Mills |author3=Maoyan Zhu |author4=Timothy D. Raub |author5=Stuart J. Daines |author6=Timothy M. Lenton |year=2019 |title=Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial |journal=Nature Geoscience |volume=12 |issue=10 |pages=823–827 |doi=10.1038/s41561-019-0434-3 |bibcode=2019NatGe..12..823S |hdl=10871/39006 |s2cid=201827639 |url=http://eprints.whiterose.ac.uk/149033/1/Shields_etal_2019_ngeo_AAM.pdf }}
- A study evaluating the possible relationship between the Cryogenian magmatic activity and the evolution of early life, based on data from the Cryogenian Yaolinghe Group (China), is published by Long, Zhang & Luo (2019).{{Cite journal|author1=Jie Long |author2=Shixi Zhang |author3=Kunli Luo |year=2019 |title=Cryogenian magmatic activity and early life evolution |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 6586 |doi=10.1038/s41598-019-43177-8 |pmid=31036856 |pmc=6488696 |bibcode=2019NatSR...9.6586L }}
- Evidence for oxygenated waters near ice sheet grounding lines during the Cryogenian is presented by Lechte et al. (2019).{{Cite journal|author1=Maxwell A. Lechte |author2=Malcolm W. Wallace |author3=Ashleigh van Smeerdijk Hood |author4=Weiqiang Li |author5=Ganqing Jiang |author6=Galen P. Halverson |author7=Dan Asael |author8=Stephanie L. McColl |author9=Noah J. Planavsky |year=2019 |title=Subglacial meltwater supported aerobic marine habitats during Snowball Earth |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=51 |pages=25478–25483 |doi=10.1073/pnas.1909165116 |pmid=31792178 |pmc=6926012 |bibcode=2019PNAS..11625478L |doi-access=free }}
- A study on ocean oxygen levels during the Ediacaran Shuram negative C-isotope Excursion and the middle Ediacaran, and on their implications for the evolution of the Ediacaran biota, is published by Zhang et al. (2019).{{Cite journal|author1=Feifei Zhang |author2=Shuhai Xiao |author3=Stephen J. Romaniello |author4=Dalton Hardisty |author5=Chao Li |author6=Victor Melezhik |author7=Boris Pokrovsky |author8=Meng Cheng |author9=Wei Shi |author10=Timothy M. Lenton |author11=Ariel D. Anbar |year=2019 |title=Global marine redox changes drove the rise and fall of the Ediacara biota |journal=Geobiology |volume=17 |issue=6 |pages=594–610 |doi=10.1111/gbi.12359 |pmid=31353777 |pmc=6899691 |bibcode=2019Gbio...17..594Z }}
- A study on the causes of widespread preservation of soft-bodied organisms in sandstones of the Ediacara Member in South Australia is published by Liu et al. (2019).{{Cite journal |author1=Alexander G. Liu |author2=Sean McMahon |author3=Jack J. Matthews |author4=John W. Still |author5=Alexander T. Brasier |year=2019 |title=Petrological evidence supports the death mask model for the preservation of Ediacaran soft-bodied organisms in South Australia |journal=Geology |volume=47 |issue=3 |pages=215–218 |doi=10.1130/G45918.1 |url=http://eprints.esc.cam.ac.uk/4406/2/2019077.pdf |bibcode=2019Geo....47..215L |hdl=2164/13537 |s2cid=133939666 |access-date=2019-07-19 |archive-date=2019-04-30 |archive-url=https://web.archive.org/web/20190430144311/http://eprints.esc.cam.ac.uk/4406/2/2019077.pdf |url-status=dead }}
- A study on the seafloor oxygen fugacity in the time of the emergence of the earliest known benthic animals, as inferred from data from the latest Ediacaran Dengying Formation (China), is published by Ding et al. (2019).{{Cite journal|author1=Weiming Ding |author2=Lin Dong |author3=Yuanlin Sun |author4=Haoran Ma |author5=Yihe Xu |author6=Runyu Yang |author7=Yongbo Peng |author8=Chuanming Zhou |author9=Bing Shen |year=2019 |title=Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 13628 |doi=10.1038/s41598-019-49993-2 |pmid=31541156 |pmc=6754419 |bibcode=2019NatSR...913628D }}
- A study on the process of fossilization of Ediacaran organisms, and on its impact on the preservation of the external shape of these organisms, is published by Bobrovskiy et al. (2019).{{Cite journal|author1=Ilya Bobrovskiy |author2=Anna Krasnova |author3=Andrey Ivantsov |author4=Ekaterina Luzhnaya (Serezhnikova) |author5=Jochen J. Brocks |year=2019 |title=Simple sediment rheology explains the Ediacara biota preservation |journal=Nature Ecology & Evolution |volume=3 |issue=4 |pages=582–589 |doi=10.1038/s41559-019-0820-7 |pmid=30911145 |bibcode=2019NatEE...3..582B |s2cid=85495899 }}
- A study on the global extent of the oxygenation of seafloor, surface oceans and atmosphere during early Cambrian is published by Dahl et al. (2019), who report evidence of two major oceanic anoxic events in the early Cambrian.{{Cite journal|author1=Tais W. Dahl |author2=James N. Connelly |author3=Da Li |author4=Artem Kouchinsky |author5=Benjamin C. Gill |author6=Susannah Porter |author7=Adam C. Maloof |author8=Martin Bizzarro |year=2019 |title=Atmosphere–ocean oxygen and productivity dynamics during early animal radiations |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=39 |pages=19352–19361 |doi=10.1073/pnas.1901178116 |pmid=31501322 |pmc=6765300 |bibcode=2019PNAS..11619352D |doi-access=free }}
- A study on nitrogen isotope and organic carbon isotope data from the lower Cambrian Niutitang Formation (China) is published online by Xu et al. (2019), who link nitrogen cycle perturbations to animal diversification during the early Cambrian.{{Cite journal|author1=Dongtao Xu |author2=Xinqiang Wang |author3=Xiaoying Shi |author4=Dongjie Tang |author5=Xiangkuan Zhao |author6=Lianjun Feng |author7=Huyue Song |year=2020 |title=Nitrogen cycle perturbations linked to metazoan diversification during the early Cambrian |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=538 |pages=Article 109392 |doi=10.1016/j.palaeo.2019.109392 |bibcode=2020PPP...53809392X |s2cid=210297394 }}
- A study on the paleoecological characteristics of Cambrian marine ecosystems of central Sonora (Mexico) is published by Romero et al. (2019).{{Cite journal|author1=Francisco Javier Cuen Romero |author2=José Eduardo Valdez Holguín |author3=Blanca Estela Buitrón Sánchez |author4=Rogelio Monreal |author5=Luis Fernando Enríquez Ocaña |author6=Eduardo Aguirre Hinojosa |author7=José Alfredo Ochoa Granillo |author8=Francisco Javier Grijalva Noriega |author9=Juan José Palafox Reyes |year=2019 |title=Paleoecology of Cambrian communities of central Sonora, Mexico: Paleoenvironmental and biostratigraphic considerations |journal=Journal of South American Earth Sciences |volume=92 |pages=631–645 |doi=10.1016/j.jsames.2019.04.005 |bibcode=2019JSAES..92..631C |s2cid=146746134 }}
- A study on seawater temperatures during the Cambrian, as indicated by data from oxygen isotope analyses of Cambrian brachiopod shells, is published by Wotte et al. (2019).{{Cite journal|author1=Thomas Wotte |author2=Christian B. Skovsted |author3=Martin J. Whitehouse |author4=Artem Kouchinsky |year=2019 |title=Isotopic evidence for temperate oceans during the Cambrian Explosion |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 6330 |doi=10.1038/s41598-019-42719-4 |pmid=31004083 |pmc=6474879 |bibcode=2019NatSR...9.6330W }}
- A study on bottom-water redox conditions in the late Cambrian Alum Shale Sea, as indicated by sedimentary molybdenum contents of the Alum Shale, is published by Dahl et al. (2019), who interpret their findings as indicating that anoxic sulfidic bottom waters were an intermittent rather than persistent feature of Cambrian oceans, and that early animals invaded the seafloor during oxygenated periods.{{Cite journal|author1=Tais W. Dahl |author2=Marie-Louise Siggaard-Andersen |author3=Niels H. Schovsbo |author4=Daniel O. Persson |author5=Søren Husted |author6=Iben W. Hougård |author7=Alexander J. Dickson |author8=Kurt Kjær |author9=Arne T. Nielsen |year=2019 |title=Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 11669 |doi=10.1038/s41598-019-48123-2 |pmid=31406148 |pmc=6690889 |bibcode=2019NatSR...911669D }}
- A study on the paleogeographic position of all major Phanerozoic arc-continent collisions, comparing it with the latitudinal distribution of ice-sheets throughout the Phanerozoic, is published by Macdonald et al. (2019).{{Cite journal|author1=Francis A. Macdonald |author2=Nicholas L. Swanson-Hysell |author3=Yuem Park |author4=Lorraine Lisiecki |author5=Oliver Jagoutz |year=2019 |title=Arc-continent collisions in the tropics set Earth's climate state |journal=Science |volume=364 |issue=6436 |pages=181–184 |doi=10.1126/science.aav5300 |pmid=30872536 |url=https://escholarship.org/uc/item/4k06c637 |bibcode=2019Sci...364..181M |s2cid=78094267 |doi-access=free }}
- A study aiming to determine whether the Ordovician meteor event directly affected Earth's climate and biota is published by Schmitz et al. (2019).{{Cite journal|author1=Birger Schmitz |author2=Kenneth A. Farley |author3=Steven Goderis |author4=Philipp R. Heck |author5=Stig M. Bergström |author6=Samuele Boschi |author7=Philippe Claeys |author8=Vinciane Debaille |author9=Andrei Dronov |author10=Matthias van Ginneken |author11=David A.T. Harper |author12=Faisal Iqbal |author13=Johan Friberg |author14=Shiyong Liao |author15=Ellinor Martin |author16=Matthias M. M. Meier |author17=Bernhard Peucker-Ehrenbrink |author18=Bastien Soens |author19=Rainer Wieler |author20=Fredrik Terfelt |year=2019 |title=An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body |journal=Science Advances |volume=5 |issue=9 |pages=eaax4184 |doi=10.1126/sciadv.aax4184 |pmid=31555741 |pmc=6750910 |bibcode=2019SciA....5.4184S }}
- A review of the evidence of evolutionary radiation of animals throughout the Great Ordovician Biodiversification Event, and of environmental changes coincident with these biotic changes, is published by Stigall et al. (2019).{{Cite journal|author1=Alycia L. Stigall |author2=Cole T. Edwards |author3=Rebecca L. Freeman |author4=Christian M.Ø. Rasmussen |year=2019 |title=Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=530 |pages=249–270 |doi=10.1016/j.palaeo.2019.05.034 |bibcode=2019PPP...530..249S |s2cid=189971369 }}
- A study on conodont oxygen isotope compositions in Ordovician samples from Argentine Precordillera and Laurentia, and on their implications for the knowledge of palaeothermometry and drift of the Precordillera in the early Paleozoic, is published online by Albanesi et al. (2019).{{Cite journal|author1=Guillermo L. Albanesi |author2=Christopher R. Barnes |author3=Julie A. Trotter |author4=Ian S. Williams |author5=Stig M. Bergström |year=2019 |title=Comparative Lower-Middle Ordovician conodont oxygen isotope palaeothermometry of the Argentine Precordillera and Laurentian margins |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=549 |pages=Article 109115 |doi=10.1016/j.palaeo.2019.03.016 |hdl=1885/217374 |s2cid=207311242 |url=https://openresearch-repository.anu.edu.au/bitstream/1885/217374/3/Albanesi%20post%20print.pdf.jpg |hdl-access=free }}
- A study on carbon isotope data from stratigraphic sections at Germany Valley (West Virginia) and Union Furnace (Pennsylvania) in the Central Appalachian Basin, evaluating its implications for the knowledge of change in atmospheric oxygen levels during the late Ordovician and its possible relationship with early diversification of land plants, is published by Adiatma et al. (2019).{{Cite journal|author1=Y. Datu Adiatma |author2=Matthew R. Saltzman |author3=Seth A. Young |author4=Elizabeth M. Griffith |author5=Nevin P. Kozik |author6=Cole T. Edwards |author7=Stephen A. Leslie |author8=Alyssa M. Bancroft |year=2019 |title=Did early land plants produce a stepwise change in atmospheric oxygen during the Late Ordovician (Sandbian ~458 Ma)? |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=534 |pages=Article 109341 |doi=10.1016/j.palaeo.2019.109341 |bibcode=2019PPP...53409341A |s2cid=201309297 |doi-access=free }}
- Signatures of Devonian (Famennian) forests and soils preserved in black shales in the southernmost Appalachian Basin (Chattanooga Shale; Alabama, United States) are presented by Lu et al. (2019).{{Cite journal|author1=Man Lu |author2=YueHan Lu |author3=Takehito Ikejiri |author4=Nicholas Hogancamp |author5=Yongge Sun |author6=Qihang Wu |author7=Richard Carroll |author8=Ibrahim Çemen |author9=Jack Pashin |year=2019 |title=Geochemical evidence of first forestation in the southernmost Euramerica from Upper Devonian (Famennian) black shales |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 7581 |doi=10.1038/s41598-019-43993-y |pmid=31110279 |pmc=6527553 |bibcode=2019NatSR...9.7581L }}
- A study examining the intensity of explosive volcanism from 400 to 200 million years ago, and evaluating its impact on the late Paleozoic Ice Age, is published by Soreghan, Soreghan & Heavens (2019).{{Cite journal|author1=Gerilyn S. Soreghan |author2=Michael J. Soreghan |author3=Nicholas G. Heavens |year=2019 |title=Explosive volcanism as a key driver of the late Paleozoic ice age |journal=Geology |volume=47 |issue= 7|pages= 600–604|doi=10.1130/G46349.1 |bibcode=2019Geo....47..600S |s2cid=155998115 |doi-access=free }}
- Description of Cisuralian charcoal from the Barro Branco coal seam (Siderópolis Member of the Rio Bonito Formation, Brazil), and a study on its implications for reconstruction of palaeo-wildfire occurrences in peat-forming vegetation through the Late Palaeozoic in Gondwana, is published by Benicio et al. (2019).{{Cite journal|author1=José Rafael W. Benicio |author2=André Jasper |author3=Rafael Spiekermann |author4=Luciane Garavaglia |author5=Etiene Fabbrin Pires-Oliveira |author6=Neli Teresinha Galarce Machado |author7=Dieter Uhl |year=2019 |title=Recurrent palaeo-wildfires in a Cisuralian coal seam: A palaeobotanical view on high-inertinite coals from the Lower Permian of the Paraná Basin, Brazil |journal=PLOS ONE |volume=14 |issue=3 |pages=e0213854 |doi=10.1371/journal.pone.0213854 |pmid=30870527 |pmc=6417680 |bibcode=2019PLoSO..1413854B |doi-access=free }}
- A study on the extent and causes of the end-Capitanian extinction event, based on data from the Middle to Late Permian section of the Sverdrup Basin (Ellesmere Island, Canada), is published online by Bond, Wignall & Grasby (2019).{{Cite journal|author1=David P.G. Bond |author2=Paul B. Wignall |author3=Stephen E. Grasby |year=2019 |title=The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia |journal=GSA Bulletin |volume=132 |issue= 5–6|pages= 931–942|doi=10.1130/B35281.1 |s2cid=199104686 |doi-access=free }}
- A study on the ocean chemistry during the Permian–Triassic extinction event, as indicated by data from a new stratigraphic section in Utah, and on its implications for the knowledge of the causes of this extinction, is published by Burger, Estrada & Gustin (2019).{{Cite journal|author1=Benjamin J. Burger |author2=Margarita Vargas Estrada |author3=Mae Sexauer Gustin |year=2019 |title=What caused Earth's largest mass extinction event? New evidence from the Permian-Triassic boundary in northeastern Utah |journal=Global and Planetary Change |volume=177 |pages=81–100 |doi=10.1016/j.gloplacha.2019.03.013 |url=http://eartharxiv.org/khd9y/ |bibcode=2019GPC...177...81B |s2cid=134324242 }}
- A study aiming to determine the stratigraphic position of the end-Permian biotic crisis in the Sydney Basin (Australia) is published by Fielding et al. (2019), who also attempt to determine the climate changes in this region concurrent with the end-Permian extinction.{{Cite journal|author1=Christopher R. Fielding |author2=Tracy D. Frank |author3=Stephen McLoughlin |author4=Vivi Vajda |author5=Chris Mays |author6=Allen P. Tevyaw |author7=Arne Winguth |author8=Cornelia Winguth |author9=Robert S. Nicoll |author10=Malcolm Bocking |author11=James L. Crowley |year=2019 |title=Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 385 |doi=10.1038/s41467-018-07934-z |pmid=30674880 |pmc=6344581 |bibcode=2019NatCo..10..385F }}
- A study on shifts in volcanic activity across the Permian-Triassic boundary, as indicated by measurements of mercury in marine sections across the Northern Hemisphere, is published by Shen et al. (2019).{{Cite journal|author1=Jun Shen |author2=Jiubin Chen |author3=Thomas J. Algeo |author4=Shengliu Yuan |author5=Qinglai Feng |author6=Jianxin Yu |author7=Lian Zhou |author8=Brennan O'Connell |author9=Noah J. Planavsky |year=2019 |title=Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 1563 |doi=10.1038/s41467-019-09620-0 |pmid=30952859 |pmc=6450928 |bibcode=2019NatCo..10.1563S }}
- A study on mercury enrichments in Permian-Triassic boundary sections from Lubei (South China craton) and Dalongkou (Junggar terrane), and on their implications for the knowledge of volcanic activity during the Permian-Triassic transition, is published by Shen et al. (2019).{{Cite journal|author1=Jun Shen |author2=Jianxin Yu |author3=Jiubin Chen |author4=Thomas J. Algeo |author5=Guozhen Xu |author6=Qinglai Feng |author7=Xiao Shi |author8=Noah J. Planavsky |author9=Wenchao Shu |author10=Shucheng Xie |year=2019 |title=Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition |journal=Geology |volume=47 |issue=12 |pages=1117–1121 |doi=10.1130/G46679.1 |bibcode=2019Geo....47.1117S |s2cid=204262451 }}
- Evidence of the environmental transition from meandering to braided rivers and of the development of desert-like conditions in the earliest Triassic is reported from Permian-Triassic boundary sections in Shanxi (China) by Zhu et al. (2019).{{Cite journal|author1=Zhicai Zhu |author2=Yongqing Liu |author3=Hongwei Kuang |author4=Michael J. Benton |author5=Andrew J. Newell |author6=Huan Xu |author7=Wei An |author8=Shu'an Ji |author9=Shichao Xu |author10=Nan Peng |author11=Qingguo Zhai |year=2019 |title=Altered fluvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 16818 |doi=10.1038/s41598-019-53321-z |pmid=31727990 |pmc=6856103 |bibcode=2019NatSR...916818Z }}
- A study on the nitrogen isotope variations in oceanic waters in the aftermath of the end-Permian mass extinction is published by Sun et al. (2019), whose conceptual model indicates ammonium intoxication of the oceans during this time period.{{Cite journal|author1=Y.D. Sun |author2=M.J. Zulla |author3=M.M. Joachimski |author4=D.P.G. Bond |author5=P.B. Wignall |author6=Z.T. Zhang |author7=M.H. Zhang |year=2019 |title=Ammonium ocean following the end-Permian mass extinction |journal=Earth and Planetary Science Letters |volume=518 |pages=211–222 |doi=10.1016/j.epsl.2019.04.036 |bibcode=2019E&PSL.518..211S |s2cid=182059065 |url=http://eprints.whiterose.ac.uk/147828/7/Sun%20et%20al%20author%20accptd.pdf }}
- A study on microbially induced sedimentary structures from the Lower Triassic Blind Fiord Formation (Arctic Canada), evaluating their implications for the knowledge of the course of biotic recovery in the aftermath of the Permian–Triassic extinction event, is published online by Wignall et al. (2019).{{Cite journal|author1=Paul B. Wignall |author2=David P.G. Bond |author3=Stephen E. Grasby |author4=Sara B. Pruss |author5=Jeffrey Peakall |year=2019 |title=Controls on the formation of microbially induced sedimentary structures and biotic recovery in the Lower Triassic of Arctic Canada |journal=GSA Bulletin |volume=132 |issue= 5–6|pages= 918–930|doi=10.1130/B35229.1 |s2cid=202194000 |doi-access=free }}
- A study on the oxygen isotope compositions of discrete conodont elements from the Lower Triassic Mianwali Formation (Pakistan), and on their implications for inferring the timing of temperature changes and the interrelationship between climate and biodiversity patterns during the Smithian-Spathian biotic crisis, is published by Goudemand et al. (2019).{{Cite journal|author1=Nicolas Goudemand |author2=Carlo Romano |author3=Marc Leu |author4=Hugo Bucher |author5=Julie A. Trotter |author6=Ian S. Williams |year=2019 |title=Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian -Spathian biotic crisis |journal=Earth-Science Reviews |volume=195 |pages=169–178 |doi=10.1016/j.earscirev.2019.01.013 |bibcode=2019ESRv..195..169G |s2cid=135340068 }}
- A study on nutrient availability through the Early to Middle Triassic along the northern margin of Pangea is published online by Grasby et al. (2019).{{Cite journal |last1=Grasby |first1=Stephen E. |last2=Knies |first2=Jochen |last3=Beauchamp |first3=Benoit |last4=Bond |first4=David P. G. |last5=Wignall |first5=Paul |last6=Sun |first6=Yadong |year=2019 |title=Global warming leads to Early Triassic nutrient stress across northern Pangea |url=https://hull-repository.worktribe.com/output/2114192/global-warming-leads-to-early-triassic-nutrient-stress-across-northern-pangea |journal=Bulletin of the Geological Society of America |volume=132 |issue=5–6 |pages=943–954 |doi=10.1130/B32036.1 |s2cid=199097068 |hdl=10037/16198|hdl-access=free }}
- A study on the character and extent of the Triassic Boreal Ocean delta plain across the area of the present-day Barents Sea, interpreted as the largest delta plain reported so far, is published by Klausen, Nyberg & Helland-Hansen (2019).{{Cite journal|author1=Tore Grane Klausen |author2=Björn Nyberg |author3=William Helland-Hansen |year=2019 |title=The largest delta plain in Earth's history |journal=Geology |volume=47 |issue=5 |pages=470–474 |doi=10.1130/G45507.1 |bibcode=2019Geo....47..470K |s2cid=149746881 |doi-access=free |hdl=1956/22168 |hdl-access=free }}
- A study aiming to determine links between volcanic activity in the Central Atlantic magmatic province, elevated concentrations of mercury in marine and terrestrial sediments and abnormalities of fossil fern spores across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany is published by Lindström et al. (2019).{{Cite journal|author1=Sofie Lindström |author2=Hamed Sanei |author3=Bas van de Schootbrugge |author4=Gunver K. Pedersen |author5=Charles E. Lesher |author6=Christian Tegner |author7=Carmen Heunisch |author8=Karen Dybkjær |author9=Peter M. Outridge |year=2019 |title=Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction |journal=Science Advances |volume=5 |issue=10 |pages=eaaw4018 |doi=10.1126/sciadv.aaw4018 |pmid=31681836 |pmc=6810405 |bibcode=2019SciA....5.4018L }}
- A study aiming to reconstruct the palaeoenvironmental changes of the late Pliensbachian outside of Western Tethys Ocean and to test their temporal relation to large igneous province volcanism is published by De Lena et al. (2019).{{Cite journal|author1=Luis F. De Lena |author2=David Taylor |author3=Jean Guex |author4=Annachiara Bartolini |author5=Thierry Adatte |author6=David van Acken |author7=Jorge E. Spangenberg |author8=Elias Samankassou |author9=Torsten Vennemann |author10=Urs Schaltegger |year=2019 |title=The driving mechanisms of the carbon cycle perturbations in the late Pliensbachian (Early Jurassic) |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 18430 |doi=10.1038/s41598-019-54593-1 |pmid=31804521 |pmc=6895128 |bibcode=2019NatSR...918430D }}
- Krencker, Lindström & Bodin (2019) present sedimentological, paleontological and geochemical evidence from the Central High Atlas Basin (Morocco) and Jameson Land (Greenland) indicative of the occurrence of a major sea-level drop prior to the onset of the Toarcian oceanic anoxic event.{{Cite journal|author1=François-Nicolas Krencker |author2=Sofie Lindström |author3=Stéphane Bodin |year=2019 |title=A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: implication for Early Jurassic climate and carbon cycle |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 12518 |doi=10.1038/s41598-019-48956-x |pmid=31467345 |pmc=6715628 |bibcode=2019NatSR...912518K }}
- A study on the duration of the Toarcian oceanic anoxic event, as indicated by data from the Talghemt section in the High Atlas (Morocco), is published by Boulila et al. (2019).{{Cite journal|author1=Slah Boulila |author2=Bruno Galbrun |author3=Driss Sadki |author4=Silvia Gardin |author5=Annachiara Bartolini |year=2019 |title=Constraints on the duration of the early Toarcian T-OAE and evidence for carbon-reservoir change from the High Atlas (Morocco) |journal=Global and Planetary Change |volume=175 |pages=113–128 |doi=10.1016/j.gloplacha.2019.02.005 |bibcode=2019GPC...175..113B |s2cid=134411583 |url=https://hal.archives-ouvertes.fr/hal-02329596/file/Boulila%20et%20al%20GPC%202019%20pour%20HAL.pdf }}
- A study on the Middle Jurassic palaeoenvironment of La Voulte (France), as indicated by data from exceptionally preserved eyes of the polychelidan lobster Voulteryon parvulus and from epibiontic brachiopods associated with V. parvulus, is published by Audo et al. (2019).{{Cite journal|author1=Denis Audo |author2=Ninon Robin |author3=Javier Luque |author4=Michal Krobicki |author5=Joachim T. Haug |author6=Carolin Haug |author7=Clément Jauvion |author8=Sylvain Charbonnier |year=2019 |title=Palaeoecology of Voulteryon parvulus (Eucrustacea, Polychelida) from the Middle Jurassic of La Voulte-sur-Rhône Fossil-Lagerstätte (France) |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 5332 |doi=10.1038/s41598-019-41834-6 |pmid=30926859 |pmc=6441058 |bibcode=2019NatSR...9.5332A }}
- A study comparing the Jurassic floras of the Ayuquila Basin and the Otlaltepec Basin (Mexico) and evaluating their implications for the knowledge of the Jurassic environments of these basins is published by Velasco-de León et al. (2019).{{cite journal |author1=Maria Patricia Velasco-de León |author2=Erika L. Ortiz-Martínez |author3=Diego E. Lozano-Carmona |author4=Miguel A. Flores-Barragan |year=2019 |title=Paleofloristic comparison of the Ayuquila and Otlaltepec basins, Middle Jurassic, Oaxaca, Mexico |journal=Journal of South American Earth Sciences |volume=93 |pages=1–13 |doi=10.1016/j.jsames.2019.04.008 |bibcode=2019JSAES..93....1V |s2cid=149686009 }}
- A study on Jurassic paleomagnetism, based on an updated set of Jurassic paleopoles from Adria (Italy), is published by Muttoni & Kent (2019).{{Cite journal|author1=G. Muttoni |author2=D.V. Kent |year=2019 |title=Jurassic monster polar shift confirmed by sequential paleopoles from Adria, promontory of Africa |journal=Journal of Geophysical Research: Solid Earth |volume=124 |issue=4 |pages=3288–3306 |doi=10.1029/2018JB017199 |hdl=2434/633611 |bibcode=2019JGRB..124.3288M |s2cid=133906623 |url=https://scholarship.libraries.rutgers.edu/esploro/outputs/journalArticle/Jurassic-monster-polar-shift-confirmed-by/991031744253404646 |hdl-access=free }}
- A study on the chronostratigraphy of the Upper Jurassic Morrison Formation is published by Maidment & Muxworthy (2019).{{Cite journal|author1=Susannah C.R. Maidment |author2=Adrian Muxworthy |year=2019 |title=A chronostratigraphic framework for the Upper Jurassic Morrison Formation, western U.S.A. |journal=Journal of Sedimentary Research |volume=89 |issue=10 |pages=1017–1038 |doi=10.2110/jsr.2019.54 |bibcode=2019JSedR..89.1017M |hdl=10141/622707 |s2cid=210343715 |hdl-access=free }}
- Evidence of repeated significant oceanic and biotic turnovers in the area of the present-day Gulf of Mexico at the Jurassic-Cretaceous transition is presented by Zell et al. (2019).{{Cite journal|author1=Patrick Zell |author2=Wolfgang Stinnesbeck |author3=Dominik Hennhoefer |author4=Aisha Al Suwaidi |author5=Sven Brysch |author6=Gabriele Gruber |author7=Nils Schorndorf |year=2019 |title=Repeated turnovers in Late Jurassic faunal assemblages of the Gulf of Mexico: Correlation with cold ocean water |journal=Journal of South American Earth Sciences |volume=91 |pages=1–7 |doi=10.1016/j.jsames.2019.01.008 |bibcode=2019JSAES..91....1Z |s2cid=135123611 }}
- A study on the age of the dinosaur-bearing Upper Jurassic–Lower Cretaceous sediments of western Maestrazgo Basin and South-Iberian Basin (eastern Spain), aiming to also reconstruct the palaeoenvironments of this area on the basis of data from these sediments, is published by Campos-Soto et al. (2019).{{Cite journal|author1=Sonia Campos-Soto |author2=M. Isabel Benito |author3=Alberto Cobos |author4=Esmeralda Caus |author5=I. Emma Quijada |author6=Pablo Suarez-Gonzalez |author7=Ramón Mas |author8=Rafael Royo-Torres |author9=Luis Alcalá |year=2019 |title=Revisiting the age and palaeoenvironments of the Upper Jurassic–Lower Cretaceous? dinosaur-bearing sedimentary record of eastern Spain: implications for Iberian palaeogeography |journal=Journal of Iberian Geology |volume=45 |issue=3 |pages=471–510 |doi=10.1007/s41513-019-00106-y |bibcode=2019JIbG...45..471C |hdl=10651/52154 |s2cid=155353782 |hdl-access=free }}
- A review of data on the Jurassic and Cretaceous climates of Siberia is published by Rogov et al. (2019).{{Cite journal|author1=M. A. Rogov |author2=N. G. Zverkov |author3=V. A. Zakharov |author4=M. S. Arkhangelsky |year=2019 |title=Marine reptiles and climates of the Jurassic and Cretaceous of Siberia |journal=Stratigraphy and Geological Correlation |volume=27 |issue=4 |pages=398–423 |doi=10.1134/S0869593819040051 |bibcode=2019SGC....27..398R |s2cid=201058264 }}
- A study on global climatic changes during the Early Cretaceous, focusing on the duration and magnitude of Early Cretaceous cold episodes, is published by Vickers et al. (2019).{{Cite journal|author1=Madeleine L. Vickers |author2=Gregory D. Price |author3=Rhodri M. Jerrett |author4=Paul Sutton |author5=Matthew P. Watkinson |author6=Meriel FitzPatrick |year=2019 |title=The duration and magnitude of Cretaceous cool events: Evidence from the northern high latitudes |journal=GSA Bulletin |volume=131 |issue=11–12 |pages=1979–1994 |doi=10.1130/B35074.1 |hdl=10026.1/13669 |bibcode=2019GSAB..131.1979V |s2cid=150315891 |url=https://curis.ku.dk/ws/files/248659779/The_duration_and_magnitude_of_Cretaceous_cool_events_Evidence_from_the_northern_high_latitudes.pdf }}
- Evidence from the Lower Cretaceous strata around the southern margin of the Eromanga Basin (Australia) indicative of cold (limited glacial and/or seasonal freezing) conditions persisting in Southern Australia through the Hauterivian and the Aptian is presented by Alley, Hore & Frakes (2019).{{cite journal |author1=N. F. Alley |author2=S. B. Hore |author3=L. A. Frakes |year=2019 |title=Glaciations at high-latitude Southern Australia during the Early Cretaceous |journal=Australian Journal of Earth Sciences |volume=67 |issue=8 |pages=1045–1095 |doi=10.1080/08120099.2019.1590457 |s2cid=155844277 |doi-access=free }}
- A study on phototropism in extant trees from Beijing and Jilin Provinces and fossil tree trunks from the Jurassic Tiaojishan and Tuchengzi formations in Liaoning and Beijing regions (China), and on its implications for inferring the history of the rotation of the North China Block, is published by Jiang et al. (2019).{{Cite journal|author1=Zikun Jiang |author2=Benpei Liu |author3=Yongdong Wang |author4=Min Huang |author5=Tom Kapitany |author6=Ning Tian |author7=Yong Cao |author8=Yuanzheng Lu |author9=Shenghui Deng |year=2019 |title=Tree ring phototropism and implications for the rotation of the North China Block |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 4856 |doi=10.1038/s41598-019-41339-2 |pmid=30890749 |pmc=6425038 |bibcode=2019NatSR...9.4856J }}
- A study on the age of the Cretaceous Cloverly Formation is published by D'Emic et al. (2019).{{Cite journal|author1=Michael D. D'Emic |author2=Brady Z. Foreman |author3=Nathan A. Jud |author4=Brooks B. Britt |author5=Mark Schmitz |author6=James L. Crowley |year=2019 |title=Chronostratigraphic revision of the Cloverly Formation (Lower Cretaceous, Western Interior, USA) |journal=Bulletin of the Peabody Museum of Natural History |volume=60 |issue=1 |pages=3–40 |doi=10.3374/014.060.0101|s2cid=132032611 }}
- Evidence from the chronostratigraphy, fossil content, bracketing facies and ages of the Cretaceous Wayan Formation of Idaho and Vaughn Member of the Blackleaf Formation of Montana, indicating that they represent the same depositional system prior to disruption by subsequent tectonic and volcanic events, is presented by Krumenacker (2019).{{Cite journal|author=L. J. Krumenacker |year=2019 |title=Paleontological and chronostratigraphic correlations of the mid-Cretaceous Wayan-Vaughn depositional system of southwestern Montana and southeastern Idaho |journal=Historical Biology: An International Journal of Paleobiology |volume=32 |issue=10 |pages=1301–1311 |doi=10.1080/08912963.2019.1582035 |s2cid=92145214 }}
- A study on Cenomanian plants from the Redmond no.1 mine near Schefferville (Redmond Formation; Labrador Peninsula, Canada) and on their implications for the knowledge of paleoclimate of this site is published by Demers-Potvin & Larsson (2019).{{Cite journal|author1=Alexandre V. Demers-Potvin |author2=Hans C. E. Larsson |year=2019 |title=Palaeoclimatic reconstruction for a Cenomanian-aged angiosperm flora near Schefferville, Labrador |journal=Palaeontology |volume=62 |issue=6 |pages=1027–1048 |doi=10.1111/pala.12444 |bibcode=2019Palgy..62.1027D |s2cid=240760598 |url=https://escholarship.mcgill.ca/concern/articles/wh246x57f }}
- The first high-resolution record of Cenomanian–Turonian paleotemperatures from the Southern Hemisphere, as indicated by data from the Ocean Drilling Program Site 1138 on the Kerguelen Plateau, is presented by Robinson et al. (2019).{{Cite journal|author1=Stuart A. Robinson |author2=Alexander J. Dickson |author3=Alana Pain |author4=Hugh C. Jenkyns |author5=Charlotte L. O'Brien |author6=Alexander Farnsworth |author7=Daniel J. Lunt |year=2019 |title=Southern Hemisphere sea-surface temperatures during the Cenomanian–Turonian: Implications for the termination of Oceanic Anoxic Event 2 |journal=Geology |volume=47 |issue=2 |pages=131–134 |doi=10.1130/G45842.1 |bibcode=2019Geo....47..131R |hdl=1983/ca684dc8-5aa3-4072-b8e4-7f619ec193cb |s2cid=135086715 |url=https://research-information.bris.ac.uk/en/publications/ca684dc8-5aa3-4072-b8e4-7f619ec193cb |doi-access=free |hdl-access=free }}
- A study on the impact of marine biogeochemical processes on the Cretaceous Thermal Maximum is published by Wallmann et al. (2019).{{Cite journal|author1=Klaus Wallmann |author2=Sascha Flögel |author3=Florian Scholz |author4=Andrew W. Dale |author5=Tronje P. Kemena |author6=Sebastian Steinig |author7=Wolfgang Kuhnt |year=2019 |title=Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw |journal=Nature Geoscience |volume=12 |issue=6 |pages=456–461 |doi=10.1038/s41561-019-0359-x |bibcode=2019NatGe..12..456W |s2cid=164921754 }}
- A study on the age of the Upper Cretaceous Wadi Milk Formation (Sudan) is published by Owusu Agyemang et al. (2019).{{Cite journal|author1=Prince C. Owusu Agyemang |author2=Eric M. Roberts |author3=Robert Bussert |author4=David Evans |author5=Johannes Müller |year=2019 |title=U-Pb detrital zircon constraints on the depositional age and provenance of the dinosaur-bearing Upper Cretaceous Wadi Milk Formation of Sudan |journal=Cretaceous Research |volume=97 |pages=52–72 |doi=10.1016/j.cretres.2019.01.005 |bibcode=2019CrRes..97...52O |s2cid=134676587 }}
- A study on Cenomanian to Coniacian polar environmental conditions at eight locations in northeast Russia and northern Alaska is published online by Spicer et al. (2019).{{Cite journal|author1=Robert Spicer |author2=Paul Valdes |author3=Alice Hughes |author4=Jian Yang |author5=Teresa Spicer |author6=Alexei Herman |author7=Alexander Farnsworth |year=2019 |title=New insights into the thermal regime and hydrodynamics of the early Late Cretaceous Arctic |journal=Geological Magazine |volume=157 |issue=10 |pages=1729–1746 |doi=10.1017/S0016756819000463 |hdl=1983/dad97ea1-b7f0-458f-8df7-94591f78fb72 |s2cid=189973052 |url=https://research-information.bris.ac.uk/en/publications/new-insights-into-the-thermal-regime-and-hydrodynamics-of-the-early-late-cretaceous-arctic(dad97ea1-b7f0-458f-8df7-94591f78fb72).html |hdl-access=free }}
- A study on variability of carbon, oxygen and nitrogen isotopes in multiple tissues from a wide array of extant vertebrate taxa from the Atchafalaya River Basin in Louisiana (inferred to be an environmental analogue to the Late Cretaceous coastal floodplains of North America), and on its implications for formulating and testing predictions about ancient ecological communities based on stable isotope data from fossil specimens, is published by Cullen et al. (2019).{{Cite journal|author1=T. M. Cullen |author2=F. J. Longstaffe |author3=U. G. Wortmann |author4=M. B. Goodwin |author5=L. Huang |author6=D. C. Evans |year=2019 |title=Stable isotopic characterization of a coastal floodplain forest community: a case study for isotopic reconstruction of Mesozoic vertebrate assemblages |journal=Royal Society Open Science |volume=6 |issue=2 |pages=Article ID 181210 |doi=10.1098/rsos.181210 |pmid=30891263 |pmc=6408390 |bibcode=2019RSOS....681210C }}
- A study on the general distribution and stratigraphy of the lower shale member of the Campanian Aguja Formation (Texas, United States), and a revision of all significant larger vertebrate fossil specimens from these strata, is published by Lehman et al. (2019).{{Cite journal|author1=Thomas M. Lehman |author2=Steven L. Wick |author3=Alyson A. Brink |author4=Thomas A.Shiller II |year=2019 |title=Stratigraphy and vertebrate fauna of the lower shale member of the Aguja Formation (lower Campanian) in West Texas |journal=Cretaceous Research |volume=99 |pages=291–314 |doi=10.1016/j.cretres.2019.02.028 |bibcode=2019CrRes..99..291L |s2cid=135044927 }}
- High-precision dating for the Battle Formation (Alberta, Canada) is presented by Eberth & Kamo (2019).{{Cite journal|author1=David A. Eberth |author2=Sandra L. Kamo |year=2019 |title=First high-precision U–Pb CA–ID–TIMS age for the Battle Formation (Upper Cretaceous), Red Deer River valley, Alberta, Canada: implications for ages, correlations, and dinosaur biostratigraphy of the Scollard, Frenchman, and Hell Creek formations |journal=Canadian Journal of Earth Sciences |volume=56 |issue=10 |pages=1041–1051 |doi=10.1139/cjes-2018-0098 |bibcode=2019CaJES..56.1041E |s2cid=135346069 }}
- High-precision dating and the first calibrated chronostratigraphy for the Horseshoe Canyon Formation (Alberta, Canada) is presented by Eberth & Kamo (2019).{{Cite journal|author1=David A. Eberth |author2=Sandra L. Kamo |year=2019 |title=High-precision U-Pb CA-ID-TIMS dating and chronostratigraphy of the dinosaur-rich Horseshoe Canyon Formation (Upper Cretaceous, Campanian–Maastrichtian), Red Deer River valley, Alberta, Canada |journal=Canadian Journal of Earth Sciences |volume=57 |issue= 10|pages= 1220–1237|doi=10.1139/cjes-2019-0019 |s2cid=210299227 }}
- A study on the Maastrichtian climate of Arctic Alaska, based on data from the Prince Creek Formation, is published by Salazar-Jaramillo et al. (2019).{{Cite journal|author1=Susana Salazar-Jaramillo |author2=Paul J. McCarthy |author3=Andres Ochoa |author4=Sarah J. Fowell |author5=Fred J. Longstaffe |year=2019 |title=Paleoclimate reconstruction of the Prince Creek Formation, Arctic Alaska, during Maastrichtian global warming |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=532 |pages=Article 109265|doi=10.1016/j.palaeo.2019.109265 |bibcode=2019PPP...53209265S |s2cid=198404660 |doi-access=free }}
- Studies on the timing of the Deccan Traps volcanism close to the Cretaceous-Paleogene boundary are published by Schoene et al. (2019), who interpret their findings as indicative of four high-volume eruptive periods close to the Cretaceous-Paleogene boundary, the first of which occurred tens of thousands of years prior to both the Chicxulub bolide impact and Cretaceous–Paleogene extinction event{{Cite journal|author1=Blair Schoene |author2=Michael P. Eddy |author3=Kyle M. Samperton |author4=C. Brenhin Keller |author5=Gerta Keller |author6=Thierry Adatte |author7=Syed F. R. Khadri |year=2019 |title=U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction |journal=Science |volume=363 |issue=6429 |pages=862–866 |doi=10.1126/science.aau2422 |pmid=30792300 |bibcode=2019Sci...363..862S |osti=1497969 |s2cid=67876950 |doi-access=free }} and by Sprain et al. (2019), who interpret their findings as indicating that a steady eruption of the flood basalts mostly occurred in the earliest Paleogene.{{Cite journal|author1=Courtney J. Sprain |author2=Paul R. Renne |author3=Loÿc Vanderkluysen |author4=Kanchan Pande |author5=Stephen Self |author6=Tushar Mittal |year=2019 |title=The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary |journal=Science |volume=363 |issue=6429 |pages=866–870 |doi=10.1126/science.aav1446 |pmid=30792301 |bibcode=2019Sci...363..866S |s2cid=67876911 |url=https://escholarship.org/uc/item/8sj8w1rf |doi-access=free }}
- A study on the environmental variability before and across the Cretaceous-Paleogene mass extinction, as inferred from data on the calcium isotope ratios of aragonitic mollusc shells from the Lopez de Bertodano Formation (Antarctica), is published online by Linzmeier et al. (2019).{{Cite journal|author1=Benjamin J. Linzmeier |author2=Andrew D. Jacobson |author3=Bradley B. Sageman |author4=Matthew T. Hurtgen |author5=Meagan E. Ankney |author6=Sierra V. Petersen |author7=Thomas S. Tobin |author8=Gabriella D. Kitch |author9=Jiuyuan Wang |year=2019 |title=Calcium isotope evidence for environmental variability before and across the Cretaceous-Paleogene mass extinction |journal=Geology |volume=48 |issue=1 |pages=34–38 |doi=10.1130/G46431.1 |s2cid=204941164 |doi-access=free }}
- A turbulently deposited sediment package directly overlain by the Cretaceous–Paleogene boundary tonstein is reported from the Tanis site (Hell Creek Formation, North Dakota, United States) by DePalma et al. (2019), who interpret their findings as indicating that deposition occurred shortly after a major bolide impact, and might have been caused by the Chicxulub impact.{{Cite journal|author1=Robert A. DePalma |author2=Jan Smit |author3=David A. Burnham |author4=Klaudia Kuiper |author5=Phillip L. Manning |author6=Anton Oleinik |author7=Peter Larson |author8=Florentin J. Maurrasse |author9=Johan Vellekoop |author10=Mark A. Richards |author11=Loren Gurche |author12=Walter Alvarez |year=2019 |title=A seismically induced onshore surge deposit at the KPg boundary, North Dakota |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=17 |pages=8190–8199 |doi=10.1073/pnas.1817407116 |pmid=30936306 |pmc=6486721 |bibcode=2019PNAS..116.8190D |doi-access=free }}
- A study on the immediate aftermath of the Chicxulub impact at the Cretaceous–Paleogene boundary, based on data from the Chicxulub crater, is published by Gulick et al. (2019).{{Cite journal|author1=Sean P. S. Gulick |author2=Timothy J. Bralower |author3=Jens Ormö |author4=Brendon Hall |author5=Kliti Grice |author6=Bettina Schaefer |author7=Shelby Lyons |author8=Katherine H. Freeman |author9=Joanna V. Morgan|author9-link= Joanna Morgan |author10=Natalia Artemieva|author10-link=Natalia Artemieva |author11=Pim Kaskes |author12=Sietze J. de Graaff |author13=Michael T. Whalen |author14=Gareth S. Collins |author15=Sonia M. Tikoo |author16=Christina Verhagen |author17=Gail L. Christeson |author18=Philippe Claeys |author19=Marco J. L. Coolen |author20=Steven Goderis |author21=Kazuhisa Goto |author22=Richard A. F. Grieve |author23=Naoma McCall |author24=Gordon R. Osinski |author25=Auriol S. P. Rae |author26=Ulrich Riller |author27=Jan Smit |author28=Vivi Vajda |author29=Axel Wittmann |author30=the Expedition 364 Scientists |year=2019 |title=The first day of the Cenozoic |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=39 |pages=19342–19351 |doi=10.1073/pnas.1909479116 |pmid=31501350 |pmc=6765282 |bibcode=2019PNAS..11619342G |doi-access=free }}
- Evidence of rapid ocean acidification in the aftermath of the Chicxulub impact and of the protracted Earth system recovery after the Cretaceous–Paleogene extinction event is presented by Henehan et al. (2019).{{Cite journal|author1=Michael J. Henehan |author2=Andy Ridgwell |author3=Ellen Thomas |author4=Shuang Zhang |author5=Laia Alegret |author6=Daniela N. Schmidt |author7=James W. B. Rae |author8=James D. Witts |author9=Neil H. Landman |author10=Sarah E. Greene |author11=Brian T. Huber |author12=James R. Super |author13=Noah J. Planavsky |author14=Pincelli M. Hull |year=2019 |title=Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=45 |pages=22500–22504 |doi=10.1073/pnas.1905989116 |pmid=31636204 |pmc=6842625 |bibcode=2019PNAS..11622500H |doi-access=free }}
- The longest, highest resolution, stratigraphically continuous, single-species benthic foraminiferal carbon and oxygen isotope records for the Late Maastrichtian to Early Eocene from a single site in the South Atlantic Ocean, providing information on the evolution of climate and carbon-cycling during this time period, are presented by Barnet et al. (2019).{{cite journal |author1=J. S. K. Barnet |author2=K. Littler |author3=T. Westerhold |author4=D. Kroon |author5=M. J. Leng |author6=I. Bailey |author7=U. Röhl |author8=J. C. Zachos |year=2019 |title=A high-fidelity benthic stable isotope record of Late Cretaceous–Early Eocene climate change and carbon-cycling |journal=Paleoceanography and Paleoclimatology |volume=34 |issue=4 |pages=672–691 |doi=10.1029/2019PA003556 |bibcode=2019PaPa...34..672B |s2cid=134124572 |doi-access=free |hdl=20.500.11820/71e8a0b8-eec2-46bd-8559-bfc98ee3d21c |hdl-access=free }}
- O'Leary et al. (2019) publish a monograph on the sedimentology and sequence stratigraphy of the part of Mali which was covered by an ancient epeiric sea known as the Trans-Saharan Seaway during the Late Cretaceous and early Paleogene, provide the first formal description of and nomenclature for the Upper Cretaceous and lower Paleogene geological formations of this region, and revise fossil flora and fauna of this region.{{Cite journal|author1=Maureen A. O'Leary |author2=Mamadou L. Bouaré |author3=Kerin M. Claeson |author4=Kelly Heilbronn |author5=Robert V. Hill |author6=Jacob A. McCartney |author7=Jocelyn A. Sessa |author8=Famory Sissoko |author9=Leif Tapanila |author10=Elisabeth Wheeler |author11=Eric M. Roberts |year=2019 |title=Stratigraphy and paleobiology of the Upper Cretaceous-Lower Paleogene sediments from the Trans-Saharan Seaway in Mali |journal=Bulletin of the American Museum of Natural History |volume=436 |pages=1–177 |hdl=2246/6950 }}
- Zeebe & Lourens (2019) provide a new absolute astrochronology up to 58 Ma and a new Paleocene–Eocene boundary age.{{cite journal |author1=Richard E. Zeebe |author2=Lucas J. Lourens |year=2019 |title=Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy |journal=Science |volume=365 |issue=6456 |pages=926–929 |doi=10.1126/science.aax0612 |pmid=31467222 |bibcode=2019Sci...365..926Z |arxiv=1909.00283 |s2cid=201672305 }}
- A study on stomata of fossil specimens of members of the family Lauraceae from the Eocene of Australia and New Zealand, evaluating their implications for reconstructions of Eocene pCO2 levels, is published by Steinthorsdottir et al. (2019).{{Cite journal|author1=Margret Steinthorsdottir |author2=Vivi Vajda |author3=Mike Pole |author4=Guy Holdgate |year=2019 |title=Moderate levels of Eocene pCO2 indicated by Southern Hemisphere fossil plant stomata |journal=Geology |volume=47 |issue=10 |pages=914–918 |doi=10.1130/G46274.1 |bibcode=2019Geo....47..914S |s2cid=201612631 |doi-access=free }}
- Climate simulations capturing major climatic features of the Early Eocene and the Paleocene–Eocene Thermal Maximum in a state-of-the-art Earth system model are presented by Zhu, Poulsen & Tierney (2019).{{Cite journal|author1=Jiang Zhu |author2=Christopher J. Poulsen |author3=Jessica E. Tierney |year=2019 |title=Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks |journal=Science Advances |volume=5 |issue=9 |pages=eaax1874 |doi=10.1126/sciadv.aax1874 |pmid=31555736 |pmc=6750925 |bibcode=2019SciA....5.1874Z }}
- A study evaluating the utility of membrane lipids of members of Thaumarchaeota (now Nitrososphaerota) as proxies for the carbon isotope excursion and surface ocean warming, and assessing their implications for the knowledge of the source and size of carbon emissions during the Paleocene–Eocene Thermal Maximum, is published by Elling et al. (2019).{{Cite journal|author1=Felix J. Elling |author2=Julia Gottschalk |author3=Katiana D. Doeana |author4=Stephanie Kusch |author5=Sarah J. Hurley |author6=Ann Pearson |year=2019 |title=Archaeal lipid biomarker constraints on the Paleocene-Eocene carbon isotope excursion |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 4519 |doi=10.1038/s41467-019-12553-3 |pmid=31586063 |pmc=6778145 |bibcode=2019NatCo..10.4519E }}
- A study on abundant black charcoal shards from Paleogene sites of Wilson Lake B (New Jersey) and Randall's Farm (Maryland) is published by Fung et al. (2019), who interpret these shards as most likely to be evidence of widespread wildfires at the Paleocene-Eocene boundary caused by extraterrestrial impact.{{cite journal |author1=M.K. Fung |author2=M.F. Schaller |author3=C.M. Hoff |author4=M.E. Katz |author5=J.D. Wright |year=2019 |title=Widespread and intense wildfires at the Paleocene-Eocene boundary |journal=Geochemical Perspectives Letters |volume=10 |pages=1–6 |doi=10.7185/geochemlet.1906 |s2cid=174793793 |doi-access=free }}
- A study on the impact of carbon-based greenhouse gas fluxes associated with the North Atlantic Igneous Province on the onset of the Paleocene–Eocene Thermal Maximum is published by Jones et al. (2019).{{Cite journal|author1=Stephen M. Jones |author2=Murray Hoggett |author3=Sarah E. Greene |author4=Tom Dunkley Jones |year=2019 |title=Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 5547 |doi=10.1038/s41467-019-12957-1 |pmid=31804460 |pmc=6895149 |bibcode=2019NatCo..10.5547J }}
- Evidence from the Deep Ivorian Basin offshore West Africa (equatorial Atlantic Ocean), indicating that peak warming during the Middle Eocene Climatic Optimum was associated with upper-ocean stratification, decreased export production, and possibly harmful algal blooms, is presented by Cramwinckel et al. (2019).{{Cite journal|author1=Margot J. Cramwinckel |author2=Robin van der Ploeg |author3=Peter K. Bijl |author4=Francien Peterse |author5=Steven M. Bohaty |author6=Ursula Röhl |author7=Stefan Schouten |author8=Jack J. Middelburg |author9=Appy Sluijs |year=2019 |title=Harmful algae and export production collapse in the equatorial Atlantic during the zenith of Middle Eocene Climatic Optimum warmth |journal=Geology |volume=47 |issue=3 |pages=247–250 |doi=10.1130/G45614.1 |bibcode=2019Geo....47..247C |hdl=1874/380358 |s2cid=76650803 |url=http://www.vliz.be/imisdocs/publications/39/326239.pdf }}
- New stable isotopes record of the Middle Eocene Climatic Optimum event is reported from eastern Turkey by Giorgioni et al. (2019).{{Cite journal|author1=Martino Giorgioni |author2=Luigi Jovane |author3=Eric S. Rego |author4=Daniel Rodelli |author5=Fabrizio Frontalini |author6=Rodolfo Coccioni |author7=Rita Catanzariti |author8=Ercan Özcan |year=2019 |title=Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 9357 |doi=10.1038/s41598-019-45763-2 |pmid=31249387 |pmc=6597698 |bibcode=2019NatSR...9.9357G }}
- A study on variations of ocean circulation and marine bioproductivity related to the beginnings of the formation of the Antarctic Circumpolar Current, based on data from Eocene and Oligocene sedimentary drift deposits east of New Zealand, is published by Sarkar et al. (2019).{{Cite journal|author1=Sudipta Sarkar |author2=Chandranath Basak |author3=Martin Frank |author4=Christian Berndt |author5=Mads Huuse |author6=Shray Badhani |author7=Joerg Bialas |year=2019 |title=Late Eocene onset of the Proto-Antarctic Circumpolar Current |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 10125 |doi=10.1038/s41598-019-46253-1 |pmid=31300669 |pmc=6626031 |bibcode=2019NatSR...910125S }}
- A study on changes in surface water temperature in the eastern North Sea Basin during the late Priabonian to earliest Rupelian is published by Śliwińska et al. (2019).{{Cite journal|author1=Kasia K. Śliwińska |author2=Erik Thomsen |author3=Stefan Schouten |author4=Petra L. Schoon |author5=Claus Heilmann-Clausen |year=2019 |title=Climate- and gateway-driven cooling of Late Eocene to earliest Oligocene sea surface temperatures in the North Sea Basin |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 4458 |doi=10.1038/s41598-019-41013-7 |pmid=30872690 |pmc=6418185 |bibcode=2019NatSR...9.4458S }}
- A study linking the onset or strengthening of an Atlantic meridional overturning circulation to the closure of the Arctic–Atlantic gateway at the Eocene–Oligocene transition is published by Hutchinson et al. (2019).{{cite journal |author1=David K. Hutchinson |author2=Helen K. Coxall |author3=Matt OʹRegan |author4=Johan Nilsson |author5=Rodrigo Caballero |author6=Agatha M. de Boer |year=2019 |title=Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 3797 |doi=10.1038/s41467-019-11828-z |pmid=31439843 |pmc=6706372 |bibcode=2019NatCo..10.3797H }}
- A study on the timing of the uplift of the Tibetan Plateau, as indicated by the discovery of the Oligocene palm fossils in the Lunpola Basin in Tibet, is published by Su et al. (2019).{{Cite journal|author1=T. Su |author2=A. Farnsworth |author3=R. A. Spicer |author4=J. Huang |author5=F.-X. Wu |author6=J. Liu |author7=S.-F. Li |author8=Y.-W. Xing |author9=Y.-J. Huang |author10=W.-Y.-D. Deng |author11=H. Tang |author12=C.-L. Xu |author13=F. Zhao |author14=G. Srivastava |author15=P. J. Valdes |author16=T. Deng |author17=Z.-K. Zhou |year=2019 |title=No high Tibetan Plateau until the Neogene |journal=Science Advances |volume=5 |issue=3 |pages=eaav2189 |doi=10.1126/sciadv.aav2189 |pmid=30854430 |pmc=6402856 |bibcode=2019SciA....5.2189S }}
- A review of vertebrate fossils from the Tibetan Plateau, evaluating their implications for inferring the course of the uplift of the Tibetan Plateau, is published by Deng et al. (2019).{{Cite journal|author1=Tao Deng |author2=Xiaoming Wang |author3=Feixiang Wu |author4=Yang Wang |author5=Qiang Li |author6=Shiqi Wang |author7=Sukuan Hou |year=2019 |title=Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau |journal=Global and Planetary Change |volume=174 |pages=58–69 |doi=10.1016/j.gloplacha.2019.01.005 |bibcode=2019GPC...174...58D |s2cid=134086182 |url=https://escholarship.org/uc/item/20g8p888 }}
- A study on the impact of changing Eocene paleogeography and climate on the utility of stable isotope paleoaltimetry methods in the studies aiming to reconstruct the elevation history of the Tibetan Plateau is published by Botsyun et al. (2019).{{Cite journal|author1=Svetlana Botsyun |author2=Pierre Sepulchre |author3=Yannick Donnadieu |author4=Camille Risi |author5=Alexis Licht |author6=Jeremy K. Caves Rugenstein |year=2019 |title=Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene |journal=Science |volume=363 |issue=6430 |pages=eaaq1436 |doi=10.1126/science.aaq1436 |pmid=30819936 |s2cid=67876956 |url=https://hal-cea.archives-ouvertes.fr/cea-02186564/file/eaaq1436.full.pdf }}{{Cite journal|author1=Paul J. Valdes |author2=Ding Lin |author3=Alex Farnsworth |author4=Robert A. Spicer |author5=Shi-Hu Li |author6=Su Tao |year=2019 |title=Comment on "Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene" |journal=Science |volume=365 |issue=6459 |pages=eaax8474 |doi=10.1126/science.aax8474 |pmid=31604210 |hdl=1983/3054fc84-fa32-41ad-9ca7-a938f5903beb |s2cid=202699060 |url=https://research-information.bris.ac.uk/ws/files/214144857/aax8474_CombinedPDF_v2.pdf }}{{Cite journal|author1=Svetlana Botsyun |author2=Pierre Sepulchre |author3=Yannick Donnadieu |author4=Camille Risi |author5=Alexis Licht |author6=Jeremy K. Caves Rugenstein |year=2019 |title=Response to Comment on "Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene" |journal=Science |volume=365 |issue=6459 |pages=eaax8990 |doi=10.1126/science.aax8990 |pmid=31604211 |s2cid=202699145 |url=https://hal-cea.archives-ouvertes.fr/cea-02316802/file/eaax8990.full.pdf }}
- A study on the causes of the long-term climate cooling during the Neogene is published by Rugenstein, Ibarra & von Blanckenburg (2019).{{Cite journal|author1=Jeremy K. Caves Rugenstein |author2=Daniel E. Ibarra |author3=Friedhelm von Blanckenburg |year=2019 |title=Neogene cooling driven by land surface reactivity rather than increased weathering fluxes |journal=Nature |volume=571 |issue=7763 |pages=99–102 |doi=10.1038/s41586-019-1332-y |pmid=31270485 |bibcode=2019Natur.571...99C |s2cid=195791097 |hdl=20.500.11850/351933 |hdl-access=free }}
- A study on the climatic and environmental conditions in the Loperot site (Kenya) in the early Miocene is published by Liutkus-Pierce et al. (2019).{{Cite journal|author1=Cynthia M. Liutkus-Pierce |author2=Kevin K. Takashita-Bynum |author3=Luke A. Beane |author4=Cole T. Edwards |author5=Oliver E. Burns |author6=Sara Mana |author7=Sidney Hemming |author8=Aryeh Grossman |author9=James D. Wright |author10=Francis M. Kirera |year=2019 |title=Reconstruction of the early Miocene Critical Zone at Loperot, southwestern Turkana, Kenya |journal=Frontiers in Ecology and Evolution |volume=7 |pages=Article 44 |doi=10.3389/fevo.2019.00044 |s2cid=67871617 |doi-access=free }}
- A study on the timing and course of the separation of the Indian Ocean and the Mediterranean Sea in the Miocene is published by Bialik et al. (2019).{{Cite journal|author1=Or M. Bialik |author2=Martin Frank |author3=Christian Betzler |author4=Ray Zammit |author5=Nicolas D. Waldmann |year=2019 |title=Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 8842 |doi=10.1038/s41598-019-45308-7 |pmid=31222018 |pmc=6586870 |bibcode=2019NatSR...9.8842B }}
- A study comparing changes of the export of intermediate-depth Pacific waters to the western North Atlantic prior to the closure of the Central American Seaway with records of strength of the Atlantic meridional overturning circulation, evaluating the implications of this data for the knowledge of the timing of closure of the Central American Seaway, is published by Kirillova et al. (2019).{{Cite journal|author1=Valeriia Kirillova |author2=Anne H. Osborne |author3=Tjördis Störling |author4=Martin Frank |year=2019 |title=Miocene restriction of the Pacific-North Atlantic throughflow strengthened Atlantic overturning circulation |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 4025 |doi=10.1038/s41467-019-12034-7 |pmid=31492857 |pmc=6731301 |bibcode=2019NatCo..10.4025K }}
- A study on climatic and environmental changes in central Andes during the late Miocene is published by Carrapa, Clementz & Feng (2019).{{Cite journal|author1=Barbara Carrapa |author2=Mark Clementz |author3=Ran Feng |year=2019 |title=Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=20 |pages=9747–9752 |doi=10.1073/pnas.1810721116 |pmid=31036635 |pmc=6525538 |bibcode=2019PNAS..116.9747C |doi-access=free }}
- A study on the exact age of the marine fauna from the Miocene Chilcatay and Pisco formations (Peru), and on its implications for reconstructions of local paleoenvironment, is published online by Bosio et al. (2019).{{Cite journal|author1=Giulia Bosio |author2=Elisa Malinverno |author3=Alberto Collareta |author4=Claudio Di Celma |author5=Anna Gioncada |author6=Mariano Parente |author7=Fabrizio Berra |author8=Felix G. Marx |author9=Agostina Vertino |author10=Mario Urbina |author11=Giovanni Bianucci |year=2020 |title=Strontium Isotope Stratigraphy and the thermophilic fossil fauna from the middle Miocene of the East Pisco Basin (Peru) |journal=Journal of South American Earth Sciences |volume=97 |pages=Article 102399 |doi=10.1016/j.jsames.2019.102399 |bibcode=2020JSAES..9702399B |hdl=2434/701078 |s2cid=210613759 |hdl-access=free }}
- A study on the origin of the African C4 savannah grasslands is published by Polissar et al. (2019).{{Cite journal|author1=Pratigya J. Polissar |author2=Cassaundra Rose |author3=Kevin T. Uno |author4=Samuel R. Phelps |author5=Peter deMenocal |year=2019 |title=Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification |journal=Nature Geoscience |volume=12 |issue=8 |pages=657–660 |doi=10.1038/s41561-019-0399-2 |bibcode=2019NatGe..12..657P |s2cid=199473686 }}
- A study on the anatomical traits of teeth and inferred diet of bovids, suids and rhinocerotids from Kanapoi, and on their implications for reconstructing the environments of this site, is published online by Dumouchel & Bobe (2019).{{Cite journal|author1=Laurence Dumouchel |author2=René Bobe |year=2019 |title=Paleoecological implications of dental mesowear and hypsodonty in fossil ungulates from Kanapoi |journal=Journal of Human Evolution |volume=140 |pages=Article 102548|doi=10.1016/j.jhevol.2018.11.004 |pmid=30638945 |s2cid=58605235 }}
- New spatial data on the Plio-Pleistocene Bolt's Farm pits from the Cradle of Humankind site (South Africa) is presented by Edwards et al. (2019), who also attempt to provide key biochronological ages for the Bolt's Farm deposits.{{Cite journal|author1=Tara R. Edwards |author2=Brian J. Armstrong |author3=Jessie Birkett-Rees |author4=Alexander F. Blackwood |author5=Andy I.R. Herries |author6=Paul Penzo-Kajewski |author7=Robyn Pickering |author8=Justin W. Adams |year=2019 |title=Combining legacy data with new drone and DGPS mapping to identify the provenance of Plio-Pleistocene fossils from Bolt's Farm, Cradle of Humankind (South Africa) |journal=PeerJ |volume=7 |pages=e6202 |doi=10.7717/peerj.6202 |pmid=30656072 |pmc=6336010 |doi-access=free }}
- A study on the global mean sea level during the Pliocene mid-Piacenzian Warm Period is published by Dumitru et al. (2019).{{Cite journal|author1=Oana A. Dumitru |author2=Jacqueline Austermann |author3=Victor J. Polyak |author4=Joan J. Fornós |author5=Yemane Asmerom |author6=Joaquín Ginés |author7=Angel Ginés |author8=Bogdan P. Onac |year=2019 |title=Constraints on global mean sea level during Pliocene warmth |journal=Nature |volume=574 |issue=7777 |pages=233–236 |doi=10.1038/s41586-019-1543-2 |pmid=31471591 |bibcode=2019Natur.574..233D |s2cid=201786472 }}
- A study on the amplitude of sea-level variations during the Pliocene is published by Grant et al. (2019).{{Cite journal|author1=G. R. Grant |author2=T. R. Naish |author3=G. B. Dunbar |author4=P. Stocchi |author5=M. A. Kominz |author6=P. J. J. Kamp |author7=C. A. Tapia |author8=R. M. McKay |author9=R. H. Levy |author10=M. O. Patterson |year=2019 |title=The amplitude and origin of sea-level variability during the Pliocene epoch |journal=Nature |volume=574 |issue=7777 |pages=237–241 |doi=10.1038/s41586-019-1619-z |pmid=31578526 |bibcode=2019Natur.574..237G |s2cid=203638257 }}
- Simulations of coevolution of climate, ice sheets and carbon cycle over the past 3 million years are presented by Willeit et al. (2019).{{Cite journal|author1=M. Willeit |author2=A. Ganopolski |author3=R. Calov |author4=V. Brovkin |year=2019 |title=Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal |journal=Science Advances |volume=5 |issue=4 |pages=eaav7337 |doi=10.1126/sciadv.aav7337 |pmid=30949580 |pmc=6447376 |bibcode=2019SciA....5.7337W }}
- A study on the age of the Sahara, as indicated by data from Pliocene and Pleistocene paleosols from the Canary Islands, is published by Muhs et al. (2019).{{Cite journal|author1=Daniel R. Muhs |author2=Joaquín Meco |author3=James R. Budahn |author4=Gary L. Skipp |author5=Juan F. Betancort |author6=Alejandro Lomoschitz |year=2019 |title=The antiquity of the Sahara Desert: New evidence from the mineralogy and geochemistry of Pliocene paleosols on the Canary Islands, Spain |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=533 |pages=Article 109245 |doi=10.1016/j.palaeo.2019.109245 |bibcode=2019PPP...53309245M |s2cid=198399468 |url=https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=2101&context=usgsstaffpub |doi-access=free }}
- A study on the latest Villafranchian climate and environment of the area of southern Italy, as indicated by amphibian and reptile fossil record from the Pirro Nord karstic complex, is published by Blain et al. (2019).{{Cite journal|author1=Hugues-Alexandre Blain |author2=Ana Fagoaga |author3=Francisco Javier Ruiz-Sánchez |author4=Josep Francesc Bisbal-Chinesta |author5=Massimo Delfino |year=2019 |title=Latest Villafranchian climate and landscape reconstructions at Pirro Nord (southern Italy) |journal=Geology |volume=47 |issue=9 |pages=829–832 |doi=10.1130/G46392.1 |bibcode=2019Geo....47..829B |s2cid=197557996 }}
- A study on atmospheric gas levels before and after the shift from glacial cycles of 100 thousand years to 40-thousand-year cycles around one million years ago, as inferred from data from ice core samples from the Allan Hills Blue Ice Area (East Antarctica), is published by Yan et al. (2019).{{Cite journal|author1=Yuzhen Yan |author2=Michael L. Bender |author3=Edward J. Brook |author4=Heather M. Clifford |author5=Preston C. Kemeny |author6=Andrei V. Kurbatov |author7=Sean Mackay |author8=Paul A. Mayewski |author9=Jessica Ng |author10=Jeffrey P. Severinghaus |author11=John A. Higgins |year=2019 |title=Two-million-year-old snapshots of atmospheric gases from Antarctic ice |journal=Nature |volume=574 |issue=7780 |pages=663–666 |doi=10.1038/s41586-019-1692-3 |pmid=31666720 |bibcode=2019Natur.574..663Y |s2cid=204942679 |url=https://escholarship.org/uc/item/1fz449nk }}
- A study on pCO2 levels from 2.6 to 0.8 Ma is published by Da et al. (2019), who find no evidence indicating that the Mid-Pleistocene Transition was caused by the decline of pCO2.{{Cite journal|author1=Jiawei Da |author2=Yi Ge Zhang |author3=Gen Li |author4=Xianqiang Meng |author5=Junfeng Ji |year=2019 |title=Low CO2 levels of the entire Pleistocene epoch |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 4342 |doi=10.1038/s41467-019-12357-5 |pmid=31554805 |pmc=6761161 |bibcode=2019NatCo..10.4342D }}
- A study on changes in winter rainfall in the Mediterranean over the past 1.36 million years is published by Wagner et al. (2019).{{Cite journal|author1=Bernd Wagner |author2=Hendrik Vogel |author3=Alexander Francke |author4=Tobias Friedrich |author5=Timme Donders |author6=Jack H. Lacey |author7=Melanie J. Leng |author8=Eleonora Regattieri |author9=Laura Sadori |author10=Thomas Wilke |author11=Giovanni Zanchetta |author12=Christian Albrecht |author13=Adele Bertini |author14=Nathalie Combourieu-Nebout |author15=Aleksandra Cvetkoska |author16=Biagio Giaccio |author17=Andon Grazhdani |author18=Torsten Hauffe |author19=Jens Holtvoeth |author20=Sebastien Joannin |author21=Elena Jovanovska |author22=Janna Just |author23=Katerina Kouli |author24=Ilias Kousis |author25=Andreas Koutsodendris |author26=Sebastian Krastel |author27=Markus Lagos |author28=Niklas Leicher |author29=Zlatko Levkov |author30=Katja Lindhorst |author31=Alessia Masi |author32=Martin Melles |author33=Anna M. Mercuri |author34=Sebastien Nomade |author35=Norbert Nowaczyk |author36=Konstantinos Panagiotopoulos |author37=Odile Peyron |author38=Jane M. Reed |author39=Leonardo Sagnotti |author40=Gaia Sinopoli |author41=Björn Stelbrink |author42=Roberto Sulpizio |author43=Axel Timmermann |author-link43= Axel Timmermann|author44=Slavica Tofilovska |author45=Paola Torri |author46=Friederike Wagner-Cremer |author47=Thomas Wonik |author48=Xiaosen Zhang |year=2019 |title=Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years |journal=Nature |volume=573 |issue=7773 |pages=256–260 |doi=10.1038/s41586-019-1529-0 |pmid=31477908 |bibcode=2019Natur.573..256W |s2cid=201713405 |url=http://nora.nerc.ac.uk/id/eprint/525021/1/Wagner%20et%20al%20Ohrid%20MS2.pdf }}
- Results of stable carbon and oxygen isotope analyses of tooth enamel samples from Pleistocene mammals from the Yugong Cave and Baxian Cave (China) are presented by Sun et al. (2019), who evaluate the implications of their findings for the knowledge of Pleistocene climatic and environmental changes in South China.{{Cite journal|author1=Fajun Sun |author2=Yang Wang |author3=Yuan Wang |author4=Chang-zhu Jin |author5=Tao Deng |author6=Burt Wolff |year=2019 |title=Paleoecology of Pleistocene mammals and paleoclimatic change in South China: Evidence from stable carbon and oxygen isotopes |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=524 |pages=1–12 |doi=10.1016/j.palaeo.2019.03.021 |bibcode=2019PPP...524....1S |s2cid=134558136 }}
- A study on Pleistocene mammal fossils from the Yai Ruak Cave (Krabi Province, Thailand), including the southernmost known record of Crocuta crocuta ultima, is published by Suraprasit et al. (2019), who evaluate the implications of these fossils for reconstructions of the environment in the area of the Malay Peninsula in the Pleistocene.{{cite journal |author1=Kantapon Suraprasit |author2=Sutee Jongautchariyakul |author3=Chotima Yamee |author4=Cherdchan Pothichaiya |author5=Hervé Bocherens |year=2019 |title=New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand |journal=Quaternary Science Reviews |volume=221 |pages=Article 105861 |doi=10.1016/j.quascirev.2019.105861 |bibcode=2019QSRv..22105861S |s2cid=202196643 }}
- A study on Acheulean and Middle Stone Age sites from the Eastern Desert (Sudan), preserving stone artifacts, is published by Masojć et al. (2019), who interpret these sites as evidence of green corridor or corridors across Sahara which made early hominin dispersal possible.{{cite journal |author1=Mirosław Masojć |author2=Ahmed Nassr |author3=Ju Yong Kim |author4=Joanna Krupa-Kurzynowska |author5=Young Kwan Sohn |author6=Marcin Szmit |author7=Jin Cheul Kim |author8=Ji Sung Kim |author9=Han Woo Choi |author10=Małgorzata Wieczorek |author11=Axel Timmermann |author-link11= Axel Timmermann|year=2019 |title=Saharan green corridors and Middle Pleistocene hominin dispersals across the Eastern Desert, Sudan |journal=Journal of Human Evolution |volume=130 |pages=141–150 |doi=10.1016/j.jhevol.2019.01.004 |pmid=31010540 |bibcode=2019JHumE.130..141M |s2cid=128361376 }}
- Evidence from oxygen isotope data from Soreq Cave speleothems (Israel), indicative of the occurrence of summer monsoon rainfall in the Middle East during recurrent intervals of the last interglacial period (overlapping with archeological indicators of human migration), is presented by Orland et al. (2019).{{Cite journal|author1=Ian J. Orland |author2=Feng He |author3=Miryam Bar-Matthews |author4=Guangshan Chen |author5=Avner Ayalon |author6=John E. Kutzbach |year=2019 |title=Resolving seasonal rainfall changes in the Middle East during the last interglacial period |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue= 50|pages= 24985–24990|doi=10.1073/pnas.1903139116 |pmid=31767759 |pmc=6911216 |bibcode=2019PNAS..11624985O |doi-access=free }}
- A study on the spatial and temporal distribution of ancient peatlands in the past 130,000 years is published by Treat et al. (2019).{{Cite journal|author1=Claire C. Treat |author2=Thomas Kleinen |author3=Nils Broothaerts |author4=April S. Dalton |author5=René Dommain |author6=Thomas A. Douglas |author7=Judith Z. Drexler |author8=Sarah A. Finkelstein |author9=Guido Grosse |author10=Geoffrey Hope |author11=Jack Hutchings |author12=Miriam C. Jones |author13=Peter Kuhry |author14=Terri Lacourse |author15=Outi Lähteenoja |author16=Julie Loisel |author17=Bastiaan Notebaert |author18=Richard J. Payne |author19=Dorothy M. Peteet |author20=A. Britta K. Sannel |author21=Jonathan M. Stelling |author22=Jens Strauss |author23=Graeme T. Swindles |author24=Julie Talbot |author25=Charles Tarnocai |author26=Gert Verstraeten |author27=Christopher J. Williams |author28=Zhengyu Xia |author29=Zicheng Yu |author30=Minna Väliranta |author31=Martina Hättestrand |author32=Helena Alexanderson |author33=Victor Brovkin |year=2019 |title=Widespread global peatland establishment and persistence over the last 130,000 y |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=116 |issue=11 |pages=4822–4827 |doi=10.1073/pnas.1813305116 |pmid=30804186 |pmc=6421451 |bibcode=2019PNAS..116.4822T |doi-access=free }}
- A study on the size of fossil rabbits from 14 late Pleistocene and Holocene archaeological sites in Portugal, and on its implications for the knowledge of temperatures and environment in the area of Portugal during the last glaciation, is published by Davis (2019).{{cite journal |author=Simon J. M. Davis |year=2019 |title=Rabbits and Bergmann's rule: how cold was Portugal during the last glaciation? |journal=Biological Journal of the Linnean Society |volume=128 |issue=3 |pages=526–549 |doi=10.1093/biolinnean/blz098 }}
- A study on Pleistocene small mammal remains from Stratigraphic Unit V from El Salt site (Alcoy, Spain), evaluating their implications for the knowledge of climatic conditions in the eastern Iberian Peninsula at the time of the disappearance of local Neanderthal populations during Marine Isotope Stage 3, is published by Fagoaga et al. (2019).{{Cite journal|author1=Ana Fagoaga |author2=César Laplana |author3=Rafael Marquina-Blasco |author4=Jorge Machado |author5=M. Dolores Marin-Monfort |author6=Vicente D. Crespo |author7=Cristo M. Hernández |author8=Carolina Mallol |author9=Bertila Galván |author10=Francisco J. Ruiz-Sánchez |year=2019 |title=Palaeoecological context for the extinction of the Neanderthals: A small mammal study of Stratigraphic Unit V of the El Salt site, Alcoi, eastern Spain |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=530 |pages=163–175 |doi=10.1016/j.palaeo.2019.05.007 |bibcode=2019PPP...530..163F |s2cid=200019385 }}
- A study on the sedimentary sequence from the Pilauco site in Chile, evaluating whether evidence from this site is consistent with the Younger Dryas impact hypothesis, is published by Pino et al. (2019).{{Cite journal|author1=Mario Pino|author-link1=Mario Pino Quivira |author2=Ana M. Abarzúa |author3=Giselle Astorga |author4=Alejandra Martel-Cea |author5=Nathalie Cossio-Montecinos |author6=R. Ximena Navarro |author7=Maria Paz Lira |author8=Rafael Labarca |author9=Malcolm A. LeCompte |author10=Victor Adedeji |author11=Christopher R. Moore |author12=Ted E. Bunch |author13=Charles Mooney |author14=Wendy S. Wolbach |author15=Allen West |author16=James P. Kennett |year=2019 |title=Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka |journal=Scientific Reports |volume=9 |issue=1 |pages=Article number 4413 |doi=10.1038/s41598-018-38089-y |pmid=30867437 |pmc=6416299 |bibcode=2019NatSR...9.4413P }}
- A study on variations of size of fossil murine rodents from Liang Bua (Flores, Indonesia) through time, and on their implications for reconstructions of paleoclimate and paleoenvironment of Flores, is published by Veatch et al. (2019).{{cite journal |author1=E. Grace Veatch |author2=Matthew W. Tocheri |author3=Thomas Sutikna |author4=Kate McGrath |author5=E. Wahyu Saptomo |author6=Jatmiko |author7=Kristofer M. Helgen |year=2019 |title=Temporal shifts in the distribution of murine rodent body size classes at Liang Bua (Flores, Indonesia) reveal new insights into the paleoecology of Homo floresiensis and associated fauna |journal=Journal of Human Evolution |volume=130 |pages=45–60 |doi=10.1016/j.jhevol.2019.02.002 |pmid=31010543 |s2cid=91562355 |doi-access=free |bibcode=2019JHumE.130...45V |hdl=2440/121139 |hdl-access=free }}
- A study on human land use worldwide from 10,000 years before the present to 1850 CE, indicating that Earth was to a large extent transformed by human activity by 3000 years ago, is published by Stephens et al. (2019).{{cite journal |author1=Lucas Stephens |author2=Dorian Fuller |author3=Nicole Boivin |author4=Torben Rick |author5=Nicolas Gauthier |author6=Andrea Kay |author7=Ben Marwick |author8=Chelsey Geralda |author9=Denise Armstrong |author10=C. Michael Barton |author11=Tim Denham |author12=Kristina Douglass |author13=Jonathan Driver |author14=Lisa Janz |author15=Patrick Roberts |author16=J. Daniel Rogers |author17=Heather Thakar |author18=Mark Altaweel |author19=Amber L. Johnson |author20=Maria Marta Sampietro Vattuone |author21=Mark Aldenderfer |author22=Sonia Archila |author23=Gilberto Artioli |author24=Martin T. Bale |author25=Timothy Beach |author26=Ferran Borrell |author27=Todd Braje |author28=Philip I. Buckland |author29=Nayeli Guadalupe Jiménez Cano |author30=José M. Capriles |author31=Agustín Diez Castillo |author32=Çiler Çilingiroğlu |author33=Michelle Negus Cleary |author34=James Conolly |author35=Peter R. Coutros |author36=R. Alan Covey |author37=Mauro Cremaschi |author38=Alison Crowther |author39=Lindsay Der |author40=Savino di Lernia |author41=John F. Doershuk |author42=William E. Doolittle |author43=Kevin J. Edwards |author44=Jon M. Erlandson |author45=Damian Evans |author46=Andrew Fairbairn |author47=Patrick Faulkner |author48=Gary Feinman |author49=Ricardo Fernandes |author50=Scott M. Fitzpatrick |author51=Ralph Fyfe |author52=Elena Garcea |author53=Steve Goldstein |author54=Reed Charles Goodman |author55=Jade Dalpoim Guedes |author56=Jason Herrmann |author57=Peter Hiscock |author58=Peter Hommel |author59=K. Ann Horsburgh |author60=Carrie Hritz |author61=John W. Ives |author62=Aripekka Junno |author63=Jennifer G. Kahn |author64=Brett Kaufman |author65=Catherine Kearns |author66=Tristram R. Kidder |author67=François Lanoë |author68=Dan Lawrence |author69=Gyoung-Ah Lee |author70=Maureece J. Levin |author71=Henrik B. Lindskoug |author72=José Antonio López-Sáez |author73=Scott Macrae |author74=Rob Marchant |author75=John M. Marston |author76=Sarah McClure |author77=Mark D. McCoy |author78=Alicia Ventresca Miller |author79=Michael Morrison |author80=Giedre Motuzaite Matuzeviciute |author81=Johannes Müller |author82=Ayushi Nayak |author83=Sofwan Noerwidi |author84=Tanya M. Peres |author85=Christian E. Peterson |author86=Lucas Proctor |author87=Asa R. Randall |author88=Steve Renette |author89=Gwen Robbins Schug |author90=Krysta Ryzewski |author91=Rakesh Saini |author92=Vivian Scheinsohn |author93=Peter Schmidt |author94=Pauline Sebillaud |author95=Oula Seitsonen |author96=Ian A. Simpson |author97=Arkadiusz Sołtysiak |author98=Robert J. Speakman |author99=Robert N. Spengler |author100=Martina L. Steffen |author101=Michael J. Storozum |author102=Keir M. Strickland |author103=Jessica Thompson |author104=T. L. Thurston |author105=Sean Ulm |author106=M. Cemre Ustunkaya |author107=Martin H. Welker |author108=Catherine West |author109=Patrick Ryan Williams |author110=David K. Wright |author111=Nathan Wright |author112=Muhammad Zahir |author113=Andrea Zerboni |author114=Ella Beaudoin |author115=Santiago Munevar Garcia |author116=Jeremy Powell |author117=Alexa Thornton |author118=Jed O. Kaplan |author119=Marie-José Gaillard |author120=Kees Klein Goldewijk |author121=Erle Ellis |year=2019 |title=Archaeological assessment reveals Earth's early transformation through land use |journal=Science |volume=365 |issue=6456 |pages=897–902 |doi=10.1126/science.aax1192 |pmid=31467217 |display-authors=29 |hdl=10026.1/14903 |bibcode=2019Sci...365..897S |s2cid=201674203 |doi-access=free |hdl-access=free }}
- Evidence for synchronous cyclical changes in monsoon climate, human activity and prehistoric cultural development in the area of northeast China throughout the Holocene is presented by Xu et al. (2019).{{Cite journal|author1=Deke Xu |author2=Houyuan Lu |author3=Guoqiang Chu |author4=Li Liu |author5=Caiming Shen |author6=Fengjiang Li |author7=Can Wang |author8=Naiqin Wu |year=2019 |title=Synchronous 500-year oscillations of monsoon climate and human activity in Northeast Asia |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 4105 |doi=10.1038/s41467-019-12138-0 |pmid=31511523 |pmc=6739325 |bibcode=2019NatCo..10.4105X }}
- A study on Andean plate tectonics since the late Mesozoic is published by Chen, Wu & Suppe (2019).{{Cite journal|author1=Yi-Wei Chen |author2=Jonny Wu |author3=John Suppe |year=2019 |title=Southward propagation of Nazca subduction along the Andes |journal=Nature |volume=565 |issue=7740 |pages=441–447 |doi=10.1038/s41586-018-0860-1 |pmid=30675041 |bibcode=2019Natur.565..441C |s2cid=59159777 }}
- A study on the course of the collision of India and Asia, as indicated by palaeomagnetic data from the Burma Terrane, is published by Westerweel et al. (2019).{{Cite journal|author1=Jan Westerweel |author2=Pierrick Roperch |author3=Alexis Licht |author4=Guillaume Dupont-Nivet |author5=Zaw Win |author6=Fernando Poblete |author7=Gilles Ruffet |author8=Hnin Hnin Swe |author9=Myat Kai Thi |author10=Day Wa Aung |year=2019 |title=Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data |journal=Nature Geoscience |volume=12 |issue=10 |pages=863–868 |doi=10.1038/s41561-019-0443-2 |pmid=31579400 |pmc=6774779 |bibcode=2019NatGe..12..863W }}
- A scenario for the genesis of tropical cyclones throughout the Cenozoic is presented by Yan et al. (2019).{{Cite journal|author1=Qing Yan |author2=Robert Korty |author3=Zhongshi Zhang |author4=Huijun Wang |year=2019 |title=Evolution of tropical cyclone genesis regions during the Cenozoic era |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 3076 |doi=10.1038/s41467-019-11110-2 |pmid=31300651 |pmc=6625981 |bibcode=2019NatCo..10.3076Y }}
- A study on the extent of ice sheets in the Northern Hemisphere throughout the Quaternary is published by Batchelor et al. (2019).{{cite journal |author1=Christine L. Batchelor |author2=Martin Margold |author3=Mario Krapp |author4=Della K. Murton |author5=April S. Dalton |author6=Philip L. Gibbard |author7=Chris R. Stokes |author8=Julian B. Murton |author9=Andrea Manica |year=2019 |title=The configuration of Northern Hemisphere ice sheets through the Quaternary |journal=Nature Communications |volume=10 |issue=1 |pages=Article number 3713 |doi=10.1038/s41467-019-11601-2 |pmid=31420542 |pmc=6697730 |bibcode=2019NatCo..10.3713B }}
- A new method of concentration of proteins from fossil specimens with high humic content and of removal of humic substances is presented by Schroeter et al. (2019).{{Cite journal|author1=Elena R. Schroeter |author2=Kevin Blackburn |author3=Michael B. Goshe |author4=Mary H. Schweitzer |year=2019 |title=Proteomic method to extract, concentrate, digest and enrich peptides from fossils with coloured (humic) substances for mass spectrometry analyses |journal=Royal Society Open Science |volume=6 |issue=8 |pages=Article ID 181433 |doi=10.1098/rsos.181433 |pmid=31598217 |pmc=6731700 |bibcode=2019RSOS....681433S }}