chromosome 21

{{Short description|Human chromosome}}

{{About||the Spanish crime thriller television series|Chromosome 21 (TV series)}}

{{Infobox chromosome

| image = Human male karyotpe high resolution - Chromosome 21 cropped.png

| caption = Human chromosome 21 pair after G-banding.
One is from the mother, one is from the father.

| image2 = Human male karyotpe high resolution - Chromosome 21.png

| caption2 = Chromosome 21 pair
in human male karyogram.

| length_bp = 45,090,682 bp
(CHM13)

| genes = 215 (CCDS)

| type = Autosome

| centromere_position = Acrocentric{{cite book|author1=Tom Strachan|author2=Andrew Read|title=Human Molecular Genetics|url=https://books.google.com/books?id=dSwWBAAAQBAJ&pg=PA45|date=2 April 2010|publisher=Garland Science|isbn=978-1-136-84407-2|page=45}}
(12.0 MbpGenome Decoration Page, NCBI. [http://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_850_V1 Ideogram data for Homo sapience (850 bphs, Assembly GRCh38.p3)]. Last update 2014-06-03. Retrieved 2017-04-26.)

| chr = 21

| ensembl_id = 21

| entrez_id = 21

| ncbi_id = 21

| ucsc_id = 21

| refseq_id = NC_000021

| genbank_id = CM000683

}}

Chromosome 21 is one of the 23 pairs of chromosomes in humans. Chromosome 21 is both the smallest human autosome and chromosome,{{cite web | url=https://ghr.nlm.nih.gov/chromosome/21 | title=Chromosome 21}} with 46.7 million base pairs (the building material of DNA) representing about 1.5 percent of the total DNA in cells. Most people have two copies of chromosome 21, while those with three copies of chromosome 21 (trisomy 21) have Down syndrome.

Researchers working on the Human Genome Project announced in May 2000 that they had determined the sequence of base pairs that make up this chromosome.{{Cite journal | doi=10.1038/35012518|pmid = 10830953| title=The DNA sequence of human chromosome 21| journal=Nature| volume=405| issue=6784| pages=311–319| year=2000| last1=Hattori| first1=M.| last2=Fujiyama| first2=A.| last3=Taylor| first3=T. D.| last4=Watanabe| first4=H.| last5=Yada| first5=T.| last6=Park| first6=H.-S.| last7=Toyoda| first7=A.| last8=Ishii| first8=K.| last9=Totoki| first9=Y.| last10=Choi| first10=D.-K.| last11=Soeda| first11=E.| last12=Ohki| first12=M.| last13=Takagi| first13=T.| last14=Sakaki| first14=Y.| last15=Taudien| first15=S.| last16=Blechschmidt| first16=K.| last17=Polley| first17=A.| last18=Menzel| first18=U.| last19=Delabar| first19=J.| last20=Kumpf| first20=K.| last21=Lehmann| first21=R.| last22=Patterson| first22=D.| last23=Reichwald| first23=K.| last24=Rump| first24=A.| last25=Schillhabel| first25=M.| last26=Schudy| first26=A.| last27=Zimmermann| first27=W.| last28=Rosenthal| first28=A.| last29=Kudoh| first29=J.| last30=Shibuya| first30=K.|bibcode = 2000Natur.405..311H| display-authors=29| doi-access=free}} Chromosome 21 was the second human chromosome to be fully sequenced, after chromosome 22.

Genes

= Number of genes =

The following are some of the gene count estimates of human chromosome 21. Because researchers use different approaches to genome annotation, their predictions of the number of genes on each chromosome varies (for technical details, see gene prediction). Among various projects, the collaborative consensus coding sequence project (CCDS) takes an extremely conservative strategy. Thus CCDS's gene number prediction represents a lower bound on the total number of human protein-coding genes.{{cite journal| author=Pertea M, Salzberg SL| title=Between a chicken and a grape: estimating the number of human genes. | journal=Genome Biol | year= 2010 | volume= 11 | issue= 5 | pages= 206 | pmid=20441615 | doi=10.1186/gb-2010-11-5-206 | pmc=2898077 | doi-access=free }}

class="wikitable" style="text-align:right"
Estimated by

! Protein-coding genes

! Non-coding RNA genes

! Pseudogenes

! Source

! Release date

CCDS212

|style="text-align:center"| {{cite web | title=Search results - 21[CHR] AND "Homo sapiens"[Organism] AND ("has ccds"[Properties] AND alive[prop]) - Gene | website= NCBI |version = CCDS Release 24 for Homo sapiens | url=https://www.ncbi.nlm.nih.gov/gene?term=21%5BChr%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22has%20ccds%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch |date=2022-10-26 | access-date=2025-01-15}}

| 2025-01-15

HGNC215190194

|style="text-align:center"| {{cite web | title=Statistics & download files | website=HUGO Gene Nomenclature Committee | url=https://www.genenames.org/download/statistics-and-files/ | date=2024-04-10 | access-date=2025-01-15 }}

| 2025-01-15

Ensembl221450184

|style="text-align:center"| {{cite web | title=Chromosome 21: Chromosome summary - Homo sapiens | website= Ensembl Release 112 | url=http://may2024.archive.ensembl.org/Homo_sapiens/Location/Chromosome?r=21 |date=2024-05-13 | access-date=2025-01-15}}

| 2024-05-13

UniProt244

|style="text-align:center"| {{cite web | title=Human chromosome 21: entries, gene names and cross-references to MIM | website= UniProt | url=https://www.uniprot.org/docs/humchr21.txt |date=2024-11-27 | access-date=2025-01-15}}

| 2024-11-27

NCBI254637246

|style="text-align:center"| {{cite web | title=Search results - 21[CHR] AND "Homo sapiens"[Organism] AND ("genetype protein coding"[Properties] AND alive[prop]) - Gene | website=NCBI | date=2025-01-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=21%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22genetype%20protein%20coding%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | access-date=2025-01-19}}{{cite web | title=Search results - 21[CHR] AND "Homo sapiens"[Organism] AND ( ("genetype miscrna"[Properties] OR "genetype ncrna"[Properties] OR "genetype rrna"[Properties] OR "genetype trna"[Properties] OR "genetype scrna"[Properties] OR "genetype snrna"[Properties] OR "genetype snorna"[Properties]) NOT "genetype protein coding"[Properties] AND alive[prop]) - Gene | website=NCBI | date=2025-01-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=21%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%28%22genetype%20miscrna%22%5BProperties%5D%20OR%20%22genetype%20ncrna%22%5BProperties%5D%20OR%20%22genetype%20rrna%22%5BProperties%5D%20OR%20%22genetype%20trna%22%5BProperties%5D%20OR%20%22genetype%20scrna%22%5BProperties%5D%20OR%20%22genetype%20snrna%22%5BProperties%5D%20OR%20%22genetype%20snorna%22%5BProperties%5D%29%20NOT%20%22genetype%20protein%20coding%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | access-date=2025-01-19}}{{cite web | title=Search results - 21[CHR] AND "Homo sapiens"[Organism] AND ("genetype pseudo"[Properties] AND alive[prop]) - Gene | website=NCBI | date=2025-01-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=21%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22genetype%20pseudo%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | access-date=2025-01-19}}

| 2025-01-19

= Gene list =

{{Category see also|Genes on human chromosome 21}}

The following is a partial list of genes on human chromosome 21. For complete list, see the link in the infobox at the top of the article.

{{Clear}}

{{Columns-list|

  • ABCG1: encoding ATP-binding cassette sub-family G member 1
  • ADAMTS1 encoding enzyme a disintegrin and metalloproteinase with thrombospondin motifs 1
  • ADAMTS5: encoding enzyme a disintegrin and metalloproteinase with thrombospondin motifs 5
  • ADARB1: encoding enzyme double-stranded RNA-specific editase 1
  • AGPAT3: encoding enzyme 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma
  • AIRE: encoding protein autoimmune regulator
  • APP: encoding amyloid beta (A4) precursor protein (peptidase nexin-II, Alzheimer disease){{cite journal | vauthors= Sleegers K, Brouwers N, Gijselinck I, Theuns J, Goossens D, Wauters J, Del-Favero J, Cruts M, van Duijn CM, Van Broeckhoven C

| title=APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy | journal= Brain | year=2006 | pages= 2977–83| volume= 129| issue= Pt 11| pmid=16921174

| doi=10.1093/brain/awl203| doi-access=free}}

}}

In addition, the chromosome has many genes for keratin-associated protein, with symbols: KRTAP6-1, KRTAP6-2, KRTAP6-3, KRTAP7-1, KRTAP8-1, KRTAP10-1, KRTAP10-2, KRTAP10-3, KRTAP10-4, KRTAP10-5, KRTAP10-6, KRTAP10-7, KRTAP10-8, KRTAP10-9, KRTAP10-10, KRTAP10-11, KRTAP10-12, KRTAP11-1, KRTAP12-1, KRTAP12-1, KRTAP12-2, KRTAP12-3, KRTAP12-4, KRTAP13-1, KRTAP13-2, KRTAP13-3, KRTAP13-4, KRTAP15-1, KRTAP19-1, KRTAP19-2, KRTAP19-3, KRTAP19-4, KRTAP19-5, KRTAP19-6, KRTAP19-7, KRTAP19-8, KRTAP20-1, KRTAP20-2, KRTAP20-3, KRTAP20-4, KRTAP21-1, KRTAP21-2, KRTAP21-3, KRTAP22-1, KRTAP22-2, KRTAP23-1, KRTAP24-1, KRTAP25-1, KRTAP26-1, KRTAP27-1.

Diseases and disorders

The following diseases and disorders are some of those related to genes on chromosome 21:

{{Div col}}

{{Div col end}}

Chromosomal conditions

File:Trisomie 21 Genom-Schema.gif

The following conditions are caused by changes in the structure or number of copies of chromosome 21:

  • Cancers: Rearrangements (translocations) of genetic material between chromosome 21 and other chromosomes have been associated with several types of cancer. For example, acute lymphoblastic leukemia (a type of blood cancer most often diagnosed in childhood) has been associated with a translocation between chromosomes 12 and 21. Another form of leukemia, acute myeloid leukemia, has been associated with a translocation between chromosomes 8 and 21.
  • In a small percentage of cases, Down syndrome is caused by a rearrangement of chromosomal material between chromosome 21 and another chromosome. As a result, a person has the usual two copies of chromosome 21, plus extra material from chromosome 21 attached to another chromosome. These cases are called translocation Down syndrome. Researchers believe that extra copies of genes on chromosome 21 disrupt the course of normal development, causing the characteristic features of Down syndrome and the increased risk of medical problems associated with this disorder.
  • Other changes in the number or structure of chromosome 21 can have a variety of effects, including intellectual disability, delayed development, and characteristic facial features. In some cases, the signs and symptoms are similar to those of Down syndrome. Changes to chromosome 21 include a missing segment of the chromosome in each cell (partial monosomy 21) and a circular structure called ring chromosome 21. A ring chromosome occurs when both ends of a broken chromosome are reunited.
  • Duplication in amyloid precursor protein (APP) locus (duplicated segment varies in length but includes APP) on Chromosome 21 was found to cause early onset familial Alzheimer's disease in a French family set {{Harv|Rovelet-Lecrux|Hannequin|Raux|Le Meur|2005}} and a Dutch family set. Compared to Alzheimer's caused by missense mutations in APP, the frequency of the Alzheimer's caused by APP duplications is significant. All patients that have an extra copy of APP gene due to the locus duplication show Alzheimer's with severe cerebral amyloid angiopathy.

Cytogenetic band

{{multiple image

| header = G-banding ideograms of human chromosome 21

| total_width = 400

| image1 = Human chromosome 21 ideogram vertical.svg

| width1 = 216

| height1= 1125

| caption1 = G-banding ideogram of human chromosome 21 in resolution 850 bphs. Band length in this diagram is proportional to base-pair length. This type of ideogram is generally used in genome browsers (e.g. Ensembl, UCSC Genome Browser).

| image2 = Human chromosome 21 - 400 550 850 bphs.png

| width2 = 1003

| height2= 2801

| caption2 = G-banding patterns of human chromosome 21 in three different resolutions (400,Genome Decoration Page, NCBI. [http://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_400_V1 Ideogram data for Homo sapience (400 bphs, Assembly GRCh38.p3)]. Last update 2014-03-04. Retrieved 2017-04-26. 550Genome Decoration Page, NCBI. [http://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_550_V1 Ideogram data for Homo sapience (550 bphs, Assembly GRCh38.p3)]. Last update 2015-08-11. Retrieved 2017-04-26. and 850Genome Decoration Page, NCBI. [http://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_850_V1 Ideogram data for Homo sapience (850 bphs, Assembly GRCh38.p3)]. Last update 2014-06-03. Retrieved 2017-04-26.). Band length in this diagram is based on the ideograms from ISCN (2013).{{cite book|author=International Standing Committee on Human Cytogenetic Nomenclature|title=ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013)|url=https://books.google.com/books?id=lGCLrh0DIwEC|year=2013|publisher=Karger Medical and Scientific Publishers|isbn=978-3-318-02253-7}} This type of ideogram represents actual relative band length observed under a microscope at the different moments during the mitotic process.{{cite book|last1=Sethakulvichai|first1=W.|last2=Manitpornsut|first2=S.|last3=Wiboonrat|first3=M.|last4=Lilakiatsakun|first4=W.|last5=Assawamakin|first5=A.|last6=Tongsima|first6=S.|title=2012 Ninth International Conference on Computer Science and Software Engineering (JCSSE) |chapter=Estimation of band level resolutions of human chromosome images |year=2012|pages=276–282|doi=10.1109/JCSSE.2012.6261965|chapter-url=https://www.researchgate.net/publication/261304470|isbn=978-1-4673-1921-8|s2cid=16666470}}

}}

class="wikitable" style="text-align:right"

|+ G-bands of human chromosome 21 in resolution 850 bphs

! Chr.

! Arm"p": Short arm; "q": Long arm.

! BandFor cytogenetic banding nomenclature, see article locus.

! ISCN
startThese values (ISCN start/stop) are based on the length of bands/ideograms from the ISCN book, An International System for Human Cytogenetic Nomenclature (2013). Arbitrary unit.

! ISCN
stop

! Basepair
start

! Basepair
stop

! Staingpos: Region which is positively stained by G banding, generally AT-rich and gene poor; gneg: Region which is negatively stained by G banding, generally CG-rich and gene rich; acen Centromere. var: Variable region; stalk: Stalk.

! Density

21p

|style="text-align:left"| 13

0311{{val|1|fmt=commas}}{{val|3100000|fmt=commas}}

|style="background:#e0e0e0"| gvar

21p

|style="text-align:left"| 12

311683{{val|3100001|fmt=commas}}{{val|7000000|fmt=commas}}

|style="background:#708090; color:white;"| stalk

21p

|style="text-align:left"| 11.2

6831056{{val|7000001|fmt=commas}}{{val|10900000|fmt=commas}}

|style="background:#e0e0e0"| gvar

21p

|style="text-align:left"| 11.1

10561274{{val|10900001|fmt=commas}}{{val|12000000|fmt=commas}}

|style="background:#6e7f8f; color:white;"| acen

21q

|style="text-align:left"| 11.1

12741367{{val|12000001|fmt=commas}}{{val|13000000|fmt=commas}}

|style="background:#6e7f8f; color:white;"| acen

21q

|style="text-align:left"| 11.2

13671584{{val|13000001|fmt=commas}}{{val|15000000|fmt=commas}}

| style="background:white"| gneg

21q

|style="text-align:left"| 21.1

15842019{{val|15000001|fmt=commas}}{{val|22600000|fmt=commas}}

|style="background:black; color:white;"| gpos

100
21q

|style="text-align:left"| 21.2

20192144{{val|22600001|fmt=commas}}{{val|25500000|fmt=commas}}

| style="background:white"| gneg

21q

|style="text-align:left"| 21.3

21442330{{val|25500001|fmt=commas}}{{val|30200000|fmt=commas}}

|style="background:#636363; color:white;"| gpos

75
21q

|style="text-align:left"| 22.11

23302485{{val|30200001|fmt=commas}}{{val|34400000|fmt=commas}}

| style="background:white"| gneg

21q

|style="text-align:left"| 22.12

24852610{{val|34400001|fmt=commas}}{{val|36400000|fmt=commas}}

|style="background:#979797"| gpos

50
21q

|style="text-align:left"| 22.13

26102703{{val|36400001|fmt=commas}}{{val|38300000|fmt=commas}}

| style="background:white"| gneg

21q

|style="text-align:left"| 22.2

27032858{{val|38300001|fmt=commas}}{{val|41200000|fmt=commas}}

|style="background:#979797"| gpos

50
21q

|style="text-align:left"| 22.3

28583200{{val|41200001|fmt=commas}}{{val|46709983|fmt=commas}}

| style="background:white"| gneg

{{Clear}}

References

{{Reflist|2}}

  • {{cite journal | vauthors=Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S | title=Chromosome 21 and down syndrome: from genomics to pathophysiology | journal=Nat Rev Genet | year=2004 | pages=725–38 | volume=5 | issue=10 | pmid=15510164 | doi=10.1038/nrg1448| s2cid=5487794 }}
  • {{cite journal | vauthors=Antonarakis SE, Lyle R, Deutsch S, Reymond A | title=Chromosome 21: a small land of fascinating disorders with unknown pathophysiology | journal=Int J Dev Biol | year=2002 | pages=89–96 | volume=46 | issue=1 | pmid=11902692}}
  • {{cite journal | author=Antonarakis SE | title=Chromosome 21: from sequence to applications | journal=Curr Opin Genet Dev | year=2001 | pages=241–6 | volume=11 | issue=3 | pmid=11377958 | doi=10.1016/S0959-437X(00)00185-4}}
  • {{cite journal | author=Gilbert F | title=Disease genes and chromosomes: disease maps of the human genome. Chromosome 21 | journal=Genet Test | year=1997 | pages=301–6 | volume=1 | issue=4 | pmid=10464663 | doi=10.1089/gte.1997.1.301}}
  • {{cite journal | vauthors=Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Groner Y, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Schibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brant P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo ML | title=The DNA sequence of human chromosome 21 | journal=Nature | year=2000 | pages=311–9 | volume=405 | issue=6784 | pmid=10830953 | doi=10.1038/35012518| bibcode=2000Natur.405..311H | doi-access=free }}
  • {{cite journal | vauthors=Sawinska M, Ladon D | title=Mechanism, detection and clinical significance of the reciprocal translocation t(12;21)(p12;q22) in the children suffering from acute lymphoblastic leukaemia | journal=Leuk Res | year=2004 | pages=35–42 | volume=28 | issue=1 | pmid=14630078 | doi=10.1016/S0145-2126(03)00160-7}}
  • {{cite journal | vauthors= Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D | title=APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy | journal=Nature Genetics | year=2005 | pages= 24–6| volume= 38| issue= 1| pmid=16369530 | doi=10.1038/ng1718| s2cid=559054 }}
  • {{cite journal |author=Rauch |first1=Anita |last2=Thiel |first2=Christian T. |last3=Schindler |first3=Detlev |last4=Wick |first4=Ursula |last5=Crow |first5=Yanick J. |last6=Ekici |first6=Arif B. |last7=van Essen |first7=Anthonie J. |last8=Goecke |first8=Timm O. |last9=Al-Gazali |first9=Lihadh |author9-link=Lihadh Al-Gazali |last10=Chrzanowska |first10=Krystyna H. |last11=Zweier |first11=Christiane |last12=Brunner |first12=Han G. |last13=Becker |first13=Kristin |last14=Curry |first14=Cynthia J. |author-link14=Cynthia J. Curry |last15=Dallapiccola |first15=Bruno |author16=Koenraad Devriendt |author17=Arnd Dörfler |author18=Esther Kinning |author19=André Megarbane |author20=Peter Meinecke |author21=Robert K. Semple |author22=Stephanie Spranger |author23=Annick Toutain |author24=Richard C. Trembath |author25=Egbert Voss |author26=Louise Wilson |author27=Raoul Hennekam |author28=Francis de Zegher |author29=Helmut-Günther Dörr |author30=André Reis |title=Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism |journal=Science |year=2008 |pages=816–9 |volume=319 |issue=5864 |doi=10.1126/science.1151174 |pmid=18174396 |bibcode=2008Sci...319..816R |s2cid=23055733 |doi-access=free}}