transistor count

{{Short description|Number of transistors in a device}}

{{Use mdy dates|date=January 2015}}

{{Semiconductor manufacturing processes}}

The transistor count is the number of transistors in an electronic device (typically on a single substrate or silicon die). It is the most common measure of integrated circuit complexity (although the majority of transistors in modern microprocessors are contained in cache memories, which consist mostly of the same memory cell circuits replicated many times). The rate at which MOS transistor counts have increased generally follows Moore's law, which observes that transistor count doubles approximately every two years. However, being directly proportional to the area of a die, transistor count does not represent how advanced the corresponding manufacturing technology is. A better indication of this is transistor density which is the ratio of a semiconductor's transistor count to its die area.

Records

{{As of|2023}}, the highest transistor count in flash memory is Micron's 2{{nbsp}}terabyte (3D-stacked) 16-die, 232-layer V-NAND flash memory chip, with 5.3{{nbsp}}trillion floating-gate MOSFETs (3{{nbsp}}bits per transistor).

The highest transistor count in a single chip processor {{as of|2020|lc=y}} is that of the deep learning processor Wafer Scale Engine 2 by Cerebras. It has 2.6{{nbsp}}trillion MOSFETs in 84 exposed fields (dies) on a wafer, manufactured using TSMC's 7 nm FinFET process.{{Cite web |last=Everett |first=Joseph |date=August 26, 2020 |title=World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors |url=https://www.techreportarticles.com/news/artificial-intelligence/worlds-largest-cpu-chip-has-850000-7nm-cores-optimized-for-ai-most-powerful-processor/ |website=TechReportArticles}}

{{As of|2024}}, the GPU with the highest transistor count is Nvidia's Blackwell-based B100 accelerator, built on TSMC's custom 4NP process node and totaling 208 billion MOSFETs.

The highest transistor count in a consumer microprocessor {{as of|2025|March|lc=y}} is 184{{nbsp}}billion transistors, in Apple's ARM-based dual-die M3 Ultra SoC, which is fabricated using TSMC's 3 nm semiconductor manufacturing process.

class ="wikitable" style="text-align:center"
Year

! Component

! Name

! Number of MOSFETs
(in trillions)

! Remarks

2022

| Flash memory

| Micron's V-NAND module

| 5.3

| style="text-align:left;" | stacked package of sixteen 232-layer 3D NAND dies

2020

| any processor

| Wafer Scale Engine 2

| 2.6

| style="text-align:left;" | wafer-scale design of 84 exposed fields (dies)

2024

| GPU

| Nvidia B100

| 0.208

| style="text-align:left;" | Uses two reticle limit dies, with 104 billion transistors each, joined together and acting as a single large monolithic piece of silicon

2025

| Microprocessor
(consumer)

| Apple M3 Ultra

| 0.184

| style="text-align:left;" | SoC using two dies joined together with a high-speed bridge

2020

| DLP

| Colossus Mk2 GC200

| 0.059

| style="text-align:left;" | An IPU{{clarify|date=November 2024}} in contrast to CPU and GPU

In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count {{as of|2016|lc=y}} was the Chinese-designed Sunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the transistors."{{Cite web |url=https://www.quora.com/How-many-individual-transistors-are-in-the-worlds-most-powerful-supercomputer/answer/John-Gustafson-1 |title=John Gustafson's answer to How many individual transistors are in the world's most powerful supercomputer? |website=Quora |access-date=2019-08-22}} To compare, the smallest computer, {{as of|2018|lc=y}} dwarfed by a grain of rice, had on the order of 100,000 transistors. Early experimental solid-state computers had as few as 130 transistors but used large amounts of diode logic. The first carbon nanotube computer had 178 transistors and was a 1-bit one-instruction set computer, while a later one is 16-bit (its instruction set is 32-bit RISC-V though).

Ionic transistor chips ("water-based" analog limited processor), have up to hundreds of such transistors.{{Cite news |first=Francisco |last=Pires |date=2022-10-05 |title=Water-Based Chips Could be Breakthrough for Neural Networking, AI: Wetware has gained an entirely new meaning |url=https://www.tomshardware.com/news/water-based-chips-could-be-breakthrough-for-neural-networking-ai |access-date=2022-10-05 |website=Tom's Hardware |language=en}}

Estimates of the total numbers of transistors manufactured:

  • Up to 2014: {{Val|2.9E21}}
  • Up to 2018: {{Val|1.3E22}}{{cite web

|url=https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

|first=David

|last=Laws

|title=13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History

|website=Computer History Museum

|date=2018-04-02

}}{{cite web

|first=Jim

|last=Handy

|url=https://www.forbes.com/sites/jimhandy/2014/05/26/how-many-transistors-have-ever-shipped/

|title=How Many Transistors Have Ever Shipped?

|website=Forbes

|date=2014-05-26

}}

Transistor count

File:Moore's Law Transistor Count 1970-2020.png counts for microprocessors against dates of in­tro­duction. The curve shows counts doubling every two years, per Moore's law. ]]

= Microprocessors =

{{See also|Microprocessor chronology|Microcontroller}}

{{More citations needed|1=subsection|date=December 2019|talk=Microprocessors - More citations needed}}

A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit. It is a multi-purpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.

The development of MOS integrated circuit technology in the 1960s led to the development of the first microprocessors.{{cite web |title=1971: Microprocessor Integrates CPU Function onto a Single Chip |url=https://www.computerhistory.org/siliconengine/microprocessor-integrates-cpu-function-onto-a-single-chip/ |website=The Silicon Engine |publisher=Computer History Museum |access-date=4 September 2019}} The 20-bit MP944, developed by Garrett AiResearch for the U.S. Navy's F-14 Tomcat fighter in 1970, is considered by its designer Ray Holt to be the first microprocessor. It was a multi-chip microprocessor, fabricated on six MOS chips. However, it was classified by the Navy until 1998. The 4-bit Intel 4004, released in 1971, was the first single-chip microprocessor.

Modern microprocessors typically include on-chip cache memories. The number of transistors used for these cache memories typically far exceeds the number of transistors used to implement the logic of the microprocessor (that is, excluding the cache). For example, the last DEC Alpha chip uses 90% of its transistors for cache.

class="wikitable sortable" style="text-align:left;"

! width=300px|Processor

! width=130px data-sort-type="number" | Transistor count

! Year

! Designer

! data-sort-type="number" | Process
(nm)

! data-sort-type="number" | Area (mm2)

! data-sort-type="number" | Transistor
density
(tr./mm2)

MP944 (20-bit, 6-chip, 28 chips total)

|74,442 (5,360 excl. ROM & RAM){{Cite book|last=Holt|first=Ray M.|title=The F14A Central Air Data Computer and the LSI Technology State-of-the-Art in 1968|year=1998|pages=8}}{{Cite web|last=Holt|first=Ray M.|date=2013|title=F14 TomCat MOS-LSI Chip Set|url=https://firstmicroprocessor.com/wp-content/uploads/2020/02/2013powerpoint.ppt|url-status=live|archive-url=https://web.archive.org/web/20201106091538/https://firstmicroprocessor.com/wp-content/uploads/2020/02/2013powerpoint.ppt|archive-date=6 November 2020|access-date=6 November 2020|website=First Microprocessor}}

|1970{{cite web|last1=Holt|first1=Ray|title=World's First Microprocessor|url=https://www.firstmicroprocessor.com/|quote=1st fully integrated chip set microprocessor|access-date=5 March 2016}}{{efn|Declassified 1998}}

|Garrett AiResearch

|{{?}}

|{{?}}

|{{?}}

Intel 4004 (4-bit, 16-pin)

|2,250

|1971

|Intel

|10,000 nm

|12 mm2

|188

TMX 1795 (8-bit, 24-pin)

|3,078Ken Shirriff. [https://www.righto.com/2015/05/the-texas-instruments-tmx-1795-first.html "The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor"]. 2015.

|1971

|Texas Instruments

|{{?}}

| 30.64 mm2

|100.5

Intel 8008 (8-bit, 18-pin)

|3,500

|1972

|Intel

|10,000 nm

|14 mm2

|250

NEC μCOM-4 (4-bit, 42-pin)

|2,500{{cite journal |author1=Ryoichi Mori |author2=Hiroaki Tajima |author3=Morihiko Tajima |author4=Yoshikuni Okada |title=Microprocessors in Japan |journal=Euromicro Newsletter |volume=3 |issue=4 |pages=50–7 |date=October 1977 |doi=10.1016/0303-1268(77)90111-0}}{{cite web|title=NEC 751 (uCOM-4) |publisher=The Antique Chip Collector's Page |url=http://www.antiquetech.com/chips/NEC751.htm |access-date=2010-06-11 |url-status=dead |archive-url=https://web.archive.org/web/20110525202756/http://www.antiquetech.com/chips/NEC751.htm |archive-date=2011-05-25 }}

|1973

|NEC

|7,500 nm{{cite web |title=1970s: Development and evolution of microprocessors |url=http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf |website=Semiconductor History Museum of Japan |access-date=27 June 2019 |url-status=dead |archive-url=https://web.archive.org/web/20190627161417/http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf |archive-date=27 June 2019}}

|{{?}}

|{{?}}

Toshiba TLCS-12 (12-bit)

|11,000+{{cite web |title=1973: 12-bit engine-control microprocessor (Toshiba) |url=http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf |website=Semiconductor History Museum of Japan |access-date=27 June 2019 |url-status=dead |archive-url=https://web.archive.org/web/20190627203018/http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf |archive-date=27 June 2019}}

|1973

|Toshiba

|6,000 nm

|32.45 mm2

|340+

Intel 4040 (4-bit, 16-pin)

|3,000

|1974

|Intel

|10,000 nm

|12 mm2

|250

Motorola 6800 (8-bit, 40-pin)

|4,100

|1974

|Motorola

|6,000 nm

|16 mm2

|256

Intel 8080 (8-bit, 40-pin)

|6,000

|1974

|Intel

|6,000 nm

|20 mm2

|300

TMS 1000 (4-bit, 28-pin)

|8,000{{efn|The TMS1000 is a microcontroller, the transistor count includes memory and input/output controllers, not just the CPU.}}

|1974{{Cite web|url=http://www.ti.com/corp/docs/company/history/lowbandwidthtimelinesemiconductor.shtml?keyMatch=TMS-1000&tisearch=Search-EN-Everything |title=Low Bandwidth Timeline{{Snd}} Semiconductor |website=Texas Instruments |access-date=2016-06-22}}

|Texas Instruments

|8,000 nm

|11 mm2

|730

MOS Technology 6502 (8-bit, 40-pin)

|4,528{{efn|3,510 without depletion mode pull-up transistors}}{{Cite web|url=https://research.swtch.com/6502|title= The MOS 6502 and the Best Layout Guy in the World|website=research.swtch.com|date=January 3, 2011|access-date=2019-09-03}}

|1975

|MOS Technology

|8,000 nm

|21 mm2

|216

Intersil IM6100 (12-bit, 40-pin; clone of PDP-8)

|4,000

|1975

|Intersil

|{{?}}

|{{?}}

|{{?}}

CDP 1801 (8-bit, 2-chip, 40-pin)

|5,000

|1975

|RCA

|{{?}}

|{{?}}

|{{?}}

RCA 1802 (8-bit, 40-pin)

|5,000

|1976

|RCA

|5,000 nm

|27 mm2

|185

Zilog Z80 (8-bit, 4-bit ALU, 40-pin)

|8,500{{efn|6,813 without depletion mode pull-up transistors}}

|1976

|Zilog

|4,000 nm

|18 mm2

|470

Intel 8085 (8-bit, 40-pin)

|6,500

|1976

|Intel

|3,000 nm

|20 mm2

|325

TMS9900 (16-bit)

|8,000

|1976

|Texas Instruments

|{{?}}

|{{?}}

|{{?}}

Bellmac-8 (8-bit)

|7,000

|1977

|Bell Labs

|5,000 nm

|{{?}}

|{{?}}

Motorola 6809 (8-bit with some 16-bit features, 40-pin)

|9,000

|1978

|Motorola

|5,000 nm

|21 mm2

|430

Intel 8086 (16-bit, 40-pin)

|29,000{{cite web |first=Ken |last=Shirriff |title=Counting the transistors in the 8086 processor: it's harder than you might think |date=January 2023 |url=https://www.righto.com/2023/01/counting-transistors-in-8086-processor.html}}

|1978

|Intel

|3,000 nm

|33 mm2

|880

Zilog Z8000 (16-bit)

|17,500{{cite web |title=Digital History: ZILOG Z8000 (APRIL 1979) |url=http://www.old-computers.com/history/detail.asp?n=52 |website=OLD-COMPUTERS.COM : The Museum |access-date=19 June 2019}}

|1979

|Zilog

|5,000-6,000 nm (design rules)

|39.31 mm2 (238x256 mil2)

|445

Intel 8088 (16-bit, 8-bit data bus)

|29,000

|1979

|Intel

|3,000 nm

|33 mm2

|880

Motorola 68000 (16/32-bit, 32-bit registers, 16-bit ALU)

|68,000{{cite web |title=Chip Hall of Fame: Motorola MC68000 Microprocessor |url=https://spectrum.ieee.org/chip-hall-of-fame-motorola-mc68000-microprocessor |website=IEEE Spectrum |publisher=Institute of Electrical and Electronics Engineers |access-date=19 June 2019 |date=30 June 2017}}

|1979

|Motorola

|3,500 nm

|44 mm2

|1,550

Intel 8051 (8-bit, 40-pin)

|50,000

|1980

|Intel

|{{?}}

|{{?}}

|{{?}}

WDC 65C02

|11,500[http://icarus.cs.weber.edu/home/dferro/ada/Christiansen_Report_Finished/Finishedmicroprocessors.doc Microprocessors: 1971 to 1976] {{Webarchive|url=https://web.archive.org/web/20131203015458/http://icarus.cs.weber.edu/home/dferro/ada/Christiansen_Report_Finished/Finishedmicroprocessors.doc |date=December 3, 2013 }} Christiansen

|1981

|WDC

|3,000 nm

|6 mm2

|1,920

|ROMP (32-bit)

|45,000

|1981

|IBM

|2,000 nm

|58.52 mm2

|770

Intel 80186 (16-bit, 68-pin)

|55,000

|1982

|Intel

|3,000 nm

|60 mm2

|920

Intel 80286 (16-bit, 68-pin)

|134,000

|1982

|Intel

|1,500 nm

|49 mm2

|2,730

WDC 65C816 (8/16-bit)

|22,000{{cite web |url=http://icarus.cs.weber.edu/home/dferro/ada/Christiansen_Report_Finished/Finishedmicroprocessors.doc |title=Microprocessors 1976 to 1981 |publisher=weber.edu |access-date=2014-08-09 |archive-date=December 3, 2013 |archive-url=https://web.archive.org/web/20131203015458/http://icarus.cs.weber.edu/home/dferro/ada/Christiansen_Report_Finished/Finishedmicroprocessors.doc |url-status=dead }}

|1983

|WDC

|3,000 nm{{Cite web|url=http://www.westerndesigncenter.com/wdc/w65c816s-core.cfm|title=W65C816S 16-bit Core|website=www.westerndesigncenter.com|access-date=2017-09-12}}

|9 mm2

|2,400

NEC V20

|63,000

|1984

|NEC

|{{?}}

|{{?}}

|{{?}}

Motorola 68020 (32-bit; 114 pins used)

|190,000{{cite web|first=Paul |last=Demone |url=http://www.realworldtech.com/arms-race/ |title=ARM's Race to World Domination | publisher=real world technologies|date = 2000-11-09 | access-date=2015-07-20}}

|1984

|Motorola

|2,000 nm

|85 mm2

|2,200

Intel 80386 (32-bit, 132-pin; no cache)

|275,000

|1985

|Intel

|1,500 nm

|104 mm2

|2,640

ARM 1 (32-bit; no cache)

|25,000

|1985

|Acorn

|3,000 nm

|50 mm2

|500

Novix NC4016 (16-bit)

|16,000{{cite web|url=http://soton.mpeforth.com/flag/jfar/vol6/no1/article1.pdf |title=The Harris RTX 2000 Microcontroller |first=Tom |last=Hand |work= mpeforth.com |access-date=2014-08-09}}

|1985{{cite web|url=http://www.ultratechnology.com/chips.htm |title=Forth chips list |publisher=UltraTechnology |date=2001-03-15 |access-date=2014-08-09}}

|Harris Corporation

|3,000 nm{{cite book |first=Philip J. |last=Koopman |chapter-url=https://www.ece.cmu.edu/~koopman/stack_computers/sec4_4.html |title=Stack Computers: the new wave |chapter=4.4 Architecture of the Novix NC4016 |publisher=Carnegie Mellon University |date=1989 |access-date=2014-08-09 |isbn=978-0745804187 |series=Ellis Horwood Series in Computers and Their Applications}}

|{{?}}

|{{?}}

SPARC MB86900 (32-bit; no cache)

|110,000{{cite web |title=Fujitsu SPARC |url=http://www.cpu-collection.de/?tn=0&l0=cl&l1=SPARC&l2=Fujitsu |website=cpu-collection.de |access-date=30 June 2019}}

|1986

|Fujitsu

|1,200 nm

|{{?}}

|{{?}}

NEC V60{{cite journal |vauthors=Kimura S, Komoto Y, Yano Y |title=Implementation of the V60/V70 and its FRM function |journal=IEEE Micro |volume=8 |issue=2 |pages=22–36 |year=1988 |doi=10.1109/40.527 |s2cid=9507994 }} (32-bit; no cache)

|375,000

|1986

|NEC

|1,500 nm

|{{?}}

|{{?}}

ARM 2 (32-bit, 84-pin; no cache)

|27,000{{Cite web|url=https://en.wikichip.org/wiki/vti/vl86cx/vl2333|title=VL2333 - VTI - WikiChip|website=en.wikichip.org|access-date=2019-08-31}}

|1986

|Acorn

|2,000 nm

|30.25 mm2

|890

Z80000 (32-bit; very small cache)

|91,000

|1986

|Zilog

|{{?}}

|{{?}}

|{{?}}

NEC V70 (32-bit; no cache)

|385,000

|1987

|NEC

|1,500 nm

|{{?}}

|{{?}}

Hitachi Gmicro/200{{cite journal |vauthors=Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K |title=Realization of Gmicro/200 |journal=IEEE Micro |volume=8 |issue=2 |pages=12–21 |year=1988 |doi=10.1109/40.526 |s2cid=36938046 }}

|730,000

|1987

|Hitachi

|1,000 nm

|{{?}}

|{{?}}

Motorola 68030 (32-bit, very small caches)

|273,000

|1987

|Motorola

|800 nm

|102 mm2

|2,680

TI Explorer's 32-bit Lisp machine chip

|553,000{{cite journal |author1=Bosshart, P. |author2=Hewes, C. |author3=Mi-Chang Chang |author4=Kwok-Kit Chau |author5=Hoac, C. |author6=Houston, T. |author7=Kalyan, V. |author8=Lusky, S. |author9=Mahant-Shetti, S. |author10=Matzke, D. |author11=Ruparel, K. |author12=Ching-Hao Shaw |author13=Sridhar, T. |author14=Stark, D. |title=A 553K-Transistor LISP Processor Chip |journal=IEEE Journal of Solid-State Circuits |volume=22 |issue=5 |pages=202–3 |date=October 1987 |doi=10.1109/ISSCC.1987.1157084 |s2cid=195841103 }}

|1987

|Texas Instruments

|2,000 nm{{cite book |first=Lennart E. |last=Fahlén |author2=Stockholm International Peace Research Institute |title=Arms and Artificial Intelligence: Weapon and Arms Control Applications of Advanced Computing |chapter=3. Hardware requirements for artificial intelligence § Lisp Machines: TI Explorer |chapter-url=https://books.google.com/books?id=88Mcg5MMPdYC&pg=PA57 |year=1987 |publisher=Oxford University Press |isbn=978-0-19-829122-0 |page=57 |series=SIPRI Monograph Series}}

|{{?}}

|{{?}}

DEC WRL MultiTitan

|180,000

{{cite journal|author-link1=Norman Jouppi |first1=Norman P. |last1=Jouppi |first2=Jeffrey Y. F. |last2=Tang |title=A 20-MIPS Sustained 32-bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance |journal=IEEE Journal of Solid-State Circuits |volume=24 |issue=5 |date=July 1989 |id=WRL Research Report 89/11 |page=i |citeseerx=10.1.1.85.988 |bibcode=1989IJSSC..24.1348J |doi=10.1109/JSSC.1989.572612 }}

|1988

|DEC WRL

|1,500 nm

|61 mm2

|2,950

Intel i960 (32-bit, 33-bit memory subsystem, no cache)

|250,000{{cite web|url=http://www.cpushack.com/chippics/Intel/80960/IntelA80960CA-25-2.html |title=The CPU shack museum |publisher=CPUshack.com |date=2005-05-15 |access-date=2014-08-09}}

|1988

|Intel

|1,500 nm{{cite web |title=Intel i960 Embedded Microprocessor |url=http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html |archive-url=https://web.archive.org/web/20030303223737/http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html |url-status=dead |archive-date=3 March 2003 |website=National High Magnetic Field Laboratory |publisher=Florida State University |access-date=29 June 2019 |date=3 March 2003}}

|{{?}}

|{{?}}

Intel i960CA (32-bit, cache)

|600,000

|1989

|Intel

|800 nm

|143 mm2

|4,200

Intel i860 (32/64-bit, 128-bit SIMD, cache, VLIW)

|1,000,000{{cite book |last1=Venkatasawmy |first1=Rama |title=The Digitization of Cinematic Visual Effects: Hollywood's Coming of Age |date=2013 |publisher=Rowman & Littlefield |isbn=9780739176214 |page=198 |url=https://books.google.com/books?id=tg2ix9VD_-sC&pg=PA198}}

|1989

|Intel

|{{?}}

|{{?}}

{{?}}
Intel 80486 (32-bit, 8 KB cache)

|1,180,235

|1989

|Intel

|1,000 nm

|173 mm2

|6,822

ARM 3 (32-bit, 4 KB cache)

|310,000

|1989

|Acorn

|1,500 nm

|87 mm2

|3,600

POWER1 (9-chip module, 72 kB of cache)

|6,900,000Bakoglu, Grohoski, and Montoye. "The IBM RISC System/6000 processor: Hardware overview." IBM J. Research and Development. Vol. 34 No. 1, January 1990, pp. 12-22.

|1990

|IBM

|1,000 nm

|1,283.61 mm2

|5,375

Motorola 68040 (32-bit, 8 KB caches)

|1,200,000

|1990

|Motorola

|650 nm

|152 mm2

|7,900

R4000 (64-bit, 16 KB of caches)

|1,350,000

|1991

|MIPS

|1,000 nm

|213 mm2

|6,340

ARM 6 (32-bit, no cache for this 60 variant)

|35,000

|1991

|ARM

|800 nm

|{{?}}

|{{?}}

Hitachi SH-1 (32-bit, no cache)

|600,000{{cite web |title=SH Microprocessor Leading the Nomadic Era |url=http://www.shmj.or.jp/makimoto/en/pdf/makimoto_E_02_10.pdf |archive-url=https://web.archive.org/web/20190627070645/http://www.shmj.or.jp/makimoto/en/pdf/makimoto_E_02_10.pdf |url-status=dead |archive-date=June 27, 2019 |website=Semiconductor History Museum of Japan |access-date=27 June 2019 }}

|1992{{cite web |title=SH2: A Low Power RISC Micro for Consumer Applications |url=http://www.hotchips.org/wp-content/uploads/hc_archives/hc06/2_Mon/HC6.S4/HC6.4.2.pdf |publisher=Hitachi |access-date=27 June 2019 |archive-date=May 10, 2019 |archive-url=https://web.archive.org/web/20190510040218/http://www.hotchips.org/wp-content/uploads/hc_archives/hc06/2_Mon/HC6.S4/HC6.4.2.pdf |url-status=dead }}

|Hitachi

|800 nm

|100 mm2

|6,000

Intel i960CF (32-bit, cache)

|900,000

|1992

|Intel

|{{?}}

|125 mm2

|7,200

Alpha 21064 (64-bit, 290-pin; 16 KB of caches)

|1,680,000

|1992

|DEC

|750 nm

|233.52 mm2

|7,190

Hitachi HARP-1 (32-bit, cache)

|2,800,000{{cite web |title=HARP-1: A 120 MHz Superscalar PA-RISC Processor |url=https://www.hotchips.org/wp-content/uploads/hc_archives/hc05/3_Tue/HC05.S8/HC05.8.1-Matsubara-Hitachi-HARP-1.pdf |publisher=Hitachi |access-date=19 June 2019 |archive-date=April 23, 2016 |archive-url=https://web.archive.org/web/20160423084425/http://www.hotchips.org/wp-content/uploads/hc_archives/hc05/3_Tue/HC05.S8/HC05.8.1-Matsubara-Hitachi-HARP-1.pdf |url-status=dead }}

|1993

|Hitachi

|500 nm

|267 mm2

|10,500

Pentium (32-bit, 16 KB of caches)

|3,100,000

|1993

|Intel

|800 nm

|294 mm2

|10,500

POWER2 (8-chip module, 288 kB of cache)

|23,037,000White and Dhawan. "POWER2: next generation of the RISC System/6000 family" IBM J. Research and Development. Vol. 38 No. 5, September 1994, pp. 493-502.

|1993

|IBM

|720 nm

|1,217.39 mm2

|18,923

ARM700 (32-bit; 8 KB cache)

|578,977{{cite web|url=http://www.poppyfields.net/acorn/docs/armdocs/arm7stat.shtml |title=ARM7 Statistics |publisher=Poppyfields.net |date=1994-05-27 |access-date=2014-08-09}}

|1994

|ARM

|700 nm

|68.51 mm2

|8,451

MuP21 (21-bit,{{Cite web|url=http://www.ultratechnology.com/p21.html|title=Forth Multiprocessor Chip MuP21|quote=MuP21 has a 21-bit CPU core, a memory coprocessor, and a video coprocessor|website=www.ultratechnology.com|access-date=2019-09-06}} 40-pin; includes video)

|7,000

|1994

|Offete Enterprises

|1,200 nm

|{{?}}

|{{?}}

Motorola 68060 (32-bit, 16 KB of caches)

|2,500,000

|1994

|Motorola

|600 nm

|218 mm2

|11,500

PowerPC 601 (32-bit, 32 KB of caches)

|2,800,000{{Cite web|title=Ars Technica: PowerPC on Apple: An Architectural History, Part I - Page 2 - (8/2004)|url=https://archive.arstechnica.com/cpu/004/ppc-1/m-ppc-1-2.html|access-date=2020-08-11|website=archive.arstechnica.com}}

|1994

|Apple, IBM, Motorola

|600 nm

|121 mm2

|23,000

PowerPC 603 (32-bit, 16 KB of caches)

|1,600,000Gary et al. (1994). "The PowerPC 603 microprocessor: a low-power design for portable applications." Proceedings of COMPCON 94. DOI: 10.1109/CMPCON.1994.282894

|1994

|Apple, IBM, Motorola

|500 nm

|84.76 mm2

|18,900

PowerPC 603e (32-bit, 32 KB of caches)

|2,600,000Slaton et al. (1995). "The PowerPC 603e microprocessor: an enhanced, low-power, superscalar microprocessor." Proceedings of ICCD '95 International Conference on Computer Design. DOI: 10.1109/ICCD.1995.528810

|1995

|Apple, IBM, Motorola

|500 nm

|98 mm2

|26,500

Alpha 21164 EV5 (64-bit, 112 kB cache)

|9,300,000Bowhill, William J. et al. (1995). "Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU". Digital Technical Journal, Volume 7, Number 1, pp. 100–118.

|1995

|DEC

|500 nm

|298.65 mm2

|31,140

SA-110 (32-bit, 32 KB of caches)

|2,500,000

|1995

|Acorn, DEC, Apple

|350 nm

|50 mm2

|50,000

Pentium Pro (32-bit, 16 KB of caches;{{Cite web |url=http://hw-museum.cz/cpu/7/intel-pentium-pro-180 |title=Intel Pentium Pro 180 |website=hw-museum.cz |date=February 20, 2015 |access-date=2019-09-08}} L2 cache on-package, but on separate die)

|5,500,000{{cite web|url=http://www.pcguide.com/ref/cpu/fam/g6PPro-c.html |archive-url=https://web.archive.org/web/20010414032941/http://www.pcguide.com/ref/cpu/fam/g6PPro-c.html |url-status=dead |archive-date=2001-04-14 |title=PC Guide Intel Pentium Pro ("P6") |publisher=PCGuide.com |date=2001-04-17 |access-date=2014-08-09}}

|1995

|Intel

|500 nm

|307 mm2

|18,000

PA-8000 64-bit, no cache

|3,800,000Gaddis, N.; Lotz, J. (November 1996). "A 64-b quad-issue CMOS RISC microprocessor". IEEE Journal of Solid-State Circuits 31 (11): pp. 1697–1702.

|1995

|HP

|500 nm

|337.69 mm2

|11,300

Alpha 21164A EV56 (64-bit, 112 kB cache)

|9,660,000Bouchard, Gregg. [https://web.archive.org/web/20110723210647/http://www.hotchips.org/archives/hc8/2_Mon/HC8.S1/HC8.1.2.pdf "Design objectives of the 0.35 μm Alpha 21164 Microprocessor"]. IEEE Hot Chips Symposium, August 1996, IEEE Computer Society.

|1996

|DEC

|350 nm

|208.8 mm2

|46,260

AMD K5 (32-bit, caches)

|4,300,000

|1996

|AMD

|500 nm

|251 mm2

|17,000

Pentium II Klamath (32-bit, 64-bit SIMD, caches)

|7,500,000

|1997

|Intel

|350 nm

|195 mm2

|39,000

AMD K6 (32-bit, caches)

|8,800,000

|1997

|AMD

|350 nm

|162 mm2

|54,000

F21 (21-bit; includes e.g. video)

|15,000

|1997{{Cite web|url=http://www.ultratechnology.com/f21cpu.html|title=F21 CPU|quote=F21 offers video I/O, analog I/O, serial network I/O, and a parallel I/O port on chip. F21 has a transistor count of about 15,000 vs about 7,000 for MuP21.|website=www.ultratechnology.com|access-date=2019-09-06}}

|Offete Enterprises

|{{?}}

|{{?}}

|{{?}}

AVR (8-bit, 40-pin; w/memory)

|140,000 (48,000
excl. memory{{Cite web|url=https://www.embeddedrelated.com/showthread/comp.arch.embedded/14362-1.php|title=Transistor count of common uCs?|author=Ulf Samuelsson|website=www.embeddedrelated.com|quote=IIRC, The AVR core is 12,000 gates, and the megaAVR core is 20,000 gates. Each gate is 4 transistors. The chip is considerably larger since the memory uses quite a lot.|access-date=2019-09-08}})

|1997

|Nordic VLSI/Atmel

|{{?}}

|{{?}}

|{{?}}

Pentium II Deschutes (32-bit, large cache)

|7,500,000

|1998

|Intel

|250 nm

|113 mm2

|66,000

Alpha 21264 EV6 (64-bit)

|15,200,000Gronowski, Paul E. et al. (May 1998). "High-performance microprocessor design". IEEE Journal of Solid-State Circuits 33 (5): pp. 676–686.

|1998

|DEC

|350 nm

|313.96 mm2

|48,400

Alpha 21164PC PCA57 (64-bit, 48 kB cache)

|5,700,000

|1998

|Samsung

|280 nm

|100.5 mm2

|56,700

Hitachi SH-4 (32-bit, caches)

{{cite journal

|last1=Nakagawa

|first1=Norio

|last2=Arakawa

|first2=Fumio

|date=April 1999

|title=Entertainment Systems and High-Performance Processor SH-4

|url=https://www.hitachi.com/rev/1999/revapr99/r2_103.pdf

|journal=Hitachi Review

|volume=48

|issue=2

|pages=58–63

|access-date=2023-03-18

}}

|3,200,000{{cite book |date=1998 |pages=18.1-1 - 18.1-11 |publisher=IEEE |doi=10.1109/ISSCC.1998.672469 |chapter-url=https://ieeexplore.ieee.org/document/672469 |access-date=17 March 2023|last1=Nishii |first1=O. |last2=Arakawa |first2=F. |last3=Ishibashi |first3=K. |last4=Nakano |first4=S. |last5=Shimura |first5=T. |last6=Suzuki |first6=K. |last7=Tachibana |first7=M. |last8=Totsuka |first8=Y. |last9=Tsunoda |first9=T. |last10=Uchiyama |first10=K. |last11=Yamada |first11=T. |last12=Hattori |first12=T. |last13=Maejima |first13=H. |last14=Nakagawa |first14=N. |last15=Narita |first15=S. |last16=Seki |first16=M. |last17=Shimazaki |first17=Y. |last18=Satomura |first18=R. |last19=Takasuga |first19=T. |last20=Hasegawa |first20=A. |title=1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No. 98CH36156) |chapter=A 200 MHZ 1.2 W 1.4 GFLOPS microprocessor with graphic operation unit |isbn=0-7803-4344-1 |s2cid=45392734 }}

|1998

|Hitachi

|250 nm

|57.76 mm2

|55,400

ARM 9TDMI (32-bit, no cache)

|111,000

|1999

|Acorn

|350 nm

|4.8 mm2

|23,100

Pentium III Katmai (32-bit, 128-bit SIMD, caches)

|9,500,000

|1999

|Intel

|250 nm

|128 mm2

|74,000

Emotion Engine (64-bit, 128-bit SIMD, cache)

|10,500,000
– 13,500,000{{cite book|last1=Hennessy|first1=John L. |author-link1=John L. Hennessy |last2=Patterson|first2=David A. |author-link2=David Patterson (scientist)|title=Computer Architecture: A Quantitative Approach|page=491|url=https://books.google.com/books?id=XX69oNsazH4C&pg=PA491|access-date=9 April 2013|edition=3|date=29 May 2002|publisher=Morgan Kaufmann|isbn=978-0-08-050252-6}}

|1999

|Sony, Toshiba

|250 nm

|239.7 mm2{{cite journal |last1=Diefendorff |first1=Keith |title=Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000 |journal=Microprocessor Report |date=April 19, 1999 |volume=13 |issue=5 |s2cid=29649747 |url=http://pdfs.semanticscholar.org/9248/eea6c98e5a7fc45606d9d562a0e74707ce43.pdf |archive-url=https://web.archive.org/web/20190228125309/http://pdfs.semanticscholar.org/9248/eea6c98e5a7fc45606d9d562a0e74707ce43.pdf |url-status=dead |archive-date=February 28, 2019 |access-date=19 June 2019}}

|43,800 – 56,300

Pentium II Mobile Dixon (32-bit, caches)

|27,400,000

|1999

|Intel

|180 nm

|180 mm2

|152,000

AMD K6-III (32-bit, caches)

|21,300,000

|1999

|AMD

|250 nm

|118 mm2

|181,000

AMD K7 (32-bit, caches)

|22,000,000

|1999

|AMD

|250 nm

|184 mm2

|120,000

Gekko (32-bit, large cache)

|21,000,000{{cite web |title=NVIDIA GeForce 7800 GTX GPU Review |url=https://pcper.com/2005/06/nvidia-geforce-7800-gtx-gpu-review/ |website=PC Perspective |access-date=18 June 2019 |date=22 June 2005}}

|2000

|IBM, Nintendo

|180 nm

|43 mm2

|490,000 (check)

Pentium III Coppermine (32-bit, large cache)

|21,000,000

|2000

|Intel

|180 nm

|80 mm2

|263,000

Pentium 4 Willamette (32-bit, large cache)

|42,000,000

|2000

|Intel

|180 nm

|217 mm2

|194,000

SPARC64 V (64-bit, large cache)

|191,000,000{{cite conference| last1 = Ando| first1 = H.| last2 = Yoshida| first2 = Y.| last3 = Inoue| first3 = A.| last4 = Sugiyama| first4 = I.| last5 = Asakawa| first5 = T.| last6 = Morita| first6 = K.| last7 = Muta| first7 = T.| last8 = Otokurumada| first8 = T.| last9 = Okada| first9 = S.| last10 = Yamashita| first10 = H.| last11 = Satsukawa| first11 = Y.| last12 = Konmoto| first12 = A.| last13 = Yamashita| first13 = R.| last14 = Sugiyama| first14 = H.| date = 2003| title = Proceedings of the 40th Annual Design Automation Conference| chapter = A 1.3GHz fifth generation SPARC64 microprocessor| conference = Design Automation Conference| pages = 702–705| doi = 10.1145/775832.776010| isbn = 1-58113-688-9}}

|2001

|Fujitsu

|130 nmKrewell, Kevin (21 October 2002). [http://www.eecg.toronto.edu/~moshovos/ACA07/lecturenotes/ultrasparc5%2520(mpr).pdf "Fujitsu's SPARC64 V Is Real Deal".] Microprocessor Report.

|290 mm2

|659,000

Pentium III Tualatin (32-bit, large cache)

|45,000,000

|2001

|Intel

|130 nm

|81 mm2

|556,000

Pentium 4 Northwood (32-bit, large cache)

|55,000,000

|2002

|Intel

|130 nm

|145 mm2

|379,000

Itanium 2 McKinley (64-bit, large cache)

|220,000,000

|2002

|Intel

|180 nm

|421 mm2

|523,000

Alpha 21364 (64-bit, 946-pin, SIMD, very large caches)

|152,000,000{{Cite web|url=https://en.wikichip.org/wiki/compaq/microarchitectures/alpha_21364|title=Alpha 21364 - Microarchitectures - Compaq - WikiChip|website=en.wikichip.org|access-date=2019-09-08}}

|2003

|DEC

|180 nm

|397 mm2

|383,000

AMD K7 Barton (32-bit, large cache)

|54,300,000

|2003

|AMD

|130 nm

|101 mm2

|538,000

AMD K8 (64-bit, large cache)

|105,900,000

|2003

|AMD

|130 nm

|193 mm2

|548,700

Pentium M Banias (32-bit)

|77,000,000{{cite web | url=https://ark.intel.com/content/www/us/en/ark/products/27577/intel-pentium-m-processor-1-60-ghz-1m-cache-400-mhz-fsb.html | title=Intel Pentium M Processor 1.60 GHZ, 1M Cache, 400 MHZ FSB Product Specifications }}

|2003

|Intel

|130 nm

|83 mm2

|928,000

Itanium 2 Madison 6M (64-bit)

|410,000,000

|2003

|Intel

|130 nm

|374 mm2

|1,096,000

PlayStation 2 single chip (CPU + GPU)

|53,500,000

{{cite web

|url=https://playstationdev.wiki/ps2devwiki/EE%2BGS

|title=EE+GS

|website=PS2 Dev Wiki

}}

|2003

{{cite press release

|date=2003-11-27

|title=Sony MARKETING (JAPAN) ANNOUNCES LAUNCH OF "PSX" DESR-5000 and DESR-7000 TOWARDS THE END OF 2003

|url=https://www.sony.com/en/SonyInfo/News/Press_Archive/200310/03-1007E/

|publisher=Sony

}}

|Sony, Toshiba

|90 nm

{{cite news

|title=EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP

|url=https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf

|access-date=19 March 2023

|publisher=Sony

|date=April 21, 2003

}}
130 nm

{{cite web

|url=https://www.theregister.com/2004/01/30/sony_psxs_90nm_cpu/

|title=Sony PSX's 90nm CPU is 'not 90nm'

|website=The Register

|date=2004-01-30

}}

{{cite web

|url=https://www.eetimes.com/semi-insights-stands-by-not-90-nm-description-of-psx-chip/

|title=Semi Insights stands by 'not 90-nm' description of PSX chip

|website=EE Times

|date=2004-02-05

}}

|86 mm2

|622,100

Pentium 4 Prescott (32-bit, large cache)

|112,000,000

|2004

|Intel

|90 nm

|110 mm2

|1,018,000

Pentium M Dothan (32-bit)

|144,000,000{{cite web | url=https://ark.intel.com/content/www/us/en/ark/products/27595/intel-pentium-m-processor-760-2m-cache-2-00a-ghz-533-mhz-fsb.html | title=Intel Pentium M Processor 760 (2M Cache, 2.00A GHZ, 533 MHZ FSB) Product Specifications }}

|2004

|Intel

|90 nm

|87 mm2

|1,655,000

SPARC64 V+ (64-bit, large cache)

|400,000,000Fujitsu Limited (August 2004). SPARC64 V Processor For UNIX Server.

|2004

|Fujitsu

|90 nm

|294 mm2

|1,360,000

Itanium 2 (64-bit;9 MB cache)

|592,000,000

|2004

|Intel

|130 nm

|432 mm2

|1,370,000

Pentium 4 Prescott-2M (32-bit, large cache)

|169,000,000

|2005

|Intel

|90 nm

|143 mm2

|1,182,000

Pentium D Smithfield (64-bit, large cache)

|228,000,000

|2005

|Intel

|90 nm

|206 mm2

|1,107,000

Xenon (64-bit, 128-bit SIMD, large cache)

|165,000,000

|2005

|IBM

|90 nm

|{{?}}

|{{?}}

Cell (32-bit, cache)

|250,000,000{{cite web |title=A Glimpse Inside The Cell Processor |url=https://www.gamedeveloper.com/programming/a-glimpse-inside-the-cell-processor |website=Gamasutra |access-date=19 June 2019 |date=July 13, 2006}}

|2005

|Sony, IBM, Toshiba

|90 nm

|221 mm2

|1,131,000

Pentium 4 Cedar Mill (32-bit, large cache)

|184,000,000

|2006

|Intel

|65 nm

|90 mm2

|2,044,000

Pentium D Presler (64-bit, large cache)

|362,000,000 {{cite web|url=https://ark.intel.com/content/www/us/en/ark/products/42114/intel-pentium-d-processor-920-4m-cache-2-8-ghz-800-mhz-fsb.html |title=Intel Pentium D Processor 920 |publisher=Intel |access-date=2023-01-05}}

|2006

|Intel

|65 nm

|162 mm2

|2,235,000

Core 2 Duo Conroe (dual-core 64-bit, large caches)

|291,000,000

|2006

|Intel

|65 nm

|143 mm2

|2,035,000

Dual-core Itanium 2 (64-bit, SIMD, large caches)

|1,700,000,000{{cite web|url=http://www.intel.com/pressroom/kits/itanium2/ |title=PRESS KIT — Dual-core Intel Itanium Processor |publisher=Intel |access-date=2014-08-09}}

|2006

|Intel

|90 nm

|596 mm2

|2,852,000

AMD K10 quad-core 2M L3 (64-bit, large caches)

|463,000,000{{cite web|first=Bert |last=Toepelt |url=http://www.tomshardware.com/reviews/phenom-ii-940,2114.html |title=AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform |publisher=TomsHardware.com |date=2009-01-08 |access-date=2014-08-09}}

|2007

|AMD

|65 nm

|283 mm2

|1,636,000

ARM Cortex-A9 (32-bit, (optional) SIMD, caches)

|26,000,000{{cite web|url=http://www.engineersgarage.com/articles/arm-advanced-risc-machines-processors |title=ARM (Advanced RISC Machines) Processors |publisher=EngineersGarage.com |access-date=2014-08-09}}

|2007

|ARM

|45 nm

|31 mm2

|839,000

Core 2 Duo Wolfdale (dual-core 64-bit, SIMD, caches)

|411,000,000

|2007

|Intel

|45 nm

|107 mm2

|3,841,000

POWER6 (64-bit, large caches)

|789,000,000

|2007

|IBM

|65 nm

|341 mm2

|2,314,000

Core 2 Duo Allendale (dual-core 64-bit, SIMD, large caches)

|169,000,000

|2007

|Intel

|65 nm

|111 mm2

|1,523,000

Uniphier

|250,000,000{{cite news |title=Panasonic starts to sell a New-generation UniPhier System LSI |url=http://panasonic.co.jp/corp/news/official.data/data.dir/en071010-3/en071010-3.html |access-date=2 July 2019 |publisher=Panasonic |date=October 10, 2007}}

|2007

|Matsushita

|45 nm

|{{?}}

|{{?}}

SPARC64 VI (64-bit, SIMD, large caches)

|540,000,000

|2007[http://www.fujitsu.com/downloads/SPARCE/others/sparc64vi-extensions.pdf "SPARC64 VI Extensions"] page 56, Fujitsu Limited, Release 1.3, 27 March 2007

|Fujitsu

|90 nm

|421 mm2

|1,283,000

Core 2 Duo Wolfdale 3M (dual-core 64-bit, SIMD, large caches)

|230,000,000

|2008

|Intel

|45 nm

|83 mm2

|2,771,000

Core i7 (quad-core 64-bit, SIMD, large caches)

|731,000,000

|2008

|Intel

|45 nm

|263 mm2

|2,779,000

AMD K10 quad-core 6M L3 (64-bit, SIMD, large caches)

|758,000,000

|2008

|AMD

|45 nm

|258 mm2

|2,938,000

Atom (32-bit, large cache)

|47,000,000

|2008

|Intel

|45 nm

|24 mm2

|1,958,000

SPARC64 VII (64-bit, SIMD, large caches)

|600,000,000

|2008Morgan, Timothy Prickett (17 July 2008). [https://web.archive.org/web/20081120140153/http://www.itjungle.com/tug/tug071708-story01.html "Fujitsu and Sun Flex Their Quads with New Sparc Server Lineup"]. The Unix Guardian, Vol. 8, No. 27.

|Fujitsu

|65 nm

|445 mm2

|1,348,000

Six-core Xeon 7400 (64-bit, SIMD, large caches)

|1,900,000,000

|2008

|Intel

|45 nm

|503 mm2

|3,777,000

Six-core Opteron 2400 (64-bit, SIMD, large caches)

|904,000,000

|2009

|AMD

|45 nm

|346 mm2

|2,613,000

SPARC64 VIIIfx (64-bit, SIMD, large caches)

|760,000,000{{Cite conference|author=Takumi Maruyama|year=2009|title=SPARC64 VIIIfx: Fujitsu's New Generation Octo Core Processor for PETA Scale computing|conference=Proceedings of Hot Chips 21|url=http://www.hotchips.org/archives/hc21/3_tues/HC21.25.500.ComputingAccelerators-Epub/HC21.25.51A.Maruyama-Fujitsu-Octo-Core-VIIIfx.pdf|publisher=IEEE Computer Society|archive-url=https://web.archive.org/web/20101008183810/http://www.hotchips.org/archives/hc21/3_tues/HC21.25.500.ComputingAccelerators-Epub/HC21.25.51A.Maruyama-Fujitsu-Octo-Core-VIIIfx.pdf|archive-date=2010-10-08|access-date=30 June 2019}}

|2009

|Fujitsu

|45 nm

|513 mm2

|1,481,000

Atom (Pineview) 64-bit, 1-core, 512 kB L2 cache

|123,000,000{{cite web

|url=https://ark.intel.com/content/www/us/en/ark/products/42503/intel-atom-processor-n450-512k-cache-1-66-ghz.html

|title=Intel Atom N450 specifications

|website=Intel

|access-date=2023-06-08

}}

|2010

|Intel

|45 nm

|66 mm2

|1,864,000

Atom (Pineview) 64-bit, 2-core, 1 MB L2 cache

|176,000,000{{cite web

|url=https://ark.intel.com/content/www/us/en/ark/products/43098/intel-atom-processor-d510-1m-cache-1-66-ghz.html

|title=Intel Atom D510 specifications

|website=Intel

|access-date=2023-06-08

}}

|2010

|Intel

|45 nm

|87 mm2

|2,023,000

SPARC T3 (16-core 64-bit, SIMD, large caches)

|1,000,000,000{{cite web|last=Stokes |first=Jon |url=https://arstechnica.com/business/news/2010/02/two-billion-transistor-beasts-power7-and-niagara-3.ars |title=Sun's 1 billion-transistor, 16-core Niagara 3 processor |publisher=ArsTechnica.com |date=2010-02-10 |access-date=2014-08-09}}

|2010

|Sun/Oracle

|40 nm

|377 mm2

|2,653,000

Six-core Core i7 (Gulftown)

|1,170,000,000

|2010

|Intel

|32 nm

|240 mm2

|4,875,000

POWER7 32M L3 (8-core 64-bit, SIMD, large caches)

|1,200,000,000

|2010

|IBM

|45 nm

|567 mm2

|2,116,000

Quad-core z196{{cite web|url=http://www-03.ibm.com/press/us/en/pressrelease/32414.wss#release |archive-url=https://web.archive.org/web/20100905053649/http://www-03.ibm.com/press/us/en/pressrelease/32414.wss#release |url-status=dead |archive-date=September 5, 2010 |title=IBM to Ship World's Fastest Microprocessor |publisher=IBM|date=2010-09-01 |access-date=2014-08-09}} (64-bit, very large caches)

|1,400,000,000

|2010

|IBM

|45 nm

|512 mm2

|2,734,000

Quad-core Itanium Tukwila (64-bit, SIMD, large caches)

|2,000,000,000{{cite web|url=http://afp.google.com/article/ALeqM5ipelkeZwHqz3cqmha_jD7gNhB98A|title=Intel to deliver first computer chip with two billion transistors|url-status=dead|archive-url=https://web.archive.org/web/20110520120639/http://afp.google.com/article/ALeqM5ipelkeZwHqz3cqmha_jD7gNhB98A |archive-date=May 20, 2011 |agency=AFP |date=February 5, 2008 |access-date=February 5, 2008}}

|2010

|Intel

|65 nm

|699 mm2

|2,861,000

Xeon Nehalem-EX (8-core 64-bit, SIMD, large caches)

|2,300,000,000"[http://www.intel.com/pressroom/archive/releases/20090526comp.htm Intel Previews Intel Xeon 'Nehalem-EX' Processor]." May 26, 2009. Retrieved on May 28, 2009.

|2010

|Intel

|45 nm

|684 mm2

|3,363,000

SPARC64 IXfx (64-bit, SIMD, large caches)

|1,870,000,000{{citation| url = https://www.theregister.co.uk/2011/11/21/fujitsu_sparc64_ixfx_fx10_details| title = Fujitsu parades 16-core Sparc64 super stunner| first = Timothy Prickett| last = Morgan| date = November 21, 2011| work = The Register| access-date = December 8, 2011}}

|2011

|Fujitsu

|40 nm

|484 mm2

|3,864,000

Quad-core + GPU Core i7 (64-bit, SIMD, large caches)

|1,160,000,000

|2011

|Intel

|32 nm

|216 mm2

|5,370,000

Six-core Core i7/8-core Xeon E5
(Sandy Bridge-E/EP) (64-bit, SIMD, large caches)

|2,270,000,000{{cite web|first=Chris |last=Angelini |url=http://www.tomshardware.com/reviews/core-i7-3960x-x79-sandy-bridge-e,3071.html |title=Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express |publisher=TomsHardware.com |date=2011-11-14 |access-date=2014-08-09}}

|2011

|Intel

|32 nm

|434 mm2

|5,230,000

Xeon Westmere-EX (10-core 64-bit, SIMD, large caches)

|2,600,000,000

|2011

|Intel

|32 nm

|512 mm2

|5,078,000

Atom "Medfield" (64-bit)

|432,000,000{{Cite web|url=https://www.intel.com/content/dam/www/public/us/en/documents/presentation/silicon-technology-leadership-presentation.pdf|title=IDF2012 Mark Bohr, Intel Senior Fellow}}

|2012

|Intel

|32 nm

|64 mm2

|6,750,000

SPARC64 X (64-bit, SIMD, caches)

|2,990,000,000{{cite web|url=https://www.fujitsu.com/global/Images/HC25.27.910-SPARC64.pdf|title=Images of SPARC64|publisher=fujitsu.com|access-date=August 29, 2017}}

|2012

|Fujitsu

|28 nm

|600 mm2

|4,983,000

AMD Bulldozer (8-core 64-bit, SIMD, caches)

|1,200,000,000{{cite web

| url=http://www.anandtech.com/showdoc.aspx?i=3276&p=9

| title=Intel's Atom Architecture: The Journey Begins

| publisher=AnandTech

| access-date=April 4, 2010

}}

|2012

|AMD

|32 nm

|315 mm2

|3,810,000

Quad-core + GPU AMD Trinity (64-bit, SIMD, caches)

|1,303,000,000

|2012

|AMD

|32 nm

|246 mm2

|5,297,000

Quad-core + GPU Core i7 Ivy Bridge (64-bit, SIMD, caches)

|1,400,000,000

|2012

|Intel

|22 nm

|160 mm2

|8,750,000

POWER7+ (8-core 64-bit, SIMD, 80 MB L3 cache)

|2,100,000,000

|2012

|IBM

|32 nm

|567 mm2

|3,704,000

Six-core zEC12 (64-bit, SIMD, large caches)

|2,750,000,000

|2012

|IBM

|32 nm

|597 mm2

|4,606,000

Itanium Poulson (8-core 64-bit, SIMD, caches)

|3,100,000,000

|2012

|Intel

|32 nm

|544 mm2

|5,699,000

Xeon Phi (61-core 32-bit, 512-bit SIMD, caches)

|5,000,000,000{{cite web|url=http://www.techpowerup.com/gpudb/1891/xeon-phi-se10x.html |title=Intel Xeon Phi SE10X |publisher=TechPowerUp |access-date = 2015-07-20}}

|2012

|Intel

|22 nm

|720 mm2

|6,944,000

Apple A7 (dual-core 64/32-bit ARM64, "mobile SoC", SIMD, caches)

|1,000,000,000

|2013

|Apple

|28 nm

|102 mm2

|9,804,000

Six-core Core i7 Ivy Bridge E (64-bit, SIMD, caches)

|1,860,000,000

|2013

|Intel

|22 nm

|256 mm2

|7,266,000

POWER8 (12-core 64-bit, SIMD, caches)

|4,200,000,000

|2013

|IBM

|22 nm

|650 mm2

|6,462,000

Xbox One main SoC (64-bit, SIMD, caches)

|5,000,000,000

|2013

|Microsoft, AMD

|28 nm

|363 mm2

|13,770,000

Quad-core + GPU Core i7 Haswell (64-bit, SIMD, caches)

|1,400,000,000{{cite web|last1=Shimpi|first1=Lal|title=The Haswell Review: Intel Core i7-4770K & i5-4670K Tested|url=http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested/5|website=anandtech|access-date=20 November 2014}}

|2014

|Intel

|22 nm

|177 mm2

|7,910,000

Apple A8 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|2,000,000,000

|2014

|Apple

|20 nm

|89 mm2

|22,470,000

Core i7 Haswell-E (8-core 64-bit, SIMD, caches)

|2,600,000,000"{{cite web|url=http://www.overclockersclub.com/reviews/iintel_core_i7_5960x_extreme_edition/|title=Intel Core i7 5960X Extreme Edition Review|website=Overclockers Club|first=Frank|last=Dimmick|date=August 29, 2014|access-date=August 29, 2014}}

|2014

|Intel

|22 nm

|355 mm2

|7,324,000

Apple A8X (tri-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|3,000,000,000{{cite web |url=http://www.notebookcheck.net/Apple-A8X-iPad-SoC.128403.0.html|title=Apple A8X |access-date=2015-07-20 |website=NotebookCheck}}

|2014

|Apple

|20 nm

|128 mm2

|23,440,000

Xeon Ivy Bridge-EX (15-core 64-bit, SIMD, caches)

|4,310,000,000{{cite web|url=http://www.anandtech.com/show/7753/intel-readying-15core-xeon-e7-v2 |title=Intel Readying 15-core Xeon E7 v2 |publisher=AnandTech |access-date=2014-08-09}}

|2014

|Intel

|22 nm

|541 mm2

|7,967,000

Xeon Haswell-E5 (18-core 64-bit, SIMD, caches)

|5,560,000,000{{cite web|title=Intel Xeon E5-2600 v3 Processor Overview: Haswell-EP Up to 18 Cores|url=http://www.pcper.com/reviews/Processors/Intel-Xeon-E5-2600-v3-Processor-Overview-Haswell-EP-18-Cores/5|website=pcper|date=September 8, 2014|access-date=29 January 2015}}

|2014

|Intel

|22 nm

|661 mm2

|8,411,000

Quad-core + GPU GT2 Core i7 Skylake K (64-bit, SIMD, caches)

|1,750,000,000

|2015

|Intel

|14 nm

|122 mm2

|14,340,000

Dual-core + GPU Iris Core i7 Broadwell-U (64-bit, SIMD, caches)

|1,900,000,000{{cite web |title=Intel's Broadwell-U arrives aboard 15W, 28W mobile processors |date=January 5, 2015|url=http://techreport.com/news/27557/intel-broadwell-u-arrives-aboard-15w-28w-mobile-processors|access-date=5 January 2015 |publisher=TechReport}}

|2015

|Intel

|14 nm

|133 mm2

|14,290,000

rowspan="2" | Apple A9 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|rowspan="2" | 2,000,000,000+

|rowspan="2" | 2015

|rowspan="2" | Apple

|14 nm
(Samsung)

|96 mm2
(Samsung)

|20,800,000+

16 nm
(TSMC)

|104.5 mm2
(TSMC)

|19,100,000+

Apple A9X (dual core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|3,000,000,000+

|2015

|Apple

|16 nm

|143.9 mm2

|20,800,000+

IBM z13 (64-bit, caches)

|3,990,000,000

|2015

|IBM

|22 nm

|678 mm2

|5,885,000

IBM z13 Storage Controller

|7,100,000,000

|2015

|IBM

|22 nm

|678 mm2

|10,472,000

SPARC M7 (32-core 64-bit, SIMD, caches)

|10,000,000,000{{Cite web|url=http://www.enterprisetech.com/2014/08/13/oracle-cranks-cores-32-sparc-m7-chip/|title=Oracle Cranks up the Cores to 32 with Sparc M7 Chip|work=EnterpriseTech |date=August 13, 2014}}

|2015

|Oracle

|20 nm

|{{?}}

|{{?}}

Core i7 Broadwell-E (10-core 64-bit, SIMD, caches)

|3,200,000,000{{Cite web|url=http://www.tomshardware.com/reviews/intel-core-i7-broadwell-e-6950x-6900k-6850k-6800k,4587.html|title=Broadwell-E: Intel Core i7-6950X, 6900K, 6850K & 6800K Review|date=2016-05-30|website=Tom's Hardware|access-date=2017-04-12}}

|2016

|Intel

|14 nm

|246 mm2{{Cite magazine|url=http://www.pcgamer.com/the-broadwell-e-review/|title=The Broadwell-E Review|date=2016-07-08|magazine=PC Gamer|access-date=2017-04-12}}

|13,010,000

Apple A10 Fusion (quad-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|3,300,000,000

|2016

|Apple

|16 nm

|125 mm2

|26,400,000

|HiSilicon Kirin 960 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|4,000,000,000{{cite web|url=https://www.firstpost.com/tech/news-analysis/huawei-to-unveil-kirin-970-soc-with-ai-unit-5-5-billion-transistors-and-1-2-gbps-lte-speed-at-ifa-2017-3996027.html|title=HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT, 5.5 BILLION TRANSISTORS AND 1.2 GBPS LTE SPEED AT IFA 2017|date=2017-09-01|website=firstpost.com|access-date=2018-11-18}}

|2016

|Huawei

|16 nm

|110.00 mm2

|36,360,000

Xeon Broadwell-E5 (22-core 64-bit, SIMD, caches)

|7,200,000,000{{Cite web|url=http://www.tomshardware.com/reviews/intel-xeon-e5-2600-v4-broadwell-ep,4514-2.html|title=Broadwell-EP Architecture - Intel Xeon E5-2600 v4 Broadwell-EP Review|date=2016-03-31|website=Tom's Hardware|access-date=2016-04-04}}

|2016

|Intel

|14 nm

|456 mm2

|15,790,000

Xeon Phi (72-core 64-bit, 512-bit SIMD, caches)

|8,000,000,000

|2016

|Intel

|14 nm

|683 mm2

|11,710,000

Zip CPU (32-bit, for FPGAs)

|1,286 6-LUTs{{Cite web|url=http://zipcpu.com/about/zipcpu.html|title=About the ZipCPU|website=zipcpu.com|quote=As of ORCONF, 2016, the ZipCPU used between 1286 and 4926 6-LUTs, depending upon how it is configured. |access-date=2019-09-10}}

|2016

|Gisselquist Technology

|{{?}}

|{{?}}

|{{?}}

Qualcomm Snapdragon 835 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|3,000,000,000{{cite web |url=https://www.notebookcheck.net/Qualcomm-Snapdragon-835-SoC-Benchmarks-and-Specs.207842.0.html |access-date=2017-09-23 |title=Qualcomm Snapdragon 835 (8998) |website=NotebookCheck}}{{cite web |url=https://venturebeat.com/2017/01/03/qualcomms-snapdragon-835-will-debut-with-3-billion-transistors-and-a-10nm-manufacturing-process/ |title=Qualcomm's Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process |last=Takahashi |first=Dean |date=January 3, 2017 |website=VentureBeat}}

|2016

|Qualcomm

|10 nm

|72.3 mm2

|41,490,000

Apple A11 Bionic (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|4,300,000,000

|2017

|Apple

|10 nm

|89.23 mm2

|48,190,000

AMD Zen CCX (core complex unit: 4 cores, 8 MB L3 cache)

|1,400,000,000{{Cite conference

|first=Teja

|last=Singh

|book-title=Proc. IEEE International Solid-State Circuits Conference

|title=3.2 Zen: A Next-Generation High-Performance x86 Core

|pages=52–54

|date=2017}}

|2017

|AMD

|14 nm
(GF 14LPP)

|44 mm2

|31,800,000

AMD Zeppelin SoC Ryzen (64-bit, SIMD, caches)

|4,800,000,000{{cite news|last1=Cutress|first1=Ian|title=AMD Launches Zen|url=http://www.anandtech.com/show/11143/amd-launch-ryzen-52-more-ipc-eight-cores-for-under-330-preorder-today-on-sale-march-2nd|access-date=22 February 2017|publisher=Anandtech.com|date=22 February 2017}}

|2017

|AMD

|14 nm

|192 mm2

|25,000,000

AMD Ryzen 5 1600 Ryzen (64-bit, SIMD, caches)

|4,800,000,000{{cite web|url=https://en.wikichip.org/wiki/amd/ryzen_5/1600|title=Ryzen 5 1600 - AMD|date=2018-04-20|website=Wikichip.org|access-date=2018-12-09}}

|2017

|AMD

|14 nm

|213 mm2

|22,530,000

IBM z14 (64-bit, SIMD, caches)

|6,100,000,000

|2017

|IBM

|14 nm

|696 mm2

|8,764,000

IBM z14 Storage Controller (64-bit)

|9,700,000,000

|2017

|IBM

|14 nm

|696 mm2

|13,940,000

|HiSilicon Kirin 970 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|5,500,000,000{{cite web|url=https://en.wikichip.org/wiki/hisilicon/kirin/970|title=Kirin 970{{Snd}} HiSilicon|date=2018-03-01|website=Wikichip|access-date=2018-11-08}}

|2017

|Huawei

|10 nm

|96.72 mm2

|56,900,000

Xbox One X (Project Scorpio) main SoC (64-bit, SIMD, caches)

|7,000,000,000

|2017

|Microsoft, AMD

|16 nm

|360 mm2{{Cite web|url=http://www.eurogamer.net/articles/digitalfoundry-2017-project-scorpio-tech-revealed|title=Inside the next Xbox: Project Scorpio tech revealed|last=Leadbetter|first=Richard|date=2017-04-06|website=Eurogamer|access-date=2017-05-03}}

|19,440,000

Xeon Platinum 8180 (28-core 64-bit, SIMD, caches)

|8,000,000,000{{Cite web|url=https://www.techpowerup.com/cpudb/2055/xeon-platinum-8180|title=Intel Xeon Platinum 8180|date=2018-12-01|website=TechPowerUp|access-date=2018-12-02}}

|2017

|Intel

|14 nm

|{{?}}

|{{?}}

Xeon (unspecified)

|7,100,000,000{{Cite web

|first=Stefano

|last=Pellerano

|url=https://youtube.com/watch?v=pFQj6L4eKc0

|title=Circuit Design to Harness the Power of Scaling and Integration (ISSCC 2022)

|website=YouTube

|date=2022-03-02}}

|2017

|Intel

|14 nm

|672 mm2

|10,570,000

POWER9 (64-bit, SIMD, caches)

|8,000,000,000

|2017

|IBM

|14 nm

|695 mm2

|11,500,000

Freedom U500 Base Platform Chip (E51, 4×U54) RISC-V (64-bit, caches)

|250,000,000{{cite web |first=Y. |last=Lee |title=SiFive Freedom SoCs : Industry's First Open Source RISC V Chips |work=HotChips 29 IOT/Embedded |url=https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.20-IOT-Embedded-Pub/HC29.21.210-Freedom-SoCs-Lee-SiFive-v2.pdf |access-date=June 19, 2019 |archive-date=August 9, 2020 |archive-url=https://web.archive.org/web/20200809140551/https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.20-IOT-Embedded-Pub/HC29.21.210-Freedom-SoCs-Lee-SiFive-v2.pdf |url-status=dead }}

|2017

|SiFive

|28 nm

|data-sort-value="30"|~30 mm2

|8,330,000

SPARC64 XII (12-core 64-bit, SIMD, caches)

|5,450,000,000{{cite web|url=http://www.fujitsu.com/jp/documents/products/computing/servers/unix/sparc/events/2017/coolchips20/CoolChips20-rev8.pdf|title=Documents at Fujitsu|publisher=fujitsu.com|access-date=August 29, 2017}}

|2017

|Fujitsu

|20 nm

|795 mm2

|6,850,000

|Apple A10X Fusion (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|4,300,000,000{{cite web|url=https://www.zdnet.de/88346243/ipad-pro-2018-a12x-prozessor-bietet-deutlich-mehr-leistung/|title=iPad Pro 2018: A12X-Prozessor bietet deutlich mehr Leistung|language=de|first=Kai|last=Schmerer|date=5 November 2018|website=ZDNet.de}}

|2017

|Apple

|10 nm

|96.40 mm2

|44,600,000

Centriq 2400 (64/32-bit, SIMD, caches)

|18,000,000,000{{Cite news|url=https://www.qualcomm.com/news/releases/2017/11/08/qualcomm-datacenter-technologies-announces-commercial-shipment-qualcomm|title=Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 – The World's First 10nm Server Processor and Highest Performance Arm-based Server Processor Family Ever Designed|work=Qualcomm|access-date=2017-11-09}}

|2017

|Qualcomm

|10 nm

|398 mm2

|45,200,000

AMD Epyc (32-core 64-bit, SIMD, caches)

|19,200,000,000

|2017

|AMD

|14 nm

|768 mm2

|25,000,000

Qualcomm Snapdragon 845 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|5,300,000,000{{cite web|url=https://www.techradar.com/news/qualcomm-snapdragon-1000-for-laptops-could-pack-85-billion-transistors|access-date=2017-09-23|title=Qualcomm Snapdragon 1000 for laptops could pack 8.5 billion transistors|publisher=techradar}}

|2017

|Qualcomm

|10 nm

|94 mm2

|56,400,000

Qualcomm Snapdragon 850 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|5,300,000,000{{cite web|url=https://www.anandtech.com/show/13687/qualcomm-snapdragon-8cx-wafer-on-7nm|access-date=2018-12-06|title=Spotted: Qualcomm Snapdragon 8cx Wafer on 7nm|publisher=AnandTech}}

|2017

|Qualcomm

|10 nm

|94 mm2

|56,400,000

|HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC", SIMD, caches)

|5,500,000,000{{cite web|url=https://www.notebookcheck.net/HiSilicon-Kirin-710-SoC-Benchmarks-and-Specs.333292.0.html |title=HiSilicon Kirin 710 |date=2018-09-19 |website=Notebookcheck |access-date=2018-11-24}}

|2018

|Huawei

|12 nm

|{{?}}

|{{?}}

|Apple A12 Bionic (hexa-core ARM64 "mobile SoC", SIMD, caches)

|6,900,000,000
{{cite web|last1=Yang|first1=Daniel|last2=Wegner|first2=Stacy|url=http://www.techinsights.com/about-techinsights/overview/blog/apple-iphone-xs-teardown/|title=Apple iPhone Xs Max Teardown|publisher=TechInsights|date=September 21, 2018|access-date=September 21, 2018}}{{Cite news|url=https://www.engadget.com/2018/09/12/apple-a12-bionic-7-nanometer-chip/|title=Apple's A12 Bionic is the first 7-nanometer smartphone chip|work=Engadget|access-date=2018-09-26}}

|2018

|Apple

|7 nm

|83.27 mm2

|82,900,000

|HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC", SIMD, caches)

|6,900,000,000{{cite web|url=https://en.wikichip.org/wiki/hisilicon/kirin/980|title=Kirin 980{{Snd}} HiSilicon|date=2018-11-08|website=Wikichip|access-date=2018-11-08}}

|2018

|Huawei

|7 nm

|74.13 mm2

|93,100,000

Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC", SIMD, caches)

|8,500,000,000{{cite web|url=https://m.dailyhunt.in/news/bangladesh/english/gear-epaper-gear/qualcomm+snapdragon+8180+7nm+soc+sdm1000+with+8+5+billion+transistors+to+challenge+apple+a12+bionic+chipset-newsid-97431923|access-date=2018-09-21|title=Qualcomm Snapdragon 8180: 7nm SoC SDM1000 With 8.5 Billion Transistors To Challenge Apple A12 Bionic Chipset |publisher=dailyhunt}}

|2018

|Qualcomm

|7 nm

|112 mm2

|75,900,000

|Apple A12X Bionic (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|10,000,000,000{{cite web|url=https://wccftech.com/apple-a12x-10-billion-transistors-performance/|title=Apple's A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU|first=Ramish|last=Zafar|date=October 30, 2018|website=Wccftech}}

|2018

|Apple

|7 nm

|122 mm2

|82,000,000

Fujitsu A64FX (64/32-bit, SIMD, caches)

|8,786,000,000{{cite news |title=Fujitsu began to produce Japan's billions of super-calculations with the strongest ARM processor A64FX |url=http://images.firstxw.com/view/230119.html |access-date=19 June 2019 |work=firstxw.com |date=2019-04-16 |archive-date=June 20, 2019 |archive-url=https://web.archive.org/web/20190620065621/http://images.firstxw.com/view/230119.html |url-status=dead }}

|2018{{cite news |title=Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors |url=https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html |access-date=19 June 2019 |work=Fujitsu |date=August 22, 2018}}

|Fujitsu

|7 nm

|{{?}}

|{{?}}

Tegra Xavier SoC (64/32-bit)

|9,000,000,000{{cite web|url=https://fuse.wikichip.org/news/1618/hot-chips-30-nvidia-xavier-soc |title=Hot Chips 30: Nvidia Xavier SoC |website=fuse.wikichip.org |date=2018-09-18 |access-date=2018-12-06}}

|2018

|Nvidia

|12 nm

|350 mm2

|25,700,000

Qualcomm Snapdragon 855 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|6,700,000,000{{Cite web|last=Frumusanu|first=Andrei|title=The Samsung Galaxy S10+ Snapdragon & Exynos Review: Almost Perfect, Yet So Flawed|url=https://www.anandtech.com/show/14072/the-samsung-galaxy-s10plus-review|access-date=2021-02-19|website=www.anandtech.com}}

|2018

|Qualcomm

|7 nm

|73 mm2

|91,800,000

AMD Zen 2 core (0.5 MB L2 + 4 MB L3 cache)

|475,000,000

|2019

|AMD

|7 nm

|7.83 mm2

|60,664,000

AMD Zen 2 CCX (core complex: 4 cores, 16 MB L3 cache)

|1,900,000,000{{cite web

|url=https://en.wikichip.org/wiki/amd/microarchitectures/zen_2

|title=Zen 2 Microarchitecture

|website=WikiChip

|access-date=2023-02-21}}

|2019

|AMD

|7 nm

|31.32 mm2

|60,664,000

AMD Zen 2 CCD (core complex die: 8 cores, 32 MB L3 cache)

|3,800,000,000

|2019

|AMD

|7 nm

|74 mm2

|51,350,000

AMD Zen 2 client I/O die

|2,090,000,000

|2019

|AMD

|12 nm

|125 mm2

|16,720,000

AMD Zen 2 server I/O die

|8,340,000,000

|2019

|AMD

|12 nm

|416 mm2

|20,050,000

AMD Zen 2 Renoir die

|9,800,000,000

|2019

|AMD

|7 nm

|156 mm2

|62,820,000

AMD Ryzen 7 3700X (64-bit, SIMD, caches, I/O die)

|5,990,000,000{{cite news |title=AMD Ryzen 9 3900X and Ryzen 7 3700X Review: Zen 2 and 7nm Unleashed |url=https://www.tomshardware.com/reviews/ryzen-9-3900x-7-3700x-review,6214.html |access-date=19 October 2019 |work=Tom's Hardware |date=7 July 2019}}{{efn|3,900,000,000 core chiplet die, 2,090,000,000 I/O die}}

|2019

|AMD

|7 & 12 nm
(TSMC)

|199 
(74+125) mm2

|30,100,000

HiSilicon Kirin 990 4G

|8,000,000,000{{Cite web|url= https://www.anandtech.com/show/15099/the-huawei-mate-30-pro-review-top-hardware-without-google/2|title=The Huawei Mate 30 Pro Review: Top Hardware without Google?|last=Frumusanu|first=Andrei|website=AnandTech|language=en-US|access-date=2020-01-02}}

|2019

|Huawei

|7 nm

|90.00 mm2

|89,000,000

Apple A13 (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches)

|8,500,000,000
{{Cite web|url=https://wccftech.com/apple-a13-iphone-11-transistors-gpu/|title=Apple A13 For iPhone 11 Has 8.5 Billion Transistors, Quad-Core GPU|last=Zafar|first=Ramish|date=2019-09-10|website=Wccftech|access-date=2019-09-11}}{{Citation|title=Introducing iPhone 11 Pro — Apple Youtube Video|url=https://www.youtube.com/watch?v=cVEemOmHw9Y&t=70|access-date=2019-09-11}}{{cbignore}}{{Dead YouTube link|date=February 2022}}

|2019

|Apple

|7 nm

|98.48 mm2

|86,300,000

IBM z15 CP chip (12 cores, 256 MB L3 cache)

|9,200,000,000{{cite web|url=https://www.anandtech.com/show/15987/hot-chips-2020-live-blog-ibm-z15-a-52-ghz-mainframe-cpu-1100am-pt|title=Hot Chips 2020 Live Blog: IBM z15|website=AnandTech|date=2020-08-17}}

|2019

|IBM

|14 nm

|696 mm2

|13,220,000

IBM z15 SC chip (960 MB L4 cache)

|12,200,000,000

|2019

|IBM

|14 nm

|696 mm2

|17,530,000

AMD Ryzen 9 3900X (64-bit, SIMD, caches, I/O die)

|9,890,000,000
{{cite news|title=AMD's 64-Core EPYC and Ryzen CPUs Stripped: A Detailed Inside Look|url=https://www.tomshardware.com/news/amd-64-core-epyc-cpu-die-design-architecture-ryzen-3000|last=Broekhuijsen|first=Niels|date=23 October 2019|access-date=24 October 2019}}{{cite news|title=AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39.54 Billion Transistors, IO Die Pictured in Detail|url=https://wccftech.com/amd-2nd-gen-epyc-rome-iod-ccd-chipshots-39-billion-transistors/|last=Mujtaba|first=Hassan|date=22 October 2019|access-date=24 October 2019}}

|2019

|AMD

|7 & 12 nm
(TSMC)

|273 mm2

|36,230,000

HiSilicon Kirin 990 5G

|10,300,000,000{{Cite web|url=https://www.phonearena.com/news/Huawei-tipped-to-develop-new-flagship-chip-for-Mate-40_id121102|title=5nm Kirin 1020 SoC tipped for next year's Huawei Mate 40 line|last=Friedman|first=Alan|website=Phone Arena|date=December 14, 2019 |language=en-US|access-date=2019-12-23}}

|2019

|Huawei

|7 nm

|113.31 mm2

|90,900,000

AWS Graviton2 (64-bit, 64-core ARM-based, SIMD, caches){{Cite web|url=https://www.tomshardware.com/news/amazon-web-services-takes-on-intel-with-64-core-arm-graviton2|title=Amazon Compares 64-core ARM Graviton2 to Intel's Xeon|first=Arne |last=Verheyde |website=Tom's Hardware|date=December 5, 2019|language=en|access-date=2019-12-06}}{{Cite web|url=https://www.nextplatform.com/2019/12/03/finally-aws-gives-servers-a-real-shot-in-the-arm/|title=Finally: AWS Gives Servers A Real Shot In The Arm|last=Morgan|first=Timothy Prickett|date=2019-12-03|website=The Next Platform|language=en-US|access-date=2019-12-06}}

|30,000,000,000

|2019

|Amazon

|7 nm

|{{?}}

|{{?}}

AMD Epyc Rome (64-bit, SIMD, caches)

|39,540,000,000

|2019

|AMD

|7 & 12 nm
(TSMC)

|1,008 mm2

|39,226,000

Qualcomm Snapdragon 865 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches)

|10,300,000,000{{Cite web|last=Friedman|first=Alan|title=Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month|url=https://www.phonearena.com/news/Qualcomm-to-unveil-the-Snapdragon-865-chipset-as-soon-as-next-month_id119548|access-date=2021-02-19|website=Phone Arena|date=October 10, 2019 |language=en-US}}

|2019

|Qualcomm

|7 nm

|83.54 mm2{{Cite web|title=Xiaomi Mi 10 Teardown Analysis {{!}} TechInsights|url=https://www.techinsights.com/blog/xiaomi-mi-10-teardown-analysis#:~:text=We%20have%20die%20photos%20ready,die%20HG11-PC761-2.|access-date=2021-02-19|website=www.techinsights.com}}

|123,300,000

TI Jacinto TDA4VM (ARM A72, DSP, SRAM)

|3,500,000,000{{Cite web|title=The Linley Group - TI Jacinto Accelerates Level 3 ADAS|url=https://www.linleygroup.com/newsletters/newsletter_detail.php?num=6130&year=2020&tag=3|access-date=2021-02-12|website=www.linleygroup.com}}

|2020

|Texas Instruments

|16 nm

|{{?}}

|{{?}}

Apple A14 Bionic (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches)

|11,800,000,000{{Cite web|date=2020-11-10|title=Apple unveils A14 Bionic processor with 40% faster CPU and 11.8 billion transistors|url=https://venturebeat.com/2020/09/15/apple-unveils-a14-bionic-processor-with-40-faster-cpu-and-11-8-billion-transistors/|access-date=2020-11-24|website=Venturebeat|language=en-US}}

|2020

|Apple

|5 nm

|88 mm2

|134,100,000

Apple M1 (octa-core 64-bit ARM64 SoC, SIMD, caches)

|16,000,000,000{{Cite web|date=2020-11-10|title=Apple says new Arm-based M1 chip offers the 'longest battery life ever in a Mac'|url=https://www.theverge.com/2020/11/10/21558095/apple-silicon-m1-chip-arm-macs-soc-charge-power-efficiency-mobile-processor/|access-date=2020-11-11|website=The Verge|language=en-US}}

|2020

|Apple

|5 nm

|119 mm2

|134,500,000

HiSilicon Kirin 9000

|15,300,000,000
{{Cite web |last=Ikoba |first=Jed John |date=2020-10-23 |title=Multiple benchmark tests rank the Kirin 9000 as one of the most-powerful chipset yet |url=https://www.gizmochina.com/2020/10/23/multiple-benchmark-tests-rank-the-kirin-9000-as-one-of-the-most-powerful-chipset-yet/ |access-date=2020-11-14 |website=Gizmochina |language=en-US}}{{Cite web |last=Frumusanu |first=Andrei |title=Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000 |url=https://www.anandtech.com/show/16156/huawei-announces-mate-40-series |access-date=2020-11-14 |website=www.anandtech.com}}

|2020

|Huawei

|5 nm

|114 mm2

|134,200,000

AMD Zen 3 CCX (core complex unit: 8 cores, 32 MB L3 cache)

|4,080,000,000{{Cite conference

|first=Thomas

|last=Burd

|book-title=Proc. IEEE International Solid-State Circuits Conference

|title=2.7 Zen3: The AMD 2nd-Generation 7nm x86-64 Microprocessor Core

|pages=54–56

|date=2022}}

|2020

|AMD

|7 nm

|68 mm2

|60,000,000

AMD Zen 3 CCD (core complex die)

|4,150,000,000

|2020

|AMD

|7 nm

|81 mm2

|51,230,000

Core 11th gen Rocket Lake (8-core 64-bit, SIMD, large caches)

|6,000,000,000+ {{Cite web|title=For a long time, Intel once again named the number of transistors in the chip. There are supposed to be about 6 billion for Rocket Lake-S. Coffee Lake-S is supposed to have about 4 billion. The chip with eight cores is about 30 % bigger than the predecessor with ten core|url=https://twitter.com/aschilling/status/1371845970581975050|access-date=2021-03-16|website=twitter|language=en}}

|2021

|Intel

|14 nm +++ 14 nm

|276 mm2{{Cite web|title=Intel's Core i7-11700K 'Rocket Lake' Delidded: A Big Die, Revealed|url=https://www.tomshardware.com/news/intel-rocket-lake-delidded|access-date=2021-03-16|website=tomshardware|date=March 12, 2021 |language=en}}

|37,500,000 or 21,800,000+ {{Cite web|title=Intel's 14nm density|url=https://www.techcenturion.com/7nm-10nm-14nm-fabrication|access-date=2019-11-26|website=www.techcenturion.com|date=November 26, 2019 |language=en}}

AMD Ryzen 7 5800H (64-bit, SIMD, caches, I/O and GPU)

|10,700,000,000{{Cite web|title=AMD Ryzen 7 5800H Specs|url=https://www.techpowerup.com/cpu-specs/ryzen-7-5800h.c2368|access-date=2021-09-20|website=TechPowerUp|language=en}}

|2021

|AMD

|7 nm

|180 mm2

|59,440,000

AMD Epyc 7763 (Milan) (64-core, 64-bit)

|?

|2021

|AMD

|7 & 12 nm
(TSMC)

|1,064 mm2
(8×81+416){{cite web|url=https://www.techpowerup.com/cpu-specs/epyc-7763.c2373|title=AMD Epyc 7763 specifications|date=August 2023 }}

|{{?}}

Apple A15

|15,000,000,000
{{Cite web|last=Shankland|first=Stephen|title=Apple's A15 Bionic chip powers iPhone 13 with 15 billion transistors, new graphics and AI|url=https://www.cnet.com/tech/mobile/apples-a15-bionic-chip-powers-iphone-13-with-15-billion-transistors-new-graphics-and-ai/|access-date=2021-09-20|website=CNET|language=en}}{{Cite web|title=Apple iPhone 13 Pro Teardown {{!}} TechInsights|url=https://www.techinsights.com/blog/teardown/apple-iphone-13-pro-teardown|access-date=2021-09-29|website=www.techinsights.com}}

|2021

|Apple

|5 nm

|107.68 mm2

|139,300,000

Apple M1 Pro (10-core, 64-bit)

|33,700,000,000

|2021

|Apple

|5 nm

|245 mm2{{Cite web|title=Apple Announces M1 Pro & M1 Max: Giant New Arm SoCs with All-Out Performance|url=https://www.anandtech.com/show/17019/apple-announced-m1-pro-m1-max-giant-new-socs-with-allout-performance|access-date=2021-12-02|website=AnanadTech|language=en}}

|137,600,000

Apple M1 Max (10-core, 64-bit)

|57,000,000,000
{{cite news |title=Apple unveils new computer chips amid shortage |url=https://www.bbc.com/news/technology-58917992 |work=BBC News |date=19 October 2021}}{{cite news |title=Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops |url=https://venturebeat.com/2021/10/18/apple-unveils-m1-pro-and-m1-max-chips-for-latest-macbook-pro-laptops/ |work=VentureBeat |date=18 October 2021}}

|2021

|Apple

|5 nm

|420.2 mm2{{cite web|title=Apple Joins 3D-Fabric Portfolio with M1 Ultra?|url=https://www.techinsights.com/blog/apple-joins-3d-fabric-portfolio-m1-ultra|website=TechInsights|access-date=2022-07-08}}

|135,600,000

Power10 dual-chip module (30 SMT8 cores or 60 SMT4 cores)

|36,000,000,000{{cite web|url=https://www.anandtech.com/show/15985/hot-chips-2020-live-blog-ibms-power10-processor-on-samsung-7nm-1000am-pt|title=Hot Chips 2020 live blog|date=2020-08-17|website=AnandTech}}

|2021

|IBM

|7 nm

|1,204 mm2

|29,900,000

Dimensity 9000 (ARM64 SoC)

|15,300,000,000
{{cite web

|url=https://www.mediatek.com/blog/phantom-x2-series-5g-powered-by-mediatek-dimensity-9000

|title=Phantom X2 Series 5G powered by MediaTek Dimensity 9000

|website=Mediatek

|date=2022-12-12

}}{{cite web

|url=https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9000

|title=MediaTek Dimensity 9000

|website=Mediatek

|date=2023-01-21

}}

|2021

|Mediatek

|4 nm
(TSMC N4)

|{{?}}

|{{?}}

Apple A16 (ARM64 SoC)

|16,000,000,000
{{cite web

|url=https://www.notebookcheck.net/Apple-A16-Bionic-announced-for-the-iPhone-14-Pro-and-iPhone-14-Pro-Max.647967.0.html

|title=Apple A16 Bionic announced for the iPhone 14 Pro and iPhone 14 Pro Max

|website=NotebookCheck

|date=2022-09-07

}}{{cite web

|url=https://www.cnet.com/tech/mobile/iphone-14-pro-and-pro-max-only-models-to-get-new-a16-chip/

|title=iPhone 14 Pro and Pro Max Only Models to Get New A16 Chip

|website=CNET

|date=2022-09-07

}}{{cite web

|url=https://www.anandtech.com/print/17563/the-apple-2022-fall-iphone-event-live-blog-10am-pt-1700-utc

|title=The Apple 2022 Fall iPhone Event Live Blog

|website=AnandTech

|date=2022-09-07

}}

|2022

|Apple

|4 nm

|{{?}}

|{{?}}

Apple M1 Ultra (dual-chip module, 2×10 cores)

|114,000,000,000
{{cite web |title=Apple unveils M1 Ultra, the world's most powerful chip for a personal computer |url=https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/ |website=Apple Newsroom |access-date=9 March 2022}}{{cite news |last1=Shankland |first1=Stephen |title=Meet Apple's Enormous 20-Core M1 Ultra Processor, the Brains in the New Mac Studio Machine |url=https://www.cnet.com/tech/computing/m1-ultra-apple-just-unveiled-its-most-powerful-chip-yet/ |access-date=9 March 2022 |work=CNET |language=en}}

|2022

|Apple

|5 nm

|840.5 mm2

|135,600,000

AMD Epyc 7773X (Milan-X) (multi-chip module, 64 cores, 768 MB L3 cache)

|26,000,000,000 + Milan{{cite web|url=https://www.anandtech.com/print/17323/amd-releases-milan-x-cpus-with-3d-vcache-epyc-7003|title=AMD releases Milan-X CPUs|website=AnandTech|date=2022-03-21}}

|2022

|AMD

|7 & 12 nm
(TSMC)

|1,352 mm2
(Milan + 8×36)

|{{?}}

IBM Telum dual-chip module (2×8 cores, 2×256 MB cache)

|45,000,000,000
{{cite web|url=https://hc33.hotchips.org/assets/program/conference/day1/HC2021.C1.3%20IBM%20Cristian%20Jacobi%20Final.pdf|title=IBM Telum Hot Chips slide deck|date=2021-08-23}}{{cite web|url=https://newsroom.ibm.com/2022-04-05-Announcing-IBM-z16-Real-time-AI-for-Transaction-Processing-at-Scale-and-Industrys-First-Quantum-Safe-System|title=IBM z16 announcement|date=2022-04-05}}

|2022

|IBM

|7 nm (Samsung)

|1,060 mm2

|42,450,000

Apple M2 (deca-core 64-bit ARM64 SoC, SIMD, caches)

|20,000,000,000{{Cite web|date=2022-06-06|title=Apple unveils M2, taking the breakthrough performance and capabilities of M1 even further|url=https://www.apple.com/newsroom/2022/06/apple-unveils-m2-with-breakthrough-performance-and-capabilities/|website=Apple}}

|2022

|Apple

|5 nm

|{{?}}

|{{?}}

Dimensity 9200 (ARM64 SoC)

|17,000,000,000
{{cite web

|url=https://www.notebookcheck.net/MediaTek-Dimensity-9200-New-flagship-chipset-debuts-with-ARM-Cortex-X3-CPU-and-Immortalis-G715-GPU-cores-built-around-TSMC-N4P-node.667041.0.html

|title=MediaTek Dimensity 9200: New flagship chipset debuts with ARM Cortex-X3 CPU and Immortalis-G715 GPU cores built around TSMC N4P node

|website=NotebookCheck

|date=2022-11-08

}}{{cite web

|url=https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9200

|title=Dimensity 9200 specs

|website=Mediatek

|date=2022-11-08

}}{{cite web

|url=https://i.mediatek.com/dimensity-9200

|title=Dimensity 9200 presentation

|website=Mediatek

|date=2022-11-08

}}

|2022

|Mediatek

|4 nm
(TSMC N4P)

|{{?}}

|{{?}}

Qualcomm Snapdragon 8 Gen 2 (octa-core ARM64 "mobile SoC", SIMD, caches)

|16,000,000,000

|2022

|Qualcomm

|4 nm

|268 mm2

|59,701,492

AMD EPYC Genoa (4th gen/9004 series) 13-chip module (up to 96 cores and 384 MB (L3) + 96 MB (L2) cache){{cite web

|url=https://www.servethehome.com/amd-epyc-genoa-gaps-intel-xeon-in-stunning-fashion/

|title=AMD EPYC Genoa Gaps Intel Xeon in Stunning Fashion

|website=ServeTheHome

|date=2022-11-10

}}

|90,000,000,000
{{cite web

|url=https://appuals.com/amd-zettaflop-plans/

|title=AMD Aims to Break the ZettaFLOP Barrier by 2035, Lays Down Next-Gen Plans to Resolve Efficiency Problems

|website=Appuals

|date=2023-02-21

}}{{cite web

|url=https://wccftech.com/amd-lays-the-path-to-zettascale-computing-talks-cpu-gpu-performance-plus-efficiency-trends-next-gen-chiplet-packaging-more/

|title=AMD Lays The Path To Zettascale Computing: Talks CPU & GPU Performance Plus Efficiency Trends, Next-Gen Chiplet Packaging & More

|website=WCCFtech

|date=2023-02-20

}}

|2022

|AMD

|5 nm (CCD)
6 nm (IOD)

|1,263.34 mm2
12×72.225 (CCD)
396.64 (IOD)

{{cite web

|url=https://wccftech.com/amd-epyc-genoa-zen-4-server-cpus-and-sp5-lga-6096-server-platform-details-leaked/

|title=AMD EPYC Genoa & SP5 Platform Leaked – 5nm Zen 4 CCD Measures Roughly 72mm, 12 CCD Package at 5428mm2, Up To 700W Peak Socket Power

|website=WCCFtech

|date=2021-08-17

}}

{{cite web

|url=https://www.hardwaretimes.com/leaked-amd-epyc-genoa-docs-reveal-96-cores-max-tdp-of-700w-and-zen-4-chiplet-dimensions/

|title=Leaked AMD Epyc Genoa Docs Reveal 96 Cores, Max TDP of 700W, and Zen 4 Chiplet Dimensions

|website=HardwareTimes

|date=2021-08-17

|last1=Syed

|first1=Areej

}}

|71,240,000

HiSilicon Kirin 9000s

|9,510,000,000{{Cite web|url=https://inf.news/en/news/fe8aae471cb54698f4ddac2d2baf1abd.html|title=Kirin 9000S has about 6 billion fewer transistors than Kirin 9000, but its performance is stronger! How did you do it?|website=iNews|date=September 13, 2023 |language=en-US|access-date=2023-09-24}}

|2023

|Huawei

|7 nm

|107 mm2

|107,690,000

Apple M4 (deca-core 64-bit ARM64 SoC, SIMD, caches)

|28,000,000,000{{Cite web|date=2024-05-07|title=Apple Announces M4 SoC: Latest and Greatest Starts on 2024 iPad Pro|url=https://www.anandtech.com/show/21387/apple-announces-m4-soc-latest-and-greatest-starts-on-ipad-pro/|website=Anandtech}}

|2024

|Apple

|3 nm

|{{?}}

|{{?}}

Apple M3 (octa-core 64-bit ARM64 SoC, SIMD, caches)

|25,000,000,000{{Cite web|date=2023-10-31|title=Apple introduces new M3 chip lineup, starting with the M3, M3 Pro, and M3 Max|url=https://arstechnica.com/gadgets/2023/10/everything-to-know-about-apples-new-m3-m3-pro-and-m3-max-processors/|website=Arstechnica}}

|2023

|Apple

|3 nm

|{{?}}

|{{?}}

Apple M3 Pro (dodeca-core 64-bit ARM64 SoC, SIMD, caches)

|37,000,000,000

|2023

|Apple

|3 nm

|{{?}}

|{{?}}

Apple M3 Max (16-core 64-bit ARM64 SoC, SIMD, caches)

|92,000,000,000

|2023

|Apple

|3 nm

|{{?}}

|{{?}}

Apple A17

|19,000,000,000
{{Cite web|last=Goldman|first=Joshua|title=Apple A17 Pro Chip: The New Brain Inside iPhone 15 Pro, Pro Max|url=https://www.cnet.com/tech/mobile/apple-a17-pro-chip-the-new-brain-inside-iphone-15-pro/|access-date=2023-09-12|website=CNET|language=en}}

|2023

|Apple

|3 nm

|103.8 mm2

|183,044,315

Sapphire Rapids quad-chip module (up to 60 cores and 112.5 MB of cache){{cite web

|url=https://www.servethehome.com/4th-gen-intel-xeon-scalable-sapphire-rapids-leaps-forward/

|title=4th Gen Intel Xeon Scalable Sapphire Rapids Leaps Forward

|website=ServeTheHome

|date=2023-01-10

}}

|44,000,000,000–
48,000,000,000{{cite web

|url=https://www.hardwareluxx.de/index.php/news/hardware/prozessoren/58175-isscc-2022-wie-vier-dies-zu-einem-monolithischen-sapphire-rapids-werden.html

|title=Wie vier Dies zu einem "monolithischen" Sapphire Rapids werden

|website=hardwareLUXX

|date=2022-02-21

}}

|2023

|Intel

|10 nm ESF (Intel 7)

|1,600 mm2

|27,500,000–
30,000,000

Apple M2 Pro (12-core 64-bit ARM64 SoC, SIMD, caches)

|40,000,000,000{{cite press release

|url=https://www.apple.com/newsroom/2023/01/apple-unveils-m2-pro-and-m2-max-next-generation-chips-for-next-level-workflows/

|title=Apple unveils M2 Pro and M2 Max: next-generation chips for next-level workflows

|website=Apple

|date=2023-01-17

}}

|2023

|Apple

|5 nm

|{{?}}

|{{?}}

Apple M2 Max (12-core 64-bit ARM64 SoC, SIMD, caches)

|67,000,000,000

|2023

|Apple

|5 nm

|{{?}}

|{{?}}

Apple M2 Ultra (two M2 Max dies)

|134,000,000,000{{cite press release

|date=2023-06-05

|title=Apple introduces M2 Ultra

|url=https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/

|publisher=Apple

}}

|2023

|Apple

|5 nm

|{{?}}

|{{?}}

AMD Epyc Bergamo (4th gen/97X4 series) 9-chip module (up to 128 cores and 256 MB (L3) + 128 MB (L2) cache)

|82,000,000,000{{cite web

|url=https://www.servethehome.com/amd-epyc-bergamo-launched-128-cores-per-socket-and-1024-threads-per-1u/

|title=AMD EPYC Bergamo Launched 128 Cores Per Socket and 1024 Threads Per 1U

|website=ServeTheHome

|date=2023-06-13

}}

|2023

|AMD

|5 nm (CCD)
6 nm (IOD)

|{{?}}

|{{?}}

AMD Instinct MI300A (multi-chip module, 24 cores, 128 GB GPU memory + 256 MB (LLC/L3) cache)

|146,000,000,000{{cite web

|url=https://www.amd.com/en/products/accelerators/instinct/mi300/mi300a.html

|title=AMD Instinct MI300A Accelerators

|website=AMD

|access-date=January 14, 2024

}}{{cite web

|last=Alcorn

|first=Paul

|url=https://www.tomshardware.com/pc-components/cpus/amd-unveils-instinct-mi300x-gpu-and-mi300a-apu-claims-up-to-16x-lead-over-nvidias-competing-gpus

|title=AMD unveils Instinct MI300X GPU and MI300A APU, claims up to 1.6X lead over Nvidia's competing GPUs

|website=Tom's Hardware

|date=December 6, 2023

|access-date=January 14, 2024

}}

|2023

|AMD

|5 nm (CCD, GCD)
6 nm (IOD)

|1,017 mm2

|144,000,000

Processor

!Transistor count

!Year

!Designer

!Process
(nm)

!Area (mm2)

!Transistor
density
(tr./mm2)

= GPUs =

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.

The designer refers to the technology company that designs the logic of the integrated circuit chip (such as Nvidia and AMD). The manufacturer ("Fab.") refers to the semiconductor company that fabricates the chip using its semiconductor manufacturing process at a foundry (such as TSMC and Samsung Semiconductor). The transistor count in a chip is dependent on a manufacturer's fabrication process, with smaller semiconductor nodes typically enabling higher transistor density and thus higher transistor counts.

The random-access memory (RAM) that comes with GPUs (such as VRAM, SGRAM or HBM) greatly increases the total transistor count, with the memory typically accounting for the majority of transistors in a graphics card. For example, Nvidia's Tesla P100 has 15{{nbsp}}billion FinFETs (16 nm) in the GPU in addition to 16{{nbsp}}GB of HBM2 memory, totaling about 150{{nbsp}}billion MOSFETs on the graphics card.{{Cite web|url=https://www.theregister.co.uk/2016/04/05/nvidia_gtc_telsa_p100_pascal/|title=Nvidia's Tesla P100 has 15 billion transistors, 21TFLOPS|last=Williams|first=Chris|website=www.theregister.co.uk|access-date=2019-08-12}} The following table does not include the memory. For memory transistor counts, see the Memory section below.

{{Row hover highlight}}

class="wikitable sortable mw-datatable" style="font-size:96%;"
Processor

! data-sort-type="number" | Transistor count

! Year

! Designer(s)

! Fab(s)

! data-sort-type="number" | Process

! data-sort-type="number" | Area

! data-sort-type="number" | Transistor
density
(tr./mm2)

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

μPD7220 GDC

|40,000

|1982

|NEC

|NEC

|5,000 nm

|{{?}}

|{{?}}

|{{cite web |title=Famous Graphics Chips: NEC μPD7220 Graphics Display Controller |url=https://www.computer.org/publications/tech-news/chasing-pixels/famous-graphics-chips |website=IEEE Computer Society |publisher=Institute of Electrical and Electronics Engineers |date=August 22, 2018 |access-date=21 June 2019}}

ARTC HD63484

|60,000

|1984

|Hitachi

|Hitachi

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=GPU History: Hitachi ARTC HD63484. The second graphics processor. |url=https://www.computer.org/publications/tech-news/chasing-pixels/gpu-history-hitachi-artc-hd63484 |website=IEEE Computer Society |date=October 7, 2018 |publisher=Institute of Electrical and Electronics Engineers |access-date=21 June 2019}}

CBM Agnus

|21,000

|1985

|Commodore

|CSG

|5,000 nm

|{{?}}

|{{?}}

|{{cite web |title=Big Book of Amiga Hardware |url=https://bboah.com/index.php?action=artikel&cat=51&id=2174}}{{cite book |title=MOS Technology Agnus |isbn=978-5511916842 |last1=Russell |first1=Jesse |last2=Cohn |first2=Ronald |date=May 2012 |publisher=Book on Demand }}

YM7101 VDP

|100,000

|1988

|Yamaha, Sega

|Yamaha

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=30 Years of Console Gaming |url=https://klingerphotography.com/wp/2017/08/20/30-years-console-gaming/ |website=Klinger Photography |access-date=19 June 2019 |date=20 August 2017}}

Tom & Jerry

|750,000

|1993

|Flare

|IBM

|{{?}}

|{{?}}

|{{?}}

|

VDP1

|1,000,000

|1994

|Sega

|Hitachi

|500 nm

|{{?}}

|{{?}}

|{{cite web |title=Sega Saturn |url=https://github.com/mamedev/mame/blob/master/src/mame/drivers/saturn.cpp |website=MAME |access-date=18 July 2019}}

Sony GPU

|1,000,000

|1994

|Toshiba

|LSI

|500 nm

|{{?}}

|{{?}}

|{{cite news |title=ASIC CHIPS ARE INDUSTRY'S GAME WINNERS |url=https://www.washingtonpost.com/archive/business/1995/09/18/asic-chips-are-industrys-game-winners/50bcb622-e890-4d46-803f-39e007c489ca/ |access-date=19 June 2019 |newspaper=The Washington Post |date=18 September 1995}}{{cite web |title=Is it Time to Rename the GPU? |url=https://www.computer.org/publications/tech-news/chasing-pixels/is-it-time-to-rename-the-gpu |work=Jon Peddie Research |publisher=IEEE Computer Society |date=2018-07-09 |access-date=19 June 2019}}{{cite web | url=http://patpend.net/technical/psx/LSI.htm | title=FastForward Sony Taps LSI Logic for PlayStation Video Game CPU Chip | publisher=FastForward | access-date=29 January 2014}}

NV1

|1,000,000

|1995

|Nvidia, Sega

|SGS

|500 nm

|90 mm2

|11,000

|

Reality Coprocessor

|2,600,000

|1996

|SGI

|NEC

|350 nm

|81 mm2

|32,100

|{{cite web |title=Reality Co-Processor − The Power In Nintendo64 |url=http://www.hotchips.org/wp-content/uploads/hc_archives/hc09/3_Tue/HC9.S10/HC9.10.2.pdf |publisher=Silicon Graphics |date=August 26, 1997 |access-date=18 June 2019 |archive-date=May 19, 2020 |archive-url=https://web.archive.org/web/20200519051320/http://www.hotchips.org/wp-content/uploads/hc_archives/hc09/3_Tue/HC9.S10/HC9.10.2.pdf |url-status=dead }}

PowerVR

|1,200,000

|1996

|VideoLogic

|NEC

|350 nm

|{{?}}

|{{?}}

|{{cite web |title=Imagination PowerVR PCX2 GPU |url=https://videocardz.net/gpu/imagination-powervr-pcx2/ |website=VideoCardz.net |access-date=19 June 2019}}

Voodoo Graphics

|1,000,000

|1996

|3dfx

|TSMC

|500 nm

|{{?}}

|{{?}}

|{{cite magazine |last1=Lilly |first1=Paul |title=From Voodoo to GeForce: The Awesome History of 3D Graphics |url=https://www.pcgamer.com/from-voodoo-to-geforce-the-awesome-history-of-3d-graphics/ |magazine=PC Gamer |access-date=19 June 2019 |date=19 May 2009}}{{cite web |title=3D accelerator database |url=http://vintage3d.org/dbn.php |website=Vintage 3D |access-date=21 July 2019}}

Voodoo Rush

|1,000,000

|1997

|3dfx

|TSMC

|500 nm

|{{?}}

|{{?}}

|

NV3

|3,500,000

|1997

|Nvidia

|SGS, TSMC

|350 nm

|90 mm2

|38,900

|{{cite web |title=RIVA128 Datasheet |url=http://www.datasheetcatalog.com/datasheets_pdf/R/I/V/A/RIVA128.shtml |publisher=SGS Thomson Microelectronics |access-date=21 July 2019}}{{cite web |last1=Singer |first1=Graham |title=History of the Modern Graphics Processor, Part 2 |url=https://www.techspot.com/article/653-history-of-the-gpu-part-2/ |website=TechSpot |date=April 3, 2013 |access-date=21 July 2019}}

i740

|3,500,000

|1998

|Intel, Real3D

|Real3D

|350 nm

|{{?}}

|{{?}}

| rowspan="3" |

Voodoo 2

|4,000,000

|1998

|3dfx

|TSMC

|350 nm

|{{?}}

|{{?}}

Voodoo Rush

|4,000,000

|1998

|3dfx

|TSMC

|350 nm

|{{?}}

|{{?}}

NV4

|7,000,000

|1998

|Nvidia

|TSMC

|350 nm

|90 mm2

|78,000

|

PowerVR2 CLX2

|10,000,000

|1998

|VideoLogic

|NEC

|250 nm

|116 mm2

|86,200

|{{cite web |title=Remembering the Sega Dreamcast |url=https://bit-tech.net/reviews/gaming/retro/remembering-the-sega-dreamcast/3/ |website=Bit-Tech |access-date=18 June 2019 |date=September 29, 2009}}{{cite news |last1=Weinberg |first1=Neil |title=Comeback kid |url=https://www.forbes.com/global/1998/0907/0111082a.html |access-date=19 June 2019 |work=Forbes |date=September 7, 1998}}{{cite journal |last1=Charles |first1=Bertie |title=Sega's New Dimension |journal=Forbes |date=1998 |volume=162 |issue=5–9 |page=206 |url=https://books.google.com/books?id=rCO8AAAAIAAJ |publisher=Forbes Incorporated |quote=The chip, etched in 0.25-micron detail — state-of-the-art for graphics processors — fits 10 million transistors}}{{cite journal|last1=Hagiwara|first1=Shiro|last2=Oliver|first2=Ian|title=Sega Dreamcast: Creating a Unified Entertainment World|journal=IEEE Micro|volume=19|number=6|date=November–December 1999|pages=29–35|publisher=IEEE Computer Society|url=http://computer.org/micro/articles/dreamcast_2.htm|archive-url=https://archive.today/20000823204755/http://computer.org/micro/articles/dreamcast_2.htm|url-status=dead|archive-date=2000-08-23|access-date=27 June 2019|doi=10.1109/40.809375}}

PowerVR2 PMX1

|6,000,000

|1999

|VideoLogic

|NEC

|250 nm

|{{?}}

|{{?}}

|{{cite web |title=VideoLogic Neon 250 4MB |url=https://videocardz.net/videologic-neon-250-4mb/ |website=VideoCardz.net |access-date=19 June 2019}}

Rage 128

|8,000,000

|1999

|ATI

|TSMC, UMC

|250 nm

|70 mm2

|114,000

|

Voodoo 3

|8,100,000

|1999

|3dfx

|TSMC

|250 nm

|{{?}}

|{{?}}

|{{cite news |last1=Shimpi |first1=Anand Lal |title=Fall Comdex '98 Coverage |url=https://www.anandtech.com/show/103/6 |access-date=19 June 2019 |work=AnandTech |date=November 21, 1998}}

Graphics Synthesizer

|43,000,000

|1999

|Sony, Toshiba

|Sony, Toshiba

|180 nm

|279 mm2

|154,000

|{{cite news |title=EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP |url=https://www.sie.com/content/dam/corporate/en/corporate/release/pdf/030421be.pdf |access-date=26 June 2019 |publisher=Sony |date=April 21, 2003}}

NV5

|15,000,000

|1999

|Nvidia

|TSMC

|250 nm

|90 mm2

|167,000

|

NV10

|17,000,000

|1999

|Nvidia

|TSMC

|220 nm

|111 mm2

|153,000

|{{cite web |title=NVIDIA NV10 A3 GPU Specs |url=https://www.techpowerup.com/gpu-specs/nvidia-nv10-a3.g165 |website=TechPowerUp |access-date=19 June 2019}}

NV11

|20,000,000

|2000

|Nvidia

|TSMC

|180 nm

|65 mm2

|308,000

|

NV15

|25,000,000

|2000

|Nvidia

|TSMC

|180 nm

|81 mm2

|309,000

|

Voodoo 4

|14,000,000

|2000

|3dfx

|TSMC

|220 nm

|{{?}}

|{{?}}

|

Voodoo 5

|28,000,000

|2000

|3dfx

|TSMC

|220 nm

|{{?}}

|{{?}}

|

R100

|30,000,000

|2000

|ATI

|TSMC

|180 nm

|97 mm2

|309,000

|

Flipper

|51,000,000

|2000

|ArtX

|NEC

|180 nm

|106 mm2

|481,000

|{{cite web|url=https://ign.com/articles/2000/11/04/gamecube-versus-playstation-2|title=Gamecube Versus PlayStation 2|author=IGN Staff|date=November 4, 2000|work=IGN|access-date=November 22, 2015}}

PowerVR3 KYRO

|14,000,000

|2001

|Imagination

|ST

|250 nm

|rowspan="2" | {{?}}

|rowspan="2" | {{?}}

|rowspan="2" |

PowerVR3 KYRO II

|15,000,000

|2001

|Imagination

|ST

|180 nm

NV2A

|60,000,000

|2001

|Nvidia

|TSMC

|150 nm

|{{?}}

|{{?}}

|{{cite web |title=NVIDIA NV2A GPU Specs |url=https://www.techpowerup.com/gpu-specs/nvidia-nv2a.g401 |website=TechPowerUp |access-date=21 July 2019}}

NV20

|57,000,000

|2001

|Nvidia

|TSMC

|150 nm

|128 mm2

|445,000

| rowspan="16" |

NV25

|63,000,000

|2002

|Nvidia

|TSMC

|150 nm

|142 mm2

|444,000

NV28

|36,000,000

|2002

|Nvidia

|TSMC

|150 nm

|101 mm2

|356,000

NV17/18

|29,000,000

|2002

|Nvidia

|TSMC

|150 nm

|65 mm2

|446,000

R200

|60,000,000

|2001

|ATI

|TSMC

|150 nm

|68 mm2

|882,000

R300

|107,000,000

|2002

|ATI

|TSMC

|150 nm

|218 mm2

|490,800

R360

|117,000,000

|2003

|ATI

|TSMC

|150 nm

|218 mm2

|536,700

NV34

|45,000,000

|2003

|Nvidia

|TSMC

|150 nm

|124 mm2

|363,000

NV34b

|45,000,000

|2004

|Nvidia

|TSMC

|140 nm

|91 mm2

|495,000

NV30

|125,000,000

|2003

|Nvidia

|TSMC

|130 nm

|199 mm2

|628,000

NV31

|80,000,000

|2003

|Nvidia

|TSMC

|130 nm

|121 mm2

|661,000

NV35/38

|135,000,000

|2003

|Nvidia

|TSMC

|130 nm

|207 mm2

|652,000

NV36

|82,000,000

|2003

|Nvidia

|IBM

|130 nm

|133 mm2

|617,000

R480

|160,000,000

|2004

|ATI

|TSMC

|130 nm

|297 mm2

|538,700

NV40

|222,000,000

|2004

|Nvidia

|IBM

|130 nm

|305 mm2

|727,900

NV44

|75,000,000

|2004

|Nvidia

|IBM

|130 nm

|110 mm2

|681,800

NV41

|222,000,000

|2005

|Nvidia

|TSMC

|110 nm

|225 mm2

|986,700

| rowspan="4" |

NV42

|198,000,000

|2005

|Nvidia

|TSMC

|110 nm

|222 mm2

|891,900

NV43

|146,000,000

|2005

|Nvidia

|TSMC

|110 nm

|154 mm2

|948,100

G70

|303,000,000

|2005

|Nvidia

|TSMC, Chartered

|110 nm

|333 mm2

|909,900

Xenos

|232,000,000

|2005

|ATI

|TSMC

|90 nm

|182 mm2

|1,275,000

|{{cite web |title=ATI Xenos GPU Specs |url=https://www.techpowerup.com/gpu-specs/ati-xenos.g424 |website=TechPowerUp |access-date=21 June 2019}}{{cite news |last1=International |first1=GamesIndustry |title=TSMC to manufacture X360 GPU |url=https://www.eurogamer.net/articles/news140705tsmc |access-date=22 August 2006 |work=Eurogamer |date=14 July 2005}}

RSX Reality Synthesizer

|300,000,000

|2005

|Nvidia, Sony

|Sony

|90 nm

|186 mm2

|1,613,000

|{{cite web |title=NVIDIA Playstation 3 RSX 65nm Specs |url=https://www.techpowerup.com/gpu-specs/playstation-3-rsx-65nm.c1682 |website=TechPowerUp |access-date=21 June 2019}}{{cite web|publisher=Edge Online|date=2008-06-26|title=PS3 Graphics Chip Goes 65nm in Fall|url=http://www.edge-online.com/news/ps3-graphics-chip-goes-65nm-fall/|archive-url=https://web.archive.org/web/20080725024026/http://www.edge-online.com/news/ps3-graphics-chip-goes-65nm-fall/|url-status=dead|archive-date=2008-07-25}}

R520

|321,000,000

|2005

|ATI

|TSMC

|90 nm

|288 mm2

|1,115,000

| rowspan="12" |

RV530

|157,000,000

|2005

|ATI

|TSMC

|90 nm

|150 mm2

|1,047,000

RV515

|107,000,000

|2005

|ATI

|TSMC

|90 nm

|100 mm2

|1,070,000

R580

|384,000,000

|2006

|ATI

|TSMC

|90 nm

|352 mm2

|1,091,000

G71

|278,000,000

|2006

|Nvidia

|TSMC

|90 nm

|196 mm2

|1,418,000

G72

|112,000,000

|2006

|Nvidia

|TSMC

|90 nm

|81 mm2

|1,383,000

G73

|177,000,000

|2006

|Nvidia

|TSMC

|90 nm

|125 mm2

|1,416,000

G80

|681,000,000

|2006

|Nvidia

|TSMC

|90 nm

|480 mm2

|1,419,000

G86 Tesla

|210,000,000

|2007

|Nvidia

|TSMC

|80 nm

|127 mm2

|1,654,000

G84 Tesla

|289,000,000

|2007

|Nvidia

|TSMC

|80 nm

|169 mm2

|1,710,000

RV560

|330,000,000

|2006

|ATI

|TSMC

|80 nm

|230 mm2

|1,435,000

R600

|700,000,000

|2007

|ATI

|TSMC

|80 nm

|420 mm2

|1,667,000

RV610

|180,000,000

|2007

|ATI

|TSMC

|65 nm

|85 mm2

|2,118,000

| rowspan="7" |

RV630

|390,000,000

|2007

|ATI

|TSMC

|65 nm

|153 mm2

|2,549,000

G92

|754,000,000

|2007

|Nvidia

|TSMC, UMC

|65 nm

|324 mm2

|2,327,000

G94 Tesla

|505,000,000

|2008

|Nvidia

|TSMC

|65 nm

|240 mm2

|2,104,000

G96 Tesla

|314,000,000

|2008

|Nvidia

|TSMC

|65 nm

|144 mm2

|2,181,000

G98 Tesla

|210,000,000

|2008

|Nvidia

|TSMC

|65 nm

|86 mm2

|2,442,000

GT200{{cite web|url=http://www.anandtech.com/video/showdoc.aspx?i=3334 |title=NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260 |publisher=AnandTech.com |access-date=2014-08-09}}

|1,400,000,000

|2008

|Nvidia

|TSMC

|65 nm

|576 mm2

|2,431,000

RV620

|181,000,000

|2008

|ATI

|TSMC

|55 nm

|67 mm2

|2,701,000

| rowspan="6" |

RV635

|378,000,000

|2008

|ATI

|TSMC

|55 nm

|135 mm2

|2,800,000

RV710

|242,000,000

|2008

|ATI

|TSMC

|55 nm

|73 mm2

|3,315,000

RV730

|514,000,000

|2008

|ATI

|TSMC

|55 nm

|146 mm2

|3,521,000

RV670

|666,000,000

|2008

|ATI

|TSMC

|55 nm

|192 mm2

|3,469,000

RV770

|956,000,000

|2008

|ATI

|TSMC

|55 nm

|256 mm2

|3,734,000

RV790

|959,000,000

|2008

|ATI

|TSMC

|55 nm

|282 mm2

|3,401,000

|{{cite web|url=http://www.anandtech.com/video/showdoc.aspx?i=3341 |title=The Radeon HD 4850 & 4870: AMD Wins at $199 and $299 |publisher=AnandTech.com |access-date=2014-08-09}}

G92b Tesla

|754,000,000

|2008

|Nvidia

|TSMC, UMC

|55 nm

|260 mm2

|2,900,000

| rowspan="4" |

G94b Tesla

|505,000,000

|2008

|Nvidia

|TSMC, UMC

|55 nm

|196 mm2

|2,577,000

G96b Tesla

|314,000,000

|2008

|Nvidia

|TSMC, UMC

|55 nm

|121 mm2

|2,595,000

GT200b Tesla

|1,400,000,000

|2008

|Nvidia

|TSMC, UMC

|55 nm

|470 mm2

|2,979,000

GT218 Tesla

|260,000,000

|2009

|Nvidia

|TSMC

|40 nm

|57 mm2

|4,561,000

| rowspan="5" |

GT216 Tesla

|486,000,000

|2009

|Nvidia

|TSMC

|40 nm

|100 mm2

|4,860,000

GT215 Tesla

|727,000,000

|2009

|Nvidia

|TSMC

|40 nm

|144 mm2

|5,049,000

RV740

|826,000,000

|2009

|ATI

|TSMC

|40 nm

|137 mm2

|6,029,000

Cypress RV870

|2,154,000,000

|2009

|ATI

|TSMC

|40 nm

|334 mm2

|6,449,000

Juniper RV840

|1,040,000,000

|2009

|ATI

|TSMC

|40 nm

|166 mm2

|6,265,000

|

Redwood RV830

|627,000,000

|2010

|AMD (ATI)

|TSMC

|40 nm

|104 mm2

|6,029,000

| rowspan="6" |

Cedar RV810

|292,000,000

|2010

|AMD

|TSMC

|40 nm

|59 mm2

|4,949,000

Cayman RV970

|2,640,000,000

|2010

|AMD

|TSMC

|40 nm

|389 mm2

|6,789,000

Barts RV940

|1,700,000,000

|2010

|AMD

|TSMC

|40 nm

|255 mm2

|6,667,000

Turks RV930

|716,000,000

|2011

|AMD

|TSMC

|40 nm

|118 mm2

|6,068,000

Caicos RV910

|370,000,000

|2011

|AMD

|TSMC

|40 nm

|67 mm2

|5,522,000

GF100 Fermi

|3,200,000,000

|2010

|Nvidia

|TSMC

|40 nm

|526 mm2

|6,084,000

|{{cite web|last=Glaskowsky |first=Peter |url=http://news.cnet.com/8301-13512_3-10369441-23.html |archive-url=https://web.archive.org/web/20120127213001/http://news.cnet.com/8301-13512_3-10369441-23.html |url-status=dead |archive-date=2012-01-27 |title=ATI and Nvidia face off-obliquely |publisher= CNET |access-date=2014-08-09}}

GF110 Fermi

|3,000,000,000

|2010

|Nvidia

|TSMC

|40 nm

|520 mm2

|5,769,000

|

GF104 Fermi

|1,950,000,000

|2011

|Nvidia

|TSMC

|40 nm

|332 mm2

|5,873,000

|

GF106 Fermi

|1,170,000,000

|2010

|Nvidia

|TSMC

|40 nm

|238 mm2

|4,916,000

|

GF108 Fermi

|585,000,000

|2011

|Nvidia

|TSMC

|40 nm

|116 mm2

|5,043,000

|

GF119 Fermi

|292,000,000

|2011

|Nvidia

|TSMC

|40 nm

|79 mm2

|3,696,000

|

Tahiti GCN1

|4,312,711,873

|2011

|AMD

|TSMC

|28 nm

|365 mm2

|11,820,000

|{{cite web|first=Don |last=Woligroski |url=http://www.tomshardware.com/reviews/radeon-hd-7970-benchmark-tahiti-gcn,3104.html |title=AMD Radeon HD 7970 |publisher=TomsHardware.com |date=2011-12-22 |access-date=2014-08-09}}

Cape Verde GCN1

|1,500,000,000

|2012

|AMD

|TSMC

|28 nm

|123 mm2

|12,200,000

|

Pitcairn GCN1

|2,800,000,000

|2012

|AMD

|TSMC

|28 nm

|212 mm2

|13,210,000

|

GK110 Kepler

|7,080,000,000

|2012

|Nvidia

|TSMC

|28 nm

|561 mm2

|12,620,000

|{{cite web| title=NVIDIA Kepler GK110 Architecture| url=https://staff.cs.manchester.ac.uk/~fumie/internal/KeplerArchitecture.pdf| publisher=NVIDIA| date=2012| access-date=9 January 2024}}{{cite news|url=http://www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last|title=NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last|first=Ryan|last=Smith|date=November 12, 2012|work=AnandTech}}

GK104 Kepler

|3,540,000,000

|2012

|Nvidia

|TSMC

|28 nm

|294 mm2

|12,040,000

|{{cite web |title=Whitepaper: NVIDIA GeForce GTX 680 |date=2012 |publisher=NVIDIA |url=http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf |url-status=dead |archive-url=https://web.archive.org/web/20120417045615/http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf |archive-date=April 17, 2012 |df=mdy-all }}

GK106 Kepler

|2,540,000,000

|2012

|Nvidia

|TSMC

|28 nm

|221 mm2

|11,490,000

|

GK107 Kepler

|1,270,000,000

|2012

|Nvidia

|TSMC

|28 nm

|118 mm2

|10,760,000

|

GK208 Kepler

|1,020,000,000

|2013

|Nvidia

|TSMC

|28 nm

|79 mm2

|12,910,000

|

Oland GCN1

|1,040,000,000

|2013

|AMD

|TSMC

|28 nm

|90 mm2

|11,560,000

| rowspan="2" |

Bonaire GCN2

|2,080,000,000

|2013

|AMD

|TSMC

|28 nm

|160 mm2

|13,000,000

Durango (Xbox One)

|4,800,000,000

|2013

|AMD

|TSMC

|28 nm

|375 mm2

|12,800,000

|{{cite news |last1=Kan |first1=Michael |title=Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs |url=https://uk.pcmag.com/video-game-consoles/128235/xbox-series-x-may-give-your-wallet-a-workout-due-to-high-chip-manufacturing-costs |access-date=5 September 2020 |work=PCMag |date=18 August 2020}}{{Cite web|url=https://www.techpowerup.com/gpu-specs/xbox-one-gpu.c2086|title=AMD Xbox One GPU|website=www.techpowerup.com|access-date=2020-02-05}}

Liverpool (PlayStation 4)

|{{?}}

|2013

|AMD

|TSMC

|28 nm

|348 mm2

|{{?}}

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/playstation-4-gpu.c2085|title=AMD PlayStation 4 GPU|website=www.techpowerup.com|access-date=2020-02-05}}

Hawaii GCN2

|6,300,000,000

|2013

|AMD

|TSMC

|28 nm

|438 mm2

|14,380,000

| rowspan="7" |

GM200 Maxwell

|8,000,000,000

|2015

|Nvidia

|TSMC

|28 nm

|601 mm2

|13,310,000

GM204 Maxwell

|5,200,000,000

|2014

|Nvidia

|TSMC

|28 nm

|398 mm2

|13,070,000

GM206 Maxwell

|2,940,000,000

|2014

|Nvidia

|TSMC

|28 nm

|228 mm2

|12,890,000

GM107 Maxwell

|1,870,000,000

|2014

|Nvidia

|TSMC

|28 nm

|148 mm2

|12,640,000

Tonga GCN3

|5,000,000,000

|2014

|AMD

|TSMC, GlobalFoundries

|28 nm

|366 mm2

|13,660,000

Fiji GCN3

|8,900,000,000

|2015

|AMD

|TSMC

|28 nm

|596 mm2

|14,930,000

Durango 2 (Xbox One S)

|5,000,000,000

|2016

|AMD

|TSMC

|16 nm

|240 mm2

|20,830,000

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/xbox-one-s-gpu.c2866|title=AMD Xbox One S GPU|website=www.techpowerup.com|access-date=2020-02-05}}

Neo (PlayStation 4 Pro)

|5,700,000,000

|2016

|AMD

|TSMC

|16 nm

|325 mm2

|17,540,000

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/playstation-4-pro-gpu.c2876|title=AMD PlayStation 4 Pro GPU|website=www.techpowerup.com|access-date=2020-02-05}}

Ellesmere/Polaris 10 GCN4

|5,700,000,000

|2016

|AMD

|Samsung, GlobalFoundries

|14 nm

|232 mm2

|24,570,000

|{{cite news|last1=Smith|first1=Ryan|title=The AMD RX 480 Preview|url=http://www.anandtech.com/show/10446/the-amd-radeon-rx-480-preview|access-date=22 February 2017|publisher=Anandtech.com|date=29 June 2016}}

Baffin/Polaris 11 GCN4

|3,000,000,000

|2016

|AMD

|Samsung, GlobalFoundries

|14 nm

|123 mm2

|24,390,000

|

Lexa/Polaris 12 GCN4

|2,200,000,000

|2017

|AMD

|Samsung, GlobalFoundries

|14 nm

|101 mm2

|21,780,000

|

GP100 Pascal

|15,300,000,000

|2016

|Nvidia

|TSMC, Samsung

|16 nm

|610 mm2

|25,080,000

|{{cite web|url=https://devblogs.nvidia.com/parallelforall/inside-pascal/|title=Inside Pascal: NVIDIA's Newest Computing Platform|first=Mark|last=Harris|date=April 5, 2016|website=Nvidia developer blog}}

GP102 Pascal

|11,800,000,000

|2016

|Nvidia

|TSMC, Samsung

|16 nm

|471 mm2

|25,050,000

|{{cite web|url=https://www.techpowerup.com/gpu-specs/?architecture=Pascal&sort=generation|title=GPU Database: Pascal|website=TechPowerUp|date=July 26, 2023 }}

GP104 Pascal

|7,200,000,000

|2016

|Nvidia

|TSMC

|16 nm

|314 mm2

|22,930,000

|

GP106 Pascal

|4,400,000,000

|2016

|Nvidia

|TSMC

|16 nm

|200 mm2

|22,000,000

|

GP107 Pascal

|3,300,000,000

|2016

|Nvidia

|Samsung

|14 nm

|132 mm2

|25,000,000

|

GP108 Pascal

|1,850,000,000

|2017

|Nvidia

|Samsung

|14 nm

|74 mm2

|25,000,000

|

Scorpio (Xbox One X)

|6,600,000,000

|2017

|AMD

|TSMC

|16 nm

|367 mm2

|17,980,000

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/xbox-one-x-gpu.c2977|title=AMD Xbox One X GPU|website=www.techpowerup.com|access-date=2020-02-05}}

Vega 10 GCN5

|12,500,000,000

|2017

|AMD

|Samsung, GlobalFoundries

|14 nm

|484 mm2

|25,830,000

|{{Cite web|url=http://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf|title=Radeon's next-generation Vega architecture}}

GV100 Volta

|21,100,000,000

|2017

|Nvidia

|TSMC

|12 nm

|815 mm2

|25,890,000

|{{cite web|url=https://devblogs.nvidia.com/parallelforall/inside-volta/|title=Inside Volta: The World's Most Advanced Data Center GPU|first1=Luke|last1=Durant|first2=Olivier|last2=Giroux|first3=Mark|last3=Harris|first4=Nick|last4=Stam|date=May 10, 2017|website=Nvidia developer blog}}

TU102 Turing

|18,600,000,000

|2018

|Nvidia

|TSMC

|12 nm

|754 mm2

|24,670,000

|{{cite web |title=NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented |url=https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf |publisher=Nvidia |year=2018 |access-date=28 June 2019}}

TU104 Turing

|13,600,000,000

|2018

|Nvidia

|TSMC

|12 nm

|545 mm2

|24,950,000

|

TU106 Turing

|10,800,000,000

|2018

|Nvidia

|TSMC

|12 nm

|445 mm2

|24,270,000

|

TU116 Turing

|6,600,000,000

|2019

|Nvidia

|TSMC

|12 nm

|284 mm2

|23,240,000

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/geforce-gtx-1650.c3366|title=NVIDIA GeForce GTX 1650|website=www.techpowerup.com|access-date=2020-02-05}}

TU117 Turing

|4,700,000,000

|2019

|Nvidia

|TSMC

|12 nm

|200 mm2

|23,500,000

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/geforce-gtx-1660-ti.c3364|title=NVIDIA GeForce GTX 1660 Ti|website=www.techpowerup.com|access-date=2020-02-05}}

Vega 20 GCN5

|13,230,000,000

|2018

|AMD

|TSMC

|7 nm

|331 mm2

|39,970,000

|

Navi 10 RDNA

|10,300,000,000

|2019

|AMD

|TSMC

|7 nm

|251 mm2

|41,040,000

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/radeon-rx-5700-xt.c3339|title=AMD Radeon RX 5700 XT|website=www.techpowerup.com|access-date=2020-02-05}}

Navi 12 RDNA

|{{?}}

|2020

|AMD

|TSMC

|7 nm

|{{?}}

|{{?}}

|

Navi 14 RDNA

|6,400,000,000

|2019

|AMD

|TSMC

|7 nm

|158 mm2

|40,510,000

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/radeon-rx-5500-xt.c3468|title=AMD Radeon RX 5500 XT|website=www.techpowerup.com|access-date=2020-02-05}}

Arcturus CDNA

|25,600,000,000

|2020

|AMD

|TSMC

|7 nm

|750 mm2

|34,100,000

|{{Cite web|url=https://www.techpowerup.com/gpu-specs/amd-arcturus.g927|title=AMD Arcturus GPU Specs|website=TechPowerUp|access-date=November 10, 2022}}

GA100 Ampere

|54,200,000,000

|2020

|Nvidia

|TSMC

|7 nm

|826 mm2

|65,620,000

|{{cite news|url=https://www.tomshardware.com/news/nvidia-ampere-A100-gpu-7nm|title=Nvidia Unveils Its Next-Generation 7nm Ampere A100 GPU for Data Centers, and It's Absolutely Massive|first=Jared|last=Walton|date=May 14, 2020|work=Tom's Hardware}}{{Cite web|url=https://www.nvidia.com/en-gb/data-center/ampere-architecture/|title=Nvidia Ampere Architecture|website=www.nvidia.com|access-date=2020-05-15}}

GA102 Ampere

|28,300,000,000

|2020

|Nvidia

|Samsung

|8 nm

|628 mm2

|45,035,000

|{{Cite news|url=https://www.techpowerup.com/gpu-specs/nvidia-ga102.g930|title=NVIDIA GA102 GPU Specs|newspaper=Techpowerup|access-date=2020-09-05}}{{Cite web|url=https://blogs.nvidia.com/blog/2020/09/01/nvidia-ceo-geforce-rtx-30-series-gpus|title='Giant Step into the Future': NVIDIA CEO Unveils GeForce RTX 30 Series GPUs|website=www.nvidia.com|date=September 2020|access-date=2020-09-05}}

GA103 Ampere

|22,000,000,000

|2022

|Nvidia

|Samsung

|8 nm

|496 mm2

|44,400,000

|{{Cite web |title=NVIDIA GA103 GPU Specs |url=https://www.techpowerup.com/gpu-specs/nvidia-ga103.g989 |website=TechPowerUp |language=en |access-date=March 21, 2023}}

GA104 Ampere

|17,400,000,000

|2020

|Nvidia

|Samsung

|8 nm

|392 mm2

|44,390,000

|{{Cite web|title=NVIDIA GeForce RTX 3070 Specs|url=https://www.techpowerup.com/gpu-specs/geforce-rtx-3070.c3674|access-date=2021-09-20|website=TechPowerUp|language=en}}

GA106 Ampere

|12,000,000,000

|2021

|Nvidia

|Samsung

|8 nm

|276 mm2

|43,480,000

|

{{cite web

|url=https://www.techpowerup.com/gpu-specs/nvidia-ga106.g966

|title=NVIDIA GA106 specs

|website=TechPowerUp

|access-date=2023-03-22

}}

GA107 Ampere

|8,700,000,000

|2021

|Nvidia

|Samsung

|8 nm

|200 mm2

|43,500,000

|{{Cite web |title=NVIDIA GA107 GPU Specs |url=https://www.techpowerup.com/gpu-specs/nvidia-ga107.g988 |website=TechPowerUp |language=en |access-date=March 21, 2023}}

Navi 21 RDNA2

|26,800,000,000

|2020

|AMD

|TSMC

|7 nm

|520 mm2

|51,540,000

|

Navi 22 RDNA2

|17,200,000,000

|2021

|AMD

|TSMC

|7 nm

|335 mm2

|51,340,000

|

Navi 23 RDNA2

|11,060,000,000

|2021

|AMD

|TSMC

|7 nm

|237 mm2

|46,670,000

|

Navi 24 RDNA2

|5,400,000,000

|2022

|AMD

|TSMC

|6 nm

|107 mm2

|50,470,000

|

Aldebaran CDNA2

|58,200,000,000 (MCM)

|2021

|AMD

|TSMC

|6 nm

|1448–1474 mm2{{cite web |url=https://twitter.com/Locuza_/status/1460987998934384640 |title=MI250X die size estimates |website=Twitter |date=2021-11-17}}
1480 mm2

{{cite web |url=https://videocardz.net/amd-instinct-mi250 |title=AMD Instinct MI250 Professional Graphics Card |website=VideoCardz |date=2022-11-02}}
1490–1580 mm2

{{cite web |url=https://www.tomshardware.com/news/amd-instinct-mi250x-pictured |title=AMD's Instinct MI250X OAM Card Pictured: Aldebaran's Massive Die Revealed |website=Tom's Hardware |date=2021-11-17}}

|39,500,000–40,200,000
39,200,000
36,800,000–39,100,000

|{{cite web |url=https://www.servethehome.com/amd-mi250x-and-toplogies-explained-at-hc34-hpe-gigabyte-supermicro/ |title=AMD MI250X and Toplogies Explained at HC34 |website=ServeTheHome |date=2022-08-22}}

GH100 Hopper

|80,000,000,000

|2022

|Nvidia

|TSMC

|4 nm

|814 mm2

|98,280,000

|{{Cite web |title=Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips |url=https://www.hpcwire.com/2022/03/22/nvidia-launches-hopper-h100-gpu-new-dgxs-and-grace-megachips/ |access-date=2022-03-23 |website=HPCWire |date=March 22, 2022 |language=en}}

AD102 Ada Lovelace

|76,300,000,000

|2022

|Nvidia

|TSMC

|4 nm

|608.4 mm2

|125,411,000

|{{Cite web |title=NVIDIA details AD102 GPU, up to 18432 CUDA cores, 76.3B transistors and 608 mm2 |url=https://videocardz.com/newz/nvidia-details-ad102-gpu-up-to-18432-cuda-cores-76-3b-transistors-and-608-mm%C2%B2 |website=VideoCardz |date=2022-09-20}}

AD103 Ada Lovelace

|45,900,000,000

|2022

|Nvidia

|TSMC

|4 nm

|378.6 mm2

|121,240,000

|{{cite web |title=NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102 |url=https://videocardz.com/newz/nvidia-confirms-ada-102-103-104-gpu-specs-ad104-has-more-transistors-than-ga102 |website=VideoCardz |date=2022-09-23}}

AD104 Ada Lovelace

|35,800,000,000

|2022

|Nvidia

|TSMC

|4 nm

|294.5 mm2

|121,560,000

|

AD106 Ada Lovelace

|{{?}}

|2023

|Nvidia

|TSMC

|4 nm

|190 mm2

|{{?}}

|{{cite web

|url=https://www.tomshardware.com/news/nvidia-ad106-and-ad107-gpus-pictured

|title=Alleged Nvidia AD106 and AD107 GPU Pics, Specs, Die Sizes Revealed

|website=Tom's Hardware

|date=2023-02-03

}}{{cite web

|url=https://wccftech.com/nvidia-geforce-rtx-4060-ti-ad106-350-gpu-pictured-uses-samsung-gddr6-dies/

|title=NVIDIA GeForce RTX 4060 Ti "AD106-350" GPU Pictured, Uses Samsung GDDR6 Dies

|website=WCCFtech

|date=2023-04-28

}}

AD107 Ada Lovelace

|{{?}}

|2023

|Nvidia

|TSMC

|4 nm

|146 mm2

|{{?}}

|{{cite web

|url=https://wccftech.com/nvidias-smallest-ada-gpu-the-ad107-400-for-geforce-rtx-4060-gpus-pictured/

|title=NVIDIA's Smallest Ada GPU, The AD107-400, For GeForce RTX 4060 GPUs Pictured

|website=WCCFtech

|date=2023-05-21

}}

Navi 31 RDNA3

|57,700,000,000 (MCM)
45,400,000,000 (GCD)
6×2,050,000,000 (MCD)

|2022

|AMD

|TSMC

|5 nm (GCD)
6 nm (MCD)

|531 mm2 (MCM)
306 mm2 (GCD)
6×37.5 mm2 (MCD)

|109,200,000 (MCM)
132,400,000 (GCD)
54,640,000 (MCD)

|{{cite press release |title=AMD Unveils World's Most Advanced Gaming Graphics Cards, Built on Groundbreaking AMD RDNA 3 Architecture with Chiplet Design |url=https://www.amd.com/en/press-releases/2022-11-03-amd-unveils-world-s-most-advanced-gaming-graphics-cards-built |website=AMD |date=2022-11-03}}{{cite web |title=AMD Announces the $999 Radeon RX 7900 XTX... (endnote RX-819) |url=https://www.techpowerup.com/300632/amd-announces-the-usd-999-radeon-rx-7900-xtx-and-usd-899-rx-7900-xt-5nm-rdna3-displayport-2-1-fsr-3-0-fluidmotion |website=TechPowerUp |date=2022-11-04}}{{Cite web |title=AMD Navi 31 GPU Specs |url=https://www.techpowerup.com/gpu-specs/amd-navi-31.g998 |website=TechPowerUp |language=en |access-date=November 7, 2023}}

Navi 32 RDNA3

|28,100,000,000 (MCM)

|2023

|AMD

|TSMC

|5 nm (GCD)
6 nm (MCD)

|350 mm2 (MCM)
200 mm2 (GCD)
4×37.5 mm2 (MCD)

|80,200,000 (MCM)

|{{Cite web |title=AMD Navi 32 GPU Specs |url=https://www.techpowerup.com/gpu-specs/amd-navi-32.g1000 |website=TechPowerUp |language=en |access-date=November 7, 2023}}

Navi 33 RDNA3

|13,300,000,000

|2023

|AMD

|TSMC

|6 nm

|204 mm2

|65,200,000

|{{Cite web |title=AMD Navi 33 GPU Specs |url=https://www.techpowerup.com/gpu-specs/amd-navi-33.g1001 |website=TechPowerUp |language=en |access-date=March 21, 2023}}

Aqua Vanjaram CDNA3

|153,000,000,000 (MCM)

|2023

|AMD

|TSMC

|5 nm (GCD)
6 nm (MCD)

|{{?}}

|{{?}}

|{{Cite web|title=AMD Has a GPU to Rival Nvidia's H100|url=https://www.hpcwire.com/2023/06/13/amd-has-a-gpu-to-rival-nvidias-h100/|access-date=2023-06-14|website=HPCWire|date=June 13, 2023 |language=en}}{{Cite web |title=AMD Aqua Vanjaram Specs |url=https://www.techpowerup.com/gpu-specs/amd-aqua-vanjaram.g1023 |website=TechPowerUp |access-date=January 14, 2024}}

GB200 Grace Blackwell

|208,000,000,000 (MCM)

|2024

|Nvidia

|TSMC

|4 nm 

|{{?}}

|{{?}}

|{{cite press release | url=https://www.globenewswire.com/news-release/2024/03/18/2848181/0/en/NVIDIA-Blackwell-Platform-Arrives-to-Power-a-New-Era-of-Computing.html | title=NVIDIA Blackwell Platform Arrives to Power a New Era of Computing | date=March 18, 2024 }}

GB202 Blackwell (RTX 5090)

|92,200,000,000

|2025

|Nvidia

|TSMC

|4 nm 

|750 mm2

|122,600,000

|{{Cite web |date=2025-01-17 |title=NVIDIA GeForce RTX 5090 Specs |url=https://www.techpowerup.com/gpu-specs/geforce-rtx-5090.c4216 |access-date=2025-01-17 |website=TechPowerUp |language=en}}

Processor

! data-sort-type="number" | Transistor count

! Year

! Designer(s)

! Fab(s)

! data-sort-type="number" | MOS process

! data-sort-type="number" | Area

! data-sort-type="number" | Transistor
density
(tr./mm2)

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

= FPGA =

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.

class="wikitable sortable"
FPGA

! data-sort-type="number" | Transistor count

! Date of introduction

! Designer

! Manufacturer

! data-sort-type="number" | Process

! data-sort-type="number" | Area

! data-sort-type="number" | Transistor density, tr./mm2

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

Virtex

|70,000,000

|1997

|Xilinx

|

|

|

|

|rowspan="5" |

Virtex-E

|200,000,000

|1998

|Xilinx

|

|

|

|

Virtex-II

|350,000,000

|2000

|Xilinx

|

|130 nm

|

|

Virtex-II PRO

|430,000,000

|2002

|Xilinx

|

|

|

|

Virtex-4

|1,000,000,000

|2004

|Xilinx

|

|90 nm

|

|

Virtex-5

|1,100,000,000

|2006

|Xilinx

|TSMC

|65 nm

|

|

|"[https://web.archive.org/web/20081023020234/http://www.sda-asia.com/sda/features/psecom,id,734,srn,2,nodeid,21,_language,Singapore.html Taiwan Company UMC Delivers 65nm FPGAs to Xilinx]." SDA-ASIA Thursday, November 9, 2006.

Stratix IV

|2,500,000,000

|2008

|Altera

|TSMC

|40 nm

|

|

|"{{cite web| url= http://www.pldesignline.com/207800871| title= Altera's new 40nm FPGAs — 2.5 billion transistors!| work= pldesignline.com| access-date= January 22, 2009| archive-date= June 19, 2010| archive-url= https://web.archive.org/web/20100619104139/http://www.pldesignline.com/207800871| url-status= dead}}

Stratix V

|3,800,000,000

|2011

|Altera

|TSMC

|28 nm

|

|

|{{cn|date=May 2024}}

Arria 10

|5,300,000,000

|2014

|Altera

|TSMC

|20 nm

|

|

|{{cite web | url= https://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-5-FPGAs-epub/HC26.12.510-SoC-FPGA-20nm-Vest-Altera.pdf | title= Design of a High-Density SoC FPGA at 20nm | date= 2014 | access-date= July 16, 2017 | archive-date= April 23, 2016 | archive-url= https://web.archive.org/web/20160423215925/http://www.hotchips.org/wp-content/uploads/hc_archives/hc26/HC26-12-day2-epub/HC26.12-5-FPGAs-epub/HC26.12.510-SoC-FPGA-20nm-Vest-Altera.pdf | url-status= dead }}

Virtex-7 2000T

|6,800,000,000

|2011

|Xilinx

|TSMC

|28 nm

|

|

|{{cite magazine|url=https://www.eetimes.com/document.asp?doc_id=1316816|magazine=EETimes|publisher=AspenCore|date=October 2011|access-date=September 4, 2019|title=New Xilinx Virtex-7 2000T FPGA provides equivalent of 20 million ASIC gates|first=Clive|last=Maxfield}}

Stratix 10 SX 2800

|17,000,000,000

|TBD

|Intel

|Intel

|14 nm

|560 mm2

|30,400,000

|{{Cite book|last1=Greenhill|first1=D.|last2=Ho|first2=R.|last3=Lewis|first3=D.|last4=Schmit|first4=H.|last5=Chan|first5=K. H.|last6=Tong|first6=A.|last7=Atsatt|first7=S.|last8=How|first8=D.|last9=McElheny|first9=P.|title=2017 IEEE International Solid-State Circuits Conference (ISSCC) |chapter=3.3 a 14nm 1GHz FPGA with 2.5D transceiver integration |date=February 2017|pages=54–55|doi=10.1109/ISSCC.2017.7870257|isbn=978-1-5090-3758-2|s2cid=2135354}}{{Cite web|url=https://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/3-3-a-14nm-1ghz-fpga-with-2-5d-transceiver-integration-dOpKM0jD74|title=3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration {{!}} DeepDyve|date=2017-05-17|access-date=2019-09-19|archive-url=https://web.archive.org/web/20170517193955/https://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/3-3-a-14nm-1ghz-fpga-with-2-5d-transceiver-integration-dOpKM0jD74|archive-date=May 17, 2017}}

Virtex-Ultrascale VU440

|20,000,000,000

|Q1 2015

|Xilinx

|TSMC

|20 nm

|

|

|{{cite magazine|url=http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf|magazine=Xcell journal|publisher=Xilinx|issue=86|date=May 2014|access-date=June 3, 2014|title=Xilinx Ships Industry's First 20-nm All Programmable Devices|first=Mike|last=Santarini|page=14}}{{Cite web|url=https://www.xilinx.com/news/press/2015/xilinx-delivers-the-industry-s-first-4m-logic-cell-device-offering-50m-equivalent-asic-gates-and-4x-more-capacity-than-competitive-alternatives.html|title=Xilinx Delivers the Industry's First 4M Logic Cell Device, Offering >50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives|website=www.xilinx.com|last=Gianelli|first=Silvia|date=January 2015|access-date=2019-08-22}}

Virtex-Ultrascale+ VU19P

|35,000,000,000

|2020

|Xilinx

|TSMC

|16 nm

|900 mm2{{efn|name=estimate_fn|Estimate}}

|38,900,000

|{{Cite web|url=https://www.xilinx.com/news/press/2019/xilinx-announces-the-world-s-largest-fpga-featuring-9-million-system-logic-cells.html|title=Xilinx Announces the World's Largest FPGA Featuring 9 Million System Logic Cells|website=www.xilinx.com|last=Sims|first=Tara|date=August 2019|access-date=2019-08-22}}{{Cite web|url=https://www.tomshardware.com/news/xilinx-world-largest-fpga,40212.html|title=Xilinx Introduces World's Largest FPGA With 35 Billion Transistors|website=www.tomshardware.com|first=Arne|last=Verheyde|date=August 2019|access-date=2019-08-23}}{{Cite web|url=https://www.anandtech.com/show/14798/xilinx-announces-world-largest-fpga-virtex-ultrascale-vu19p-with-9m-cells|title=Xilinx Announces World Largest FPGA: Virtex Ultrascale+ VU19P with 9m Cells|website=www.anandtech.com|first=Ian|last=Cutress|date=August 2019|access-date=2019-09-25}}

Versal VC1902

|37,000,000,000

|2H 2019

|Xilinx

|TSMC

|7 nm

|

|

|{{Cite news|url=https://fudzilla.com/news/ai/48791-xilinx-7nm-versal-taped-out-last-year|title=Xilinx 7nm Versal taped out last year|date=May 2019|last=Abazovic|first=Fuad|access-date=2019-09-30}}{{Cite news|url=https://www.anandtech.com/show/14768/hot-chips-31-live-blogs-xilinx-versal-ai-engine|title=Hot Chips 31 Live Blogs: Xilinx Versal AI Engine|date=August 2019|last=Cutress|first=Ian|access-date=2019-09-30}}{{Cite news|url=https://www.electronicproducts.com/News/Hot_Chips_2019_highlights_new_AI_strategies.aspx|title=Hot Chips 2019 highlights new AI strategies|date=August 2019|last=Krewell|first=Kevin|access-date=2019-09-30}}

Stratix 10 GX 10M

|43,300,000,000

|Q4 2019

|Intel

|Intel

|14 nm

|1,400 mm2{{efn|name=estimate_fn}}

|30,930,000

|{{Cite news|url=https://blogs.intel.com/psg/intel-announces-intel-stratix-10-gx-10m-fpga-worlds-highest-capacity-with-10-2-million-logic-elements-targets-asic-prototyping-and-emulation-markets/|title=Intel announces Intel Stratix 10 GX 10M FPGA, worlds highest capacity with 10.2 million logic elements|date=2019-11-06|last=Leibson|first=Steven|access-date=2019-11-07}}{{Cite news|url=https://www.tomshardware.com/news/intel-introduces-worlds-largest-fpga-with-433-billion-transistors|title=Intel Introduces World's Largest FPGA With 43.3 Billion Transistors|date=2019-11-06|last=Verheyde|first=Arne|access-date=2019-11-07}}

Versal VP1802

|92,000,000,000

|2021 {{?}}{{efn|Versal Premium are confirmed to be shipping in 1H 2021 but nothing was mentioned about the VP1802 in particular. Usually Xilinx makes separate news for the release of its biggest devices so the VP1802 is likely to be released later.}}

|Xilinx

|TSMC

|7 nm

|

|

|{{Cite news|url=https://www.anandtech.com/show/16002/hot-chips-2020-live-blog-xilinx-versal-acaps-900am-pt|title=Hot Chips 2020 Live Blog: Xilinx Versal ACAPs|date=August 2020|last=Cutress|first=Ian|access-date=2020-09-09}}{{Cite news|url=https://www.xilinx.com/news/press/2021/xilinx-announces-full-production-shipments-of-7nm-versal-ai-core-and-versal-prime-series-devices.html|title=Xilinx Announces Full Production Shipments of 7nm Versal AI Core and Versal Prime Series Devices|date=April 27, 2021|access-date=2021-05-08}}

= Memory =

{{See also|Random-access memory#Timeline|flash memory#Timeline|read-only memory#Timeline}}

Semiconductor memory is an electronic data storage device, often used as computer memory, implemented on integrated circuits. Nearly all semiconductor memories since the 1970s have used MOSFETs (MOS transistors), replacing earlier bipolar junction transistors. There are two major types of semiconductor memory: random-access memory (RAM) and non-volatile memory (NVM). In turn, there are two major RAM types: dynamic random-access memory (DRAM) and static random-access memory (SRAM), as well as two major NVM types: flash memory and read-only memory (ROM).

Typical CMOS SRAM consists of six transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not{{clarify|date=June 2023}} is used to store 1 or 0. In flash memory, the data is stored in floating gates, and the resistance of the transistor is sensed{{clarify|date=June 2023}} to interpret the data stored. Depending on how fine scale the resistance could be separated{{clarify|date=June 2023}}, one transistor could store up to three bits, meaning eight distinctive levels of resistance possible per transistor. However, a finer scale comes with the cost of repeatability issues, and hence reliability. Typically, low grade 2-bits MLC flash is used for flash drives, so a 16 GB flash drive contains roughly 64 billion transistors.

For SRAM chips, six-transistor cells (six transistors per bit) was the standard. DRAM chips during the early 1970s had three-transistor cells (three transistors per bit), before single-transistor cells (one transistor per bit) became standard since the era of 4{{nbsp}}Kb DRAM in the mid-1970s.{{cite web |title=Late 1960s: Beginnings of MOS memory |url=http://www.shmj.or.jp/english/pdf/ic/exhibi718E.pdf |website=Semiconductor History Museum of Japan |date=2019-01-23 |access-date=27 June 2019}}{{cite web |title=1970: Semiconductors compete with magnetic cores |url=https://www.computerhistory.org/storageengine/semiconductors-compete-with-magnetic-cores/ |website=Computer History Museum |access-date=19 June 2019}} In single-level flash memory, each cell contains one floating-gate MOSFET (one transistor per bit),{{cite web |title=2.1.1 Flash Memory |url=http://www.iue.tuwien.ac.at/phd/windbacher/node14.html |website=TU Wien |access-date=20 June 2019}} whereas multi-level flash contains 2, 3 or 4 bits per transistor.

Flash memory chips are commonly stacked up in layers, up to 128-layer in production,{{Cite web|url=https://www.anandtech.com/show/14589/sk-hynix-128-layer-4d-nand|title=SK Hynix Starts Production of 128-Layer 4D NAND, 176-Layer Being Developed|last=Shilov|first=Anton|website=www.anandtech.com|access-date=2019-09-16}} and 136-layer managed,{{Cite web|url=https://pcper.com/2019/08/samsung-begins-production-of-100-layer-sixth-generation-v-nand-flash/|title=Samsung Begins Production of 100+ Layer Sixth-Generation V-NAND Flash|date=2019-08-11|website=PC Perspective|access-date=2019-09-16}} and available in end-user devices up to 69-layer from manufacturers.

class="wikitable sortable" style="text-align:center"

|+ Random-access memory (RAM)

! Chip name

! Capacity (bits)

! RAM type

! data-sort-type="number" | Transistor count

! Date of introduction

! Manufacturer(s)

! data-sort-type="number" | Process

! data-sort-type="number" | Area

! data-sort-type="number" | Transistor
density
(tr./mm2)

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

{{n/a}}

|1-bit

|SRAM (cell)

|6

|1963

|Fairchild

|{{n/a}}

|{{n/a}}

|{{?}}

|{{cite web |title=1966: Semiconductor RAMs Serve High-speed Storage Needs |url=https://www.computerhistory.org/siliconengine/semiconductor-rams-serve-high-speed-storage-needs/ |website=Computer History Museum |access-date=19 June 2019}}

{{n/a}}

|1-bit

|DRAM (cell)

|1

|1965

|Toshiba

|{{n/a}}

|{{n/a}}

|{{?}}

|{{cite web|url=http://www.oldcalculatormuseum.com/s-toshbc1411.html|title=Specifications for Toshiba "TOSCAL" BC-1411|website=Old Calculator Web Museum|access-date=8 May 2018|url-status=live|archive-url=https://web.archive.org/web/20170703071307/http://www.oldcalculatormuseum.com/s-toshbc1411.html|archive-date=3 July 2017}}{{cite web|url=http://www.oldcalculatormuseum.com/toshbc1411.html |title=Toshiba "Toscal" BC-1411 Desktop Calculator|website=Old Calculator Web Museum|url-status=live|archive-url=https://web.archive.org/web/20070520202433/http://www.oldcalculatormuseum.com/toshbc1411.html |archive-date=2007-05-20}}

{{?}}

|8-bit

|SRAM (bipolar)

|48

|1965

|SDS, Signetics

|{{?}}

|{{?}}

|{{?}}

|

SP95

|16-bit

|SRAM (bipolar)

|80

|1965

|IBM

|{{?}}

|{{?}}

|{{?}}

|{{cite news |last=Castrucci|first=Paul |title=IBM first in IC memory |url=https://archive.computerhistory.org/resources/access/text/2017/02/102770626-05-01-acc.pdf |work=IBM News |volume=3|issue=9 |via=Computer History Museum |date=May 10, 1966 |publisher=IBM Corporation |access-date=19 June 2019}}

TMC3162

|16-bit

|SRAM (TTL)

|96

|1966

|Transitron

|{{n/a}}

|{{?}}

|{{?}}

|

rowspan="4" |{{?}}

|{{?}}

|SRAM (MOS)

|{{?}}

|1966

|NEC

|{{?}}

|{{?}}

|{{?}}

|

256-bit

|DRAM (IC)

|256

|1968

|Fairchild

|{{?}}

|{{?}}

|{{?}}

|

64-bit

|SRAM (PMOS)

|384

|1968

|Fairchild

|rowspan="2" | {{?}}

|rowspan="2" | {{?}}

|rowspan="2" |{{?}}

|rowspan="2" |

144-bit

|SRAM (NMOS)

|864

|1968

|NEC

1101

|256-bit

|SRAM (PMOS)

|1,536

|1969

|Intel

|12,000 nm

|{{?}}

|{{?}}

|{{cite web|url=http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf|title=A chronological list of Intel products. The products are sorted by date.|date=July 2005|work=Intel museum|publisher=Intel Corporation|archive-url=https://web.archive.org/web/20070809053720/http://download.intel.com/museum/research/arc_collect/timeline/TimelineDateSort7_05.pdf|archive-date=August 9, 2007|access-date=July 31, 2007}}{{cite web |title=1970s: SRAM evolution |url=http://www.shmj.or.jp/english/pdf/ic/exhibi724E.pdf |website=Semiconductor History Museum of Japan |access-date=27 June 2019}}{{cite book |last1=Pimbley |first1=J. |title=Advanced CMOS Process Technology |date=2012 |publisher=Elsevier |isbn=9780323156806 |page=7 |url=https://books.google.com/books?id=8EUWHSqevQoC&pg=PA7}}

1102

|1 Kb

|DRAM (PMOS)

|3,072

|1970

|Intel, Honeywell

|{{?}}

|{{?}}

|{{?}}

|

1103

|1 Kb

|DRAM (PMOS)

|3,072

|1970

|Intel

|8,000 nm

|10 mm2

|307

|{{cite web |title=Intel: 35 Years of Innovation (1968–2003) |url=https://www.intel.com/Assets/PDF/General/35yrs.pdf |publisher=Intel |year=2003 |access-date=26 June 2019 |archive-url=https://web.archive.org/web/20211104070452/https://www.intel.com/Assets/PDF/General/35yrs.pdf |archive-date=4 November 2021 |url-status=dead}}[http://history-computer.com/ModernComputer/Basis/dram.html The DRAM memory of Robert Dennard] history-computer.com{{cite book |last1=Lojek |first1=Bo |title=History of Semiconductor Engineering |date=2007 |publisher=Springer Science & Business Media |isbn=9783540342588 |pages=362–363 |url=https://books.google.com/books?id=2cu1Oh_COv8C&pg=PA362 |quote=The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm2 memory cell size, a die size just under 10 mm2, and sold for around $21.}}

μPD403

|1 Kb

|DRAM (NMOS)

|3,072

|1971

|NEC

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=Manufacturers in Japan enter the DRAM market and integration densities are improved |url=http://www.shmj.or.jp/english/pdf/ic/exhibi745E.pdf |website=Semiconductor History Museum of Japan |access-date=27 June 2019}}

{{?}}

|2 Kb

|DRAM (PMOS)

|6,144

|1971

|General Instrument

|{{?}}

|12.7 mm2

|484

|{{cite web |last1=Gealow |first1=Jeffrey Carl |title=Impact of Processing Technology on DRAM Sense Amplifier Design |url=https://core.ac.uk/download/pdf/4426308.pdf |publisher=Massachusetts Institute of Technology |via=CORE |date=10 August 1990 |pages=149–166 |access-date=25 June 2019}}

2102

|1 Kb

|SRAM (NMOS)

|6,144

|1972

|Intel

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=Silicon Gate MOS 2102A |url=https://drive.google.com/file/d/0B9rh9tVI0J5mMmZlYWRlMDQtNDYzYS00OWJkLTg4YzYtZDYzMzc5Y2ZlYmVk/view |publisher=Intel |access-date=27 June 2019}}

{{?}}

|8 Kb

|DRAM (PMOS)

|8,192

|1973

|IBM

|{{?}}

|18.8 mm2

|436

|

5101

|1 Kb

|SRAM (CMOS)

|6,144

|1974

|Intel

|{{?}}

|{{?}}

|{{?}}

|

2116

|16 Kb

|DRAM (NMOS)

|16,384

|1975

|Intel

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=One of the Most Successful 16K Dynamic RAMs: The 4116 |url=http://smithsonianchips.si.edu/augarten/p50.htm |website=National Museum of American History |publisher=Smithsonian Institution |access-date=20 June 2019}}

2114

|4 Kb

|SRAM (NMOS)

|24,576

|1976

|Intel

|{{?}}

|{{?}}

|{{?}}

|{{cite book |title=Component Data Catalog |date=1978 |publisher=Intel |pages=3–94 |url=http://bitsavers.trailing-edge.com/components/intel/_dataBooks/1978_Intel_Component_Data_Catalog.pdf |access-date=27 June 2019}}

rowspan="14" |{{?}}

|4 Kb

|SRAM (CMOS)

|24,576

|1977

|Toshiba

|{{?}}

|{{?}}

|{{?}}

|

rowspan="2" | 64 Kb

|DRAM (NMOS)

|65,536

|1977

|NTT

|{{?}}

|35.4 mm2

|1851

|

DRAM (VMOS)

|65,536

|1979

|Siemens

|{{?}}

|25.2 mm2

|2601

|

16 Kb

|SRAM (CMOS)

|98,304

|1980

|Hitachi, Toshiba

|{{?}}

|{{?}}

|{{?}}

|{{cite web|url=http://maltiel-consulting.com/Semiconductor_technology_memory.html|title=Memory|website=STOL (Semiconductor Technology Online)|access-date=25 June 2019|archive-date=November 2, 2023|archive-url=https://web.archive.org/web/20231102131915/http://maltiel-consulting.com/Semiconductor_technology_memory.html|url-status=dead}}

rowspan="2" | 256 Kb

| rowspan="2" | DRAM (NMOS)

| rowspan="2" | 262,144

| rowspan="2" | 1980

|NEC

|1,500 nm

|41.6 mm2

|6302

|

NTT

|1,000 nm

|34.4 mm2

|7620

|

64 Kb

|SRAM (CMOS)

|393,216

|1980

|Matsushita

|{{?}}

|{{?}}

|{{?}}

|

288 Kb

|DRAM

|294,912

|1981

|IBM

|{{?}}

|25 mm2

|11,800

|{{cite web |title=The Cutting Edge of IC Technology: The First 294,912-Bit (288K) Dynamic RAM |url=http://smithsonianchips.si.edu/augarten/p66.htm |website=National Museum of American History |publisher=Smithsonian Institution |access-date=20 June 2019}}

64 Kb

|SRAM (NMOS)

|393,216

|1982

|Intel

|1,500 nm

|{{?}}

|{{?}}

|

256 Kb

|SRAM (CMOS)

|1,572,864

|1984

|Toshiba

|1,200 nm

|{{?}}

|{{?}}

|

8 Mb

|DRAM

|8,388,608

|{{sort|1984|January 5, 1984}}

|Hitachi

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=Computer History for 1984 |url=https://www.computerhope.com/history/1984.htm |website=Computer Hope |access-date=25 June 2019}}{{cite journal |title=Japanese Technical Abstracts |journal=Japanese Technical Abstracts |date=1987 |volume=2 |issue=3–4 |page=161 |url=https://books.google.com/books?id=Fa0kAQAAIAAJ |publisher=University Microfilms |quote=The announcement of 1M DRAM in 1984 began the era of megabytes.}}

16 Mb

|DRAM (CMOS)

|16,777,216

|1987

|NTT

|700 nm

|148 mm2

|113,400

|

4 Mb

|SRAM (CMOS)

|25,165,824

|1990

|NEC, Toshiba, Hitachi, Mitsubishi

|{{?}}

|rowspan="2" | {{?}}

|rowspan="2" | {{?}}

|rowspan="2" |

64 Mb

|DRAM (CMOS)

|67,108,864

|1991

|Matsushita, Mitsubishi, Fujitsu, Toshiba

|400 nm

KM48SL2000

|16 Mb

|SDRAM

|16,777,216

|1992

|Samsung

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=KM48SL2000-7 Datasheet |url=https://www.datasheetarchive.com/KM48SL2000-7-datasheet.html |publisher=Samsung |access-date=19 June 2019 |date=August 1992}}{{cite journal |title=Electronic Design |journal=Electronic Design |date=1993 |volume=41 |issue=15–21 |url=https://books.google.com/books?id=QmpJAQAAIAAJ |publisher=Hayden Publishing Company |quote=The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.}}

rowspan="14" |{{?}}

|16 Mb

|SRAM (CMOS)

|100,663,296

|1992

|Fujitsu, NEC

|400 nm

|rowspan="2" | {{?}}

|rowspan="2" | {{?}}

|rowspan="2" |

256 Mb

|DRAM (CMOS)

|268,435,456

|1993

|Hitachi, NEC

|250 nm

rowspan="4" | 1 Gb

|rowspan="2" | DRAM

|rowspan="2" | 1,073,741,824

|rowspan="2" | {{sort|1995|January 9, 1995}}

|NEC

|250 nm

|{{?}}

|{{?}}

|rowspan="2" | Breaking the gigabit barrier, DRAMs at ISSCC portend major system-design impact. (dynamic random access memory; International Solid-State Circuits Conference; Hitachi Ltd. and NEC Corp. research and development), January 9, 1995{{cite web|url=http://smithsonianchips.si.edu/ice/cd/PROF96/JAPAN.PDF|title=Japanese Company Profiles|year=1996|publisher=Smithsonian Institution|access-date=27 June 2019}}

Hitachi

|160 nm

|{{?}}

|{{?}}

SDRAM

|1,073,741,824

|1996

|Mitsubishi

|150 nm

|{{?}}

|{{?}}

|

SDRAM (SOI)

|1,073,741,824

|1997

|Hyundai

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=History: 1990s |url=https://www.skhynix.com/eng/about/history1990.jsp |website=SK Hynix |access-date=6 July 2019 |archive-date=February 5, 2021 |archive-url=https://web.archive.org/web/20210205032928/https://www.skhynix.com/eng/about/history1990.jsp |url-status=dead }}

rowspan="2" | 4 Gb

|DRAM (4-bit)

|1,073,741,824

|1997

|NEC

|150 nm

|{{?}}

|{{?}}

|

DRAM

|4,294,967,296

|1998

|Hyundai

|{{?}}

|{{?}}

|{{?}}

|

8 Gb

|SDRAM (DDR3)

|8,589,934,592

|{{sort|2008|April 2008}}

| rowspan="2" |Samsung

| rowspan="2" |50 nm

| rowspan="2" |{{?}}

| rowspan="2" |{{?}}

| rowspan="2" |{{cite news |title=Samsung 50nm 2GB DDR3 chips are industry's smallest |url=https://www.slashgear.com/samsung-50nm-2gb-ddr3-chips-are-industrys-smallest-2917676/ |access-date=25 June 2019 |work=SlashGear |date=29 September 2008}}

16 Gb

|SDRAM (DDR3)

|17,179,869,184

|2008

32 Gb

|SDRAM (HBM2)

|34,359,738,368

|2016

| rowspan="2" |Samsung

| rowspan="2" |20 nm

| rowspan="2" |{{?}}

| rowspan="2" |{{?}}

| rowspan="2" |{{cite news |last1=Shilov |first1=Anton |title=Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand |url=https://www.anandtech.com/show/11643/samsung-increases-8gb-hbm2-production-volume |access-date=29 June 2019 |work=AnandTech |date=July 19, 2017}}

64 Gb

|SDRAM (HBM2)

|68,719,476,736

|2017

128 Gb

|SDRAM (DDR4)

|137,438,953,472

|2018

|Samsung

|10 nm

|{{?}}

|{{?}}

|{{cite news |title=Samsung Unleashes a Roomy DDR4 256GB RAM |url=https://www.tomshardware.co.uk/samsung-256gb-ddr4-ram,news-59123.html |access-date=21 June 2019 |work=Tom's Hardware |date=6 September 2018 |archive-date=June 21, 2019 |archive-url=https://web.archive.org/web/20190621205106/https://www.tomshardware.co.uk/samsung-256gb-ddr4-ram,news-59123.html |url-status=dead }}

{{?}}

|RRAM{{Cite web|url=https://spectrum.ieee.org/first-3d-nanotube-and-rram-ics-come-out-of-foundry|title=First 3D Nanotube and RRAM ICs Come Out of Foundry|quote=This wafer was made just last Friday... and it's the first monolithic 3D IC ever fabricated within a foundry|date=19 July 2019|website=IEEE Spectrum: Technology, Engineering, and Science News|access-date=2019-09-16}} (3DSoC){{Cite web|url=https://www.darpa.mil/program/three-dimensional-monolithic-system-on-a-chip|title=Three Dimensional Monolithic System-on-a-Chip|website=www.darpa.mil|access-date=2019-09-16}}

|{{?}}

|2019

|SkyWater Technology{{Cite press release|url=https://www.skywatertechnology.com/press-releases/darpa-3dsoc-initiative-completes-first-year-update-provided-at-eri-summit-on-key-steps-achieved-to-transfer-technology-into-skywaters-200mm-u-s-foundry/|title=DARPA 3DSoC Initiative Completes First Year, Update Provided at ERI Summit on Key Steps Achieved to Transfer Technology into SkyWater's 200mm U.S. Foundry|date=2019-07-25|website=Skywater Technology Foundry|access-date=2019-09-16}}

|90 nm

|{{?}}

|{{?}}

|

class="wikitable sortable" style="text-align:center"

|+ Flash memory

! Chip name

! Capacity (bits)

! Flash type

! data-sort-type="number" | FGMOS transistor count

! Date of introduction

! Manufacturer(s)

! data-sort-type="number" | Process

! data-sort-type="number" | Area

! data-sort-type="number" | Transistor
density
(tr./mm2)

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

rowspan="4" |{{?}}

|256 Kb

|NOR

|262,144

|1985

|Toshiba

|2,000 nm

|rowspan="4" | {{?}}

|rowspan="4" | {{?}}

|rowspan="4" |

1 Mb

|NOR

|1,048,576

|1989

|Seeq, Intel

|{{?}}

4 Mb

|NAND

|4,194,304

|1989

|Toshiba

|1,000 nm

16 Mb

|NOR

|16,777,216

|1991

|Mitsubishi

|600 nm

DD28F032SA

|32 Mb

|NOR

|33,554,432

|1993

|Intel

|{{?}}

|280 mm2

|120,000

|{{cite web |title=DD28F032SA Datasheet |url=http://www.datasheetcatalog.com/datasheets_pdf/D/D/2/8/DD28F032SA.shtml |publisher=Intel |access-date=27 June 2019}}

rowspan="11" | {{?}}

| rowspan="2" | 64 Mb

|NOR

|67,108,864

|1994

|NEC

|rowspan="2" | 400 nm

|rowspan="4" | {{?}}

|rowspan="4" | {{?}}

|rowspan="4" |

NAND

|67,108,864

|1996

|Hitachi

128 Mb

|NAND

|134,217,728

|1996

|Samsung, Hitachi

|{{?}}

256 Mb

|NAND

|268,435,456

|1999

|Hitachi, Toshiba

|250 nm

512 Mb

|NAND

|536,870,912

|2000

|Toshiba

|{{?}}

|{{?}}

|{{?}}

|{{cite news |title=TOSHIBA ANNOUNCES 0.13 MICRON 1Gb MONOLITHIC NAND FEATURING LARGE BLOCK SIZE FOR IMPROVED WRITE/ERASE SPEED PERFORMANCE |url=http://www.toshiba.com/taec/news/press_releases/2002/to-230.jsp |archive-url=https://web.archive.org/web/20060311224004/http://www.toshiba.com/taec/news/press_releases/2002/to-230.jsp |url-status=dead |archive-date=March 11, 2006 |access-date=11 March 2006 |publisher=Toshiba |date=September 9, 2002}}

rowspan="2" |1 Gb

| rowspan="2" |2-bit NAND

| rowspan="2" |536,870,912

| rowspan="2" |2001

|Samsung

|{{?}}

|{{?}}

|{{?}}

|

Toshiba, SanDisk

|160 nm

|{{?}}

|{{?}}

|{{cite news |title=TOSHIBA AND SANDISK INTRODUCE A ONE GIGABIT NAND FLASH MEMORY CHIP, DOUBLING CAPACITY OF FUTURE FLASH PRODUCTS |url=http://www.toshiba.co.jp/about/press/2001_11/pr1202.htm |access-date=20 June 2019 |publisher=Toshiba |date=12 November 2001}}

2 Gb

|NAND

|2,147,483,648

|2002

|Samsung, Toshiba

|{{?}}

|{{?}}

|{{?}}

|{{cite web |title=Our Proud Heritage from 2000 to 2009 |url=https://www.samsung.com/semiconductor/about-us/history-03/ |website=Samsung Semiconductor |publisher=Samsung |access-date=25 June 2019}}{{cite news |title=TOSHIBA ANNOUNCES 1 GIGABYTE COMPACTFLASH CARD |url=http://www.toshiba.com/taec/news/press_releases/2002/to-231.jsp |archive-url=https://web.archive.org/web/20060311212118/http://www.toshiba.com/taec/news/press_releases/2002/to-231.jsp |url-status=dead |archive-date=March 11, 2006 |access-date=11 March 2006 |publisher=Toshiba |date=September 9, 2002}}

8 Gb

|NAND

|8,589,934,592

|2004

|Samsung

|60 nm

|{{?}}

|{{?}}

|

16 Gb

|NAND

|17,179,869,184

|2005

|Samsung

|50 nm

|rowspan="2" | {{?}}

|rowspan="2" | {{?}}

|rowspan="2" |

32 Gb

|NAND

|34,359,738,368

|2006

|Samsung

|40 nm

THGAM

|128 Gb

|Stacked NAND

|128,000,000,000

|{{sort|2007|April 2007}}

|Toshiba

|56 nm

|252 mm2

|507,900,000

|{{cite news |title=TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS |url=http://www.toshiba.com/taec/news/press_releases/2007/memy_07_470.jsp |archive-url=https://web.archive.org/web/20101123023805/http://www.toshiba.com/taec/news/press_releases/2007/memy_07_470.jsp |url-status=dead |archive-date=November 23, 2010 |access-date=23 November 2010 |work=Toshiba |date=April 17, 2007}}

THGBM

|256 Gb

|Stacked NAND

|256,000,000,000

|2008

|Toshiba

|43 nm

|353 mm2

|725,200,000

|{{cite news |title=Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices |url=https://www.toshiba.co.jp/about/press/2008_08/pr0701.htm |access-date=21 June 2019 |publisher=Toshiba |date=7 August 2008}}

THGBM2

|1 Tb

|Stacked 4-bit NAND

|256,000,000,000

|2010

|Toshiba

|32 nm

|374 mm2

|684,500,000

|{{cite news |title=Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules |url=https://www.toshiba.co.jp/about/press/2010_06/pr1701.htm |access-date=21 June 2019 |work=Toshiba |date=17 June 2010}}

KLMCG8GE4A

|512 Gb

|Stacked 2-bit NAND

|256,000,000,000

|2011

|Samsung

|{{?}}

|192 mm2

|1,333,000,000

|{{cite web |title=Samsung e·MMC Product family |url=http://www.mt-system.ru/sites/default/files/klmxgxge4a-x001mmc4_41_2ynm_based_emmc1_1.pdf |publisher=Samsung Electronics |date=December 2011 |access-date=15 July 2019 |archive-date=November 8, 2019 |archive-url=https://web.archive.org/web/20191108055325/http://www.mt-system.ru/sites/default/files/klmxgxge4a-x001mmc4_41_2ynm_based_emmc1_1.pdf |url-status=dead }}

KLUFG8R1EM

|4 Tb

|Stacked 3-bit V-NAND

|1,365,333,333,504

|2017

|Samsung

|{{?}}

|150 mm2

|9,102,000,000

|{{cite news|url=https://www.anandtech.com/show/12120/samsung-starts-production-of-512-gb-ufs-chips|title=Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads|last1=Shilov|first1=Anton|date=December 5, 2017|work=AnandTech|access-date=23 June 2019}}

eUFS (1{{nbsp}}TB)

|8 Tb

|Stacked 4-bit V-NAND

|2,048,000,000,000

|2019

|Samsung

|{{?}}

|150 mm2

|13,650,000,000

|{{cite news |last1=Manners |first1=David |title=Samsung makes 1TB flash eUFS module |url=https://www.electronicsweekly.com/news/business/samsung-makes-1tb-flash-module-2019-01/ |access-date=23 June 2019 |work=Electronics Weekly |date=30 January 2019}}{{cite news |last1=Tallis |first1=Billy |title=Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND |url=https://www.anandtech.com/show/13497/samsung-shares-ssd-roadmap-for-qlc-nand-and-96layer-3d-nand |access-date=27 June 2019 |work=AnandTech |date=October 17, 2018}}

{{?}}

|1 Tb

|232L TLC NAND die

|333,333,333,333

|2022

|Micron

|{{?}}

|68.5 mm2
(memory array)

|4,870,000,000
(14.6 Gbit/mm2)

|{{cite web

|url=https://www.anandtech.com/print/17509/microns-232-layer-nand-now-shipping

|title=Micron's 232 Layer NAND Now Shipping

|website=AnandTech

|date=2022-07-26

}}{{cite web

|url=https://www.micron.com/products/nand-flash/232-layer-nand

|title=232-Layer NAND

|website=Micron

|access-date=2022-10-17

}}{{cite web

|url=https://www.micron.com/about/blog/2022/july/first-to-market-second-to-none-the-worlds-first-232-layer-nand

|title=First to Market, Second to None: the World's First 232-Layer NAND

|website=Micron

|date=2022-07-26

}}{{cite web

|url=https://www.techinsights.com/blog/comparison-latest-3d-nand-products-ymtc-samsung-sk-hynix-and-micron

|title=Comparison: Latest 3D NAND Products from YMTC, Samsung, SK hynix and Micron

|website=TechInsights

|date=2023-01-11

}}

{{?}}

|16 Tb

|232L package

|5,333,333,333,333

|2022

|Micron

|{{?}}

|68.5 mm2
(memory array)

|77,900,000,000
(16×14.6 Gbit/mm2)

|

class="wikitable sortable" style="text-align:center"

|+ Read-only memory (ROM)

Chip name

! Capacity (bits)

! ROM type

! data-sort-type="number" | Transistor count

! Date of introduction

! Manufacturer(s)

! data-sort-type="number" | Process

! data-sort-type="number" | Area

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

rowspan="2" |{{?}}

|{{?}}

|PROM

|{{?}}

|1956

|Arma

|{{n/a}}

|{{?}}

|{{cite book|author=Han-Way Huang|title=Embedded System Design with C805|url=https://books.google.com/books?id=3zRtCgAAQBAJ&pg=PA22|date=5 December 2008|publisher=Cengage Learning|isbn=978-1-111-81079-5|page=22|url-status=live|archive-url=https://web.archive.org/web/20180427092847/https://books.google.com/books?id=3zRtCgAAQBAJ&pg=PA22|archive-date=27 April 2018}}{{cite book|author1=Marie-Aude Aufaure|author2=Esteban Zimányi|title=Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures|url=https://books.google.com/books?id=7iK5BQAAQBAJ&pg=PA136|date=17 January 2013|publisher=Springer|isbn=978-3-642-36318-4|page=136|url-status=live|archive-url=https://web.archive.org/web/20180427092847/https://books.google.com/books?id=7iK5BQAAQBAJ&pg=PA136|archive-date=27 April 2018}}

1 Kb

|ROM (MOS)

|1,024

|1965

|General Microelectronics

|{{?}}

|{{?}}

|{{cite web |title=1965: Semiconductor Read-Only-Memory Chips Appear |url=https://www.computerhistory.org/siliconengine/semiconductor-read-only-memory-chips-appear/ |website=Computer History Museum |access-date=20 June 2019}}

3301

|1 Kb

|ROM (bipolar)

|1,024

|1969

|Intel

|{{n/a}}

|{{?}}

|

1702

|2 Kb

|EPROM (MOS)

|2,048

|1971

|Intel

|{{?}}

|15 mm2

|{{cite web |title=1971: Reusable semiconductor ROM introduced |url=https://www.computerhistory.org/storageengine/reusable-semiconductor-rom-introduced/ |website=The Storage Engine |publisher=Computer History Museum |access-date=19 June 2019}}

{{?}}

|4 Kb

|ROM (MOS)

|4,096

|1974

|AMD, General Instrument

|{{?}}

|{{?}}

|

2708

|8 Kb

|EPROM (MOS)

|8,192

|1975

|Intel

|{{?}}

|{{?}}

|

{{?}}

|2 Kb

|EEPROM (MOS)

|2,048

|1976

|Toshiba

|{{?}}

|{{?}}

|{{cite journal|last1=Iizuka|first1=H.|last2=Masuoka|first2=F.|last3=Sato|first3=Tai|last4=Ishikawa|first4=M.|title=Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure|journal=IEEE Transactions on Electron Devices|date=1976|volume=23|issue=4|pages=379–387|doi=10.1109/T-ED.1976.18415|issn=0018-9383|bibcode=1976ITED...23..379I|s2cid=30491074}}

μCOM-43 ROM

|16 Kb

|PROM (PMOS)

|16,000

|1977

|NEC

|{{?}}

|{{?}}

|{{cite book |title=μCOM-43 SINGLE CHIP MICROCOMPUTER: USERS' MANUAL |date=January 1978 |publisher=NEC Microcomputers |url=https://en.wikichip.org/w/images/9/9c/%C2%B5COM-43_SINGLE_CHIP_MICROCOMPUTER_USERS_MANUAL.pdf |access-date=27 June 2019}}

2716

|16 Kb

|EPROM (TTL)

|16,384

|1977

|Intel

|{{n/a}}

|{{?}}

|{{cite web |title=2716: 16K (2K x 8) UV ERASABLE PROM |url=https://amigan.yatho.com/2716EPROM.pdf |publisher=Intel |access-date=27 June 2019 |archive-date=September 13, 2020 |archive-url=https://web.archive.org/web/20200913213609/https://amigan.yatho.com/2716EPROM.pdf |url-status=dead }}

EA8316F

|16 Kb

|ROM (NMOS)

|16,384

|1978

|Electronic Arrays

|{{?}}

|436 mm2

|{{cite web |title=1982 CATALOG |url=http://bitsavers.trailing-edge.com/components/nec/_dataBooks/1982_NEC_Microcomputer_Catalog.pdf |publisher=NEC Electronics |access-date=20 June 2019}}

2732

|32 Kb

|EPROM

|32,768

|1978

|Intel

|{{?}}

|{{?}}

|

2364

|64 Kb

|ROM

|65,536

|1978

|Intel

|{{?}}

|{{?}}

|{{cite book |title=Component Data Catalog |date=1978 |publisher=Intel |pages=1–3 |url=http://bitsavers.trailing-edge.com/components/intel/_dataBooks/1978_Intel_Component_Data_Catalog.pdf |access-date=27 June 2019}}

2764

|64 Kb

|EPROM

|65,536

|1981

|Intel

|3,500 nm

|rowspan="2" | {{?}}

|rowspan="2" |

27128

|128 Kb

|EPROM

|131,072

|1982

|Intel

|{{?}}

27256

|256 Kb

|EPROM (HMOS)

|262,144

|1983

|Intel

|{{?}}

|{{?}}

|{{cite web |title=27256 Datasheet |url=https://datasheet.octopart.com/D27256-2-Intel-datasheet-17852618.pdf |publisher=Intel |access-date=2 July 2019}}

rowspan="2" |{{?}}

|256 Kb

|EPROM (CMOS)

|262,144

|1983

|Fujitsu

|{{?}}

|{{?}}

|{{cite web |title=History of Fujitsu's Semiconductor Business |url=https://www.fujitsu.com/jp/group/fsl/en/business/semiconductor/history/ |publisher=Fujitsu |access-date=2 July 2019}}

512 Kb

|EPROM (NMOS)

|524,288

|1984

|AMD

|1,700 nm

|{{?}}

|

27512

|512 Kb

|EPROM (HMOS)

|524,288

|1984

|Intel

|{{?}}

|{{?}}

|{{cite web |title=D27512-30 Datasheet |url=https://www.datasheet.live/index.php?title=Special:PdfViewer&url=https%3A%2F%2Fpdf.datasheet.live%2Fe6dbd5cf%2Fintel.com%2FD27512-30.pdf |publisher=Intel |access-date=2 July 2019}}

rowspan="4" |{{?}}

|1 Mb

|EPROM (CMOS)

|1,048,576

|1984

|NEC

|1,200 nm

|rowspan="3" | {{?}}

|rowspan="3" |

4 Mb

|EPROM (CMOS)

|4,194,304

|1987

|Toshiba

|800 nm

rowspan="2" | 16 Mb

|EPROM (CMOS)

|16,777,216

|1990

|NEC

|600 nm

MROM

|16,777,216

|1995

|AKM, Hitachi

|{{?}}

|{{?}}

|

= Transistor computers =

File:IBM 7070.jpg card cage populated with Standard Modular System cards]]

{{main|Transistor computer}}

Before transistors were invented, relays were used in commercial tabulating machines and experimental early computers. The world's first working programmable, fully automatic digital computer,{{cite news|url=https://www.nytimes.com/1994/04/20/news/20iht-zuse.html|title=A Computer Pioneer Rediscovered, 50 Years On|date=April 20, 1994|newspaper=The New York Times|url-status=dead|archive-url=https://web.archive.org/web/20161104051054/http://www.nytimes.com/1994/04/20/news/20iht-zuse.html|archive-date=November 4, 2016|df=mdy-all}} the 1941 Z3 22-bit word length computer, had 2,600 relays, and operated at a clock frequency of about 4–5 Hz. The 1940 Complex Number Computer had fewer than 500 relays,{{Cite web|url=https://history-computer.com/ModernComputer/Relays/Stibitz.html|title=History of Computers and Computing, Birth of the modern computer, Relays computer, George Stibitz|quote=Initially the 'Complex Number Computer' performed only complex multiplication and division, but later a simple modification enabled it to add and subtract as well. It used about 400-450 binary relays, 6-8 panels, and ten multiposition, multipole relays called "crossbars" for temporary storage of numbers.|website=history-computer.com|access-date=2019-08-22}} but it was not fully programmable. The earliest practical computers used vacuum tubes and solid-state diode logic. ENIAC had 18,000 vacuum tubes, 7,200 crystal diodes, and 1,500 relays, with many of the vacuum tubes containing two triode elements.

The second generation of computers were transistor computers that featured boards filled with discrete transistors, solid-state diodes and magnetic memory cores. The experimental 1953 48-bit Transistor Computer, developed at the University of Manchester, is widely believed to be the first transistor computer to come into operation anywhere in the world (the prototype had 92 point-contact transistors and 550 diodes). A later version the 1955 machine had a total of 250 junction transistors and 1,300 point-contact diodes. The Computer also used a small number of tubes in its clock generator, so it was not the first {{Em|fully}} transistorized. The ETL Mark III, developed at the Electrotechnical Laboratory in 1956, may have been the first transistor-based electronic computer using the stored program method. It had about "130 point-contact transistors and about 1,800 germanium diodes were used for logic elements, and these were housed on 300 plug-in packages which could be slipped in and out." The 1958 decimal architecture IBM 7070 was the first transistor computer to be fully programmable. It had about 30,000 alloy-junction germanium transistors and 22,000 germanium diodes, on approximately 14,000 Standard Modular System (SMS) cards. The 1959 MOBIDIC, short for "MOBIle DIgital Computer", at 12,000 pounds (6.0 short tons) mounted in the trailer of a semi-trailer truck, was a transistorized computer for battlefield data.

The third generation of computers used integrated circuits (ICs).{{cite web |title=Brief History |url=http://museum.ipsj.or.jp/en/computer/main/history.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}} The 1962 15-bit Apollo Guidance Computer used "about 4,000 "Type-G" (3-input NOR gate) circuits" for about 12,000 transistors plus 32,000 resistors.{{Cite web|url=https://www.computerhistory.org/siliconengine/aerospace-systems-are-first-the-applications-for-ics-in-computers/|title=1962: Aerospace systems are first the applications for ICs in computers {{!}} The Silicon Engine {{!}} Computer History Museum|website=www.computerhistory.org|access-date=2019-09-02}}

The IBM System/360, introduced 1964, used discrete transistors in hybrid circuit packs. The 1965 12-bit PDP-8 CPU had 1409 discrete transistors and over 10,000 diodes, on many cards. Later versions, starting with the 1968 PDP-8/I, used integrated circuits. The PDP-8 was later reimplemented as a microprocessor as the Intersil 6100, see below.{{Cite web|url=https://www.pdp8.net/straight8/functional_restore.shtml|title=PDP-8 (Straight 8) Computer Functional Restoration|website=www.pdp8.net|access-date=2019-08-22|quote=backplanes contain 230 cards, approximately 10,148 diodes, 1409 transistors, 5615 resistors, and 1674 capacitors}}

The next generation of computers were the microcomputers, starting with the 1971 Intel 4004, which used MOS transistors. These were used in home computers or personal computers (PCs).

This list includes early transistorized computers (second generation) and IC-based computers (third generation) from the 1950s and 1960s.

class="wikitable sortable" style="text-align:center"
Computer

! data-sort-type="number" | Transistor count

! Year

! Manufacturer

! Notes

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

Transistor Computer

|92

|1953

|University of Manchester

|Point-contact transistors, 550 diodes. Lacked stored program capability.

|{{cite web |title=1953: Transistorized Computers Emerge |url=https://www.computerhistory.org/siliconengine/transistorized-computers-emerge/ |website=Computer History Museum |access-date=19 June 2019}}

TRADIC

|700

|1954

|Bell Labs

|Point-contact transistors

|

Transistor Computer (full size)

|250

|1955

|University of Manchester

|Discrete point-contact transistors, 1,300 diodes

|

IBM 608

|3,000

|1955

|IBM

|Germanium transistors

|{{cite web |title=IBM 608 calculator |url=https://www.ibm.com/ibm/history/exhibits/vintage/vintage_4506VV2214.html |website=IBM |date=January 23, 2003 |access-date=8 March 2021}}

ETL Mark III

|130

|1956

|Electrotechnical Laboratory

|Point-contact transistors, 1,800 diodes, stored program capability

|{{cite web |title=ETL Mark III Transistor-Based Computer |url=http://museum.ipsj.or.jp/en/computer/dawn/0011.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}}

Metrovick 950

|200

|1956

|Metropolitan-Vickers

|Discrete junction transistors

|

NEC NEAC-2201

|600

|1958

|NEC

|Germanium transistors

|{{cite web |title=【NEC】 NEAC-2201 |url=http://museum.ipsj.or.jp/en/computer/dawn/0018.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}}

Hitachi MARS-1

|1,000

|1958

|Hitachi

|

|{{cite web |title=【Hitachi and Japanese National Railways】 MARS-1 |url=http://museum.ipsj.or.jp/en/computer/dawn/0030.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}}

IBM 7070

|30,000

|1958

|IBM

|Alloy-junction germanium transistors, 22,000 diodes

|[https://www.computer.org/csdl/proceedings/afips/1958/5053/00/50530165.pdf The IBM 7070 Data Processing System. Avery et al.] (page 167)

Matsushita MADIC-I

|400

|1959

|Matsushita

|Bipolar transistors

|{{cite web |title=【Matsushita Electric Industrial】 MADIC-I transistor-based computer |url=http://museum.ipsj.or.jp/en/computer/dawn/0066.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}}

NEC NEAC-2203

|2,579

|1959

|NEC

|

|{{cite web |title=【NEC】 NEAC-2203 |url=http://museum.ipsj.or.jp/en/computer/dawn/0025.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}}

Toshiba TOSBAC-2100

|5,000

|1959

|Toshiba

|

|{{cite web |title=【Toshiba】 TOSBAC-2100 |url=http://museum.ipsj.or.jp/en/computer/dawn/0022.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}}

IBM 7090

|50,000

|1959

|IBM

|Discrete germanium transistors

|[https://web.archive.org/web/20050121014723/http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP7090.html 7090 Data Processing System]

PDP-1

|2,700

|1959

|Digital Equipment Corporation

|Discrete transistors

|

Olivetti Elea 9003

| ?

| 1959

| Olivetti

| 300,000 (?) discrete transistors and diodes

|

Luigi Logrippo.

[https://www.site.uottawa.ca/~luigi/papers/elea.htm "My first two computers: Elea 9003 and Elea 6001: Memories of a 'bare-metal' programmer"].

Mitsubishi MELCOM 1101

|3,500

|1960

|Mitsubishi

|Germanium transistors

|{{cite web |title=【Mitsubishi Electric】 MELCOM 1101 |url=http://museum.ipsj.or.jp/en/computer/dawn/0039.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}}

M18 FADAC

|1,600

|1960

|Autonetics

|Discrete transistors

|

CPU of IBM 7030 Stretch

|169,100

|1961

|IBM

|World's fastest computer from 1961 to 1964

|{{cite conference

|url=http://www.bitsavers.org/pdf/ibm/7030/Bloch_EngrDesOfStretch_1959.pdf

|title=The Engineering Design of the Stretch Computer

|author=Erich Bloch

|author-link=Erich Bloch

|conference=Eastern Joint Computer Conference

|year=1959

}}

D-17B

|1,521

|1962

|Autonetics

|Discrete transistors

|

NEC NEAC-L2

|16,000

|1964

|NEC

|Ge transistors

|{{cite web |title=【NEC】NEAC-L2 |url=http://museum.ipsj.or.jp/en/computer/main/0102.html |website=IPSJ Computer Museum |publisher=Information Processing Society of Japan |access-date=19 June 2019}}

CDC 6600 (entire computer)

|400,000

|1964

|Control Data Corporation

|World's fastest computer from 1964 to 1969

|{{cite book

|last=Thornton

|first=James

|author-link=James E. Thornton

|date=1970

|title=Design of a Computer: the Control Data 6600

|page=20

}}

IBM System/360

|?

|1964

|IBM

|Hybrid circuits

|

PDP-8 "Straight-8"

|1,409

|1965

|Digital Equipment Corporation

|discrete transistors, 10,000 diodes

|

PDP-8/S

|1,001

[https://www.ricomputermuseum.org/collections-gallery/equipment/pdp-8s "Digital Equipment PDP-8/S"].

[https://retrocomputingforum.com/t/the-pdp-8-s-an-exercise-in-cost-reduction/1599 "The PDP-8/S - an exercise in cost reduction"]

[http://computermuseum.informatik.uni-stuttgart.de/dev_en/pdp8s/index.html "PDP-8/S"]

|1966

|Digital Equipment Corporation

|discrete transistors, diodes

|

PDP-8/I

|1,409{{Citation needed|date=April 2022|reason=this seems to be the transistor count for the discrete-transistor "straight 8"; I expected the integrated circuit "PDP-8/I" to have roughly twice as many transistors.}}

|1968

[http://homepage.divms.uiowa.edu/~jones/pdp8/models/#PDP8I "The Digital Equipment Corporation PDP-8: Models and Options: The PDP-8/I"].

|Digital Equipment Corporation

|74 series TTL circuits

James F. O'Loughlin.

[http://bitsavers.org/magazines/Electronics/Electronics_V41_N19_19680916_PDP8I.pdf "PDP-8/I: bigger on the inside yet smaller on the outside"].

|

Apollo Guidance Computer Block I

|12,300

|1966

|Raytheon / MIT Instrumentation Laboratory

|4,100 ICs, each containing a 3-transistor, 3-input NOR gate. (Block II had 2,800 dual 3-input NOR gates ICs.)

|

= Logic functions =

Transistor count for generic logic functions is based on static CMOS implementation.Jan M. Rabaey, Digital Integrated Circuits, Fall 2001: [http://bwrc.eecs.berkeley.edu/Classes/ic541ca/ic541ca%5Ff01/Notes/chapter6.pdf Course Notes, Chapter 6: Designing Combinatorial Logic Gates in CMOS], retrieved October 27, 2012.

class="wikitable sortable" style="text-align: center;"
Function

! data-sort-type="number" | Transistor count

! class="unsortable"| Ref

NOT

|2

|rowspan="16" |

Buffer

|4

NAND 2-input

|4

NOR 2-input

|4

AND 2-input

|6

OR 2-input

|6

NAND 3-input

|6

NOR 3-input

|6

XOR 2-input

|6

XNOR 2-input

|8

MUX 2-input with TG

|6

MUX 4-input with TG

|18

NOT MUX 2-input

|8

MUX 4-input

|24

1-bit full adder

|24

1-bit adder–subtractor

|48

AND-OR-INVERT

|6

|{{cite book|author=Richard F. Tinder|title=Engineering Digital Design|url=https://books.google.com/books?id=C9HlLsKgIi0C|date=January 2000|publisher=Academic Press|isbn=978-0-12-691295-1}}

Latch, D gated

|8

|rowspan="2" |

Flip-flop, edge triggered dynamic D with reset

|12

8-bit multiplier

|3,000

|

16-bit multiplier

|9,000

|

32-bit multiplier

|21,000

|{{citation needed|date=June 2020}}

small-scale integration

|2–100

|{{cite book |edition=7th |id=IEEE Std 100-2000 |year=2000 |doi=10.1109/IEEESTD.2000.322230 |isbn=978-0-7381-2601-2 |last1=Engineers |first1=Institute of Electrical Electronics |title=100-2000 |url=https://repositorio.unal.edu.co/handle/unal/79391 }}

medium-scale integration

|100–500

|

large-scale integration

|500–20,000

|

very-large-scale integration

|20,000–1,000,000

|

ultra-large scale integration

|>1,000,000

|

= Parallel systems =

Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.

{{cite journal |first=Kevin |last=Smith |title=Image processor handles 256 pixels simultaneously |journal=Electronics |date=August 11, 1983 }}

Goodyear MPP: (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.

Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.

Cell Broadband Engine: (2006) with 9 cores per chip, had 234 million transistors per chip.

{{cite news|url=https://news.cnet.com/Cell-chip-Hit-or-hype/2010-1006_3-5568046.html|archive-url=https://web.archive.org/web/20121025113906/https://news.cnet.com/Cell-chip-Hit-or-hype/2010-1006_3-5568046.html|archive-date=2012-10-25|title=Cell chip: Hit or hype?|work=CNET News|first=Michael|last=Kanellos|date=February 9, 2005}}

= Other devices =

class="wikitable sortable"
Device type

! Device name

! data-sort-type="number" | Transistor count

! Date of introduction

! Designer(s)

! Manufacturer(s)

! data-sort-type="number" | MOS process

! data-sort-type="number" | Area

! data-sort-type="number" | Transistor density, tr./mm2

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

Deep learning engine / IPU{{efn|"Intelligence Processing Unit"}}

|Colossus GC2

|23,600,000,000

|2018

|Graphcore

|TSMC

|16 nm

|~800 mm2

|29,500,000

|{{Cite web |url=https://www.servethehome.com/hands-on-with-a-graphcore-c2-ipu-pcie-card-at-dell-tech-world/ |title=Hands-on With a Graphcore C2 IPU PCIe Card at Dell Tech World|website=servethehome.com |last=Kennedy |first=Patrick |date=June 2019 |access-date=2019-12-29}}{{Cite web |url=https://en.wikichip.org/wiki/graphcore/microarchitectures/colossus |title=Colossus{{Snd}} Graphcore |website=en.wikichip.org |author= |date= |access-date=2019-12-29}}{{Cite web |url=https://www.graphcore.ai/products/ipu |title=IPU Technology |website=www.graphcore.ai |author=Graphcore |date=}}{{Better source needed|date=December 2019}}

Deep learning engine / IPU

|Wafer Scale Engine

|1,200,000,000,000

|2019

|Cerebras

|TSMC

|16 nm

|46,225 mm2

|25,960,000

|{{Cite web|url=https://www.extremetech.com/extreme/296906-cerebras-systems-unveils-1-2-trillion-transistor-wafer-scale-processor-for-ai|title=Cerebras Systems Unveils 1.2 Trillion Transistor Wafer-Scale Processor for AI|website=extremetech.com|last=Hruska|first=Joel|date=August 2019|access-date=2019-09-06}}{{Cite web|url=https://www.nextplatform.com/2019/08/21/machine-learning-chip-breaks-new-ground-with-waferscale-integration/|title=Machine Learning chip breaks new ground with waferscale integration|website=nextplatform.com|last=Feldman|first=Michael|date=August 2019|access-date=2019-09-06}}{{Cite web|url=https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning|title=Hot Chips 31 Live Blogs: Cerebras' 1.2 Trillion Transistor Deep Learning Processor|website=anandtech.com|last=Cutress|first=Ian|date=August 2019|access-date=2019-09-06}}{{Cite web|url=https://fuse.wikichip.org/news/3010/a-look-at-cerebras-wafer-scale-engine-half-square-foot-silicon-chip/|title=A Look at Cerebras Wafer-Scale Engine: Half Square Foot Silicon Chip|date=2019-11-16|website=WikiChip Fuse|language=en-US|access-date=2019-12-02}}

Deep learning engine / IPU

|Wafer Scale Engine 2

|2,600,000,000,000

|2020

|Cerebras

|TSMC

|7 nm

|46,225 mm2

|56,250,000

|{{Cite web|title=Cerebras Unveils 2nd Gen Wafer Scale Engine: 850,000 Cores, 2.6 Trillion Transistors - ExtremeTech|url=https://www.extremetech.com/computing/322070-cerebras-unveils-2nd-gen-wafer-scale-engine-850000-cores-2-6-trillion-transistors|access-date=2021-04-22|website=www.extremetech.com|date=April 21, 2021 }}{{cite web|url=https://www.servethehome.com/cerebras-wafer-scale-engine-wse-2-and-cs-2-at-hot-chips-34/|title=Cerebras Wafer Scale Engine WSE-2 and CS-2 at Hot Chips 34|website=ServeTheHome|date=2022-08-23}}

Network switch

|NVLink4 NVSwitch

|25,100,000,000

|2022

|Nvidia

|TSMC

|N4 (4 nm)

|294 mm2

|85,370,000

|{{cite web|url=https://www.servethehome.com/nvidia-nvlink4-nvswitch-at-hot-chips-34/|title=NVIDIA NVLink4 NVSwitch at Hot Chips 34|website=ServeTheHome|date=2022-08-22}}

Transistor density

The transistor density is the number of transistors that are fabricated per unit area, typically measured in terms of the number of transistors per square millimeter (mm2). The transistor density usually correlates with the gate length of a semiconductor node (also known as a semiconductor manufacturing process), typically measured in nanometers (nm). {{As of|2019}}, the semiconductor node with the highest transistor density is TSMC's 5 nanometer node, with 171.3{{nbsp}}million transistors per square millimeter (note this corresponds to a transistor-transistor spacing of 76.4 nm, far greater than the relative meaningless "5nm")

= MOSFET nodes =

{{Further|List of semiconductor scale examples}}

class="wikitable sortable"

|+ Semiconductor nodes

Node name

! data-sort-type="number" | Transistor density (transistors/mm2)

! data-sort-type="number" | Production year

! data-sort-type="number" | Process

! MOSFET

! Manufacturer(s)

! class="unsortable"| {{Abbr|Ref|Reference(s)}}

{{?}}

| {{?}}

| 1960

| 20,000 nm

| PMOS

| rowspan="2" | Bell Labs

| rowspan="2" | {{cite web |title=1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated |url=https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/ |website=Computer History Museum |access-date=17 July 2019}}{{cite book |last1=Lojek |first1=Bo |title=History of Semiconductor Engineering |date=2007 |publisher=Springer Science & Business Media |isbn=9783540342588 |pages=321–3}}

{{?}}

| {{?}}

| 1960

| 20,000 nm

| NMOS

{{?}}

| {{?}}

| 1963

| {{?}}

| CMOS

| Fairchild

| {{cite web |title=1963: Complementary MOS Circuit Configuration is Invented |url=https://www.computerhistory.org/siliconengine/complementary-mos-circuit-configuration-is-invented/ |access-date=6 July 2019 |website=Computer History Museum}}

{{?}}

| {{?}}

| 1964

| {{?}}

| PMOS

| General Microelectronics

| {{cite web |title=1964: First Commercial MOS IC Introduced |url=https://www.computerhistory.org/siliconengine/first-commercial-mos-ic-introduced/ |website=Computer History Museum |access-date=17 July 2019}}

{{?}}

| {{?}}

| 1968

| 20,000 nm

| CMOS

| RCA

| {{cite book |last1=Lojek |first1=Bo |title=History of Semiconductor Engineering |date=2007 |publisher=Springer Science & Business Media |isbn=9783540342588 |page=330 |url=https://books.google.com/books?id=2cu1Oh_COv8C&pg=PA330}}

{{?}}

| {{?}}

| 1969

| 12,000 nm

| PMOS

| Intel

|

{{?}}

| {{?}}

| 1970

| 10,000 nm

| CMOS

| RCA

|

{{?}}

| {{#expr:(1024*3)/10 round -2}}

| 1970

| 8,000 nm

| PMOS

| Intel

|

{{?}}

| {{?}}

| 1971

| 10,000 nm

| PMOS

| Intel

| {{cite book |last1=Lambrechts |first1=Wynand |last2=Sinha |first2=Saurabh |last3=Abdallah |first3=Jassem Ahmed |last4=Prinsloo |first4=Jaco |title=Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques |date=2018 |publisher=CRC Press |isbn=9781351248655 |page=59 |url=https://books.google.com/books?id=5m5uDwAAQBAJ&pg=PT59}}

{{?}}

| {{formatnum:{{#expr:(2*1024)*3/12.7 round -1}}

}

| 1971

| {{?}}

| PMOS

| General Instrument

|

|-

| {{?}}

| {{?}}

| 1973

| {{?}}

| NMOS

| Texas Instruments

|

|-

| {{?}}

| {{formatnum:{{#expr:(4*1024)/18.5 round -1}}|}}

| 1973

| {{?}}

| NMOS

| Mostek

|

|-

| {{?}}

| {{?}}

| 1973

| 7,500 nm

| NMOS

| NEC

|

|-

| {{?}}

| {{?}}

| 1973

| 6,000 nm

| PMOS

| Toshiba

| {{cite book |last1=Belzer |first1=Jack |last2=Holzman |first2=Albert G. |last3=Kent |first3=Allen |title=Encyclopedia of Computer Science and Technology: Volume 10{{Snd}} Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification |date=1978 |publisher=CRC Press |isbn=9780824722609 |page=402 |url=https://books.google.com/books?id=iBsUXrgKBKkC&pg=PA402}}

|-

| {{?}}

| {{?}}

| 1976

| 5,000 nm

| NMOS

| Hitachi, Intel

|

|-

| {{?}}

| {{?}}

| 1976

| 5,000 nm

| CMOS

| RCA

|

|-

| {{?}}

| {{?}}

| 1976

| 4,000 nm

| NMOS

| Zilog

|

|-

| {{?}}

| {{?}}

| 1976

| 3,000 nm

| NMOS

| Intel

| {{cite web|url=https://www.intel.com/pressroom/kits/quickrefyr.htm|title=Intel Microprocessor Quick Reference Guide|website=Intel|access-date=27 June 2019}}

|-

| {{?}}

| {{formatnum:{{#expr:(64*1024)/35.4 round -1}}|}}

| 1977

| {{?}}

| NMOS

| NTT

|

|-

| {{?}}

| {{?}}

| 1978

| 3,000 nm

| CMOS

| Hitachi

| {{cite web |title=1978: Double-well fast CMOS SRAM (Hitachi) |url=http://www.shmj.or.jp/english/pdf/ic/exhibi727E.pdf |website=Semiconductor History Museum of Japan |access-date=5 July 2019}}

|-

| {{?}}

| {{?}}

| 1978

| 2,500 nm

| NMOS

| Texas Instruments

| rowspan="5" |

|-

| {{?}}

| {{?}}

| 1978

| 2,000 nm

| NMOS

| NEC, NTT

|-

| {{?}}

| {{formatnum:{{#expr:(64*1024)/25.2 round -1}}|}}

| 1979

| {{?}}

| VMOS

| Siemens

|-

| {{?}}

| {{formatnum:{{#expr:(64*1024)/9 round -1}}|}}

| 1979

| 1,000 nm

| NMOS

| NTT

|-

| {{?}}

| {{formatnum:{{#expr:(256*1024)/34.4 round -1}}|}}

| 1980

| 1,000 nm

| NMOS

| NTT

|-

| {{?}}

| {{?}}

| 1983

| 2,000 nm

| CMOS

| Toshiba

|

|-

| {{?}}

| {{?}}

| 1983

| 1,500 nm

| CMOS

| Intel

| rowspan="4" |

|-

| {{?}}

| {{?}}

| 1983

| 1,200 nm

| CMOS

| Intel

|-

| {{?}}

| {{?}}

| 1984

| 800 nm

| CMOS

| NTT

|-

| {{?}}

| {{?}}

| 1987

| 700 nm

| CMOS

| Fujitsu

|-

| {{?}}

| {{?}}

| 1989

| 600 nm

| CMOS

| Mitsubishi, NEC, Toshiba

| rowspan="5" |

|-

| {{?}}

| {{?}}

| 1989

| 500 nm

| CMOS

| Hitachi, Mitsubishi, NEC, Toshiba

|-

| {{?}}

| {{?}}

| 1991

| 400 nm

| CMOS

| Matsushita, Mitsubishi, Fujitsu, Toshiba

|-

| {{?}}

| {{?}}

| 1993

| 350 nm

| CMOS

| Sony

|-

| {{?}}

| {{?}}

| 1993

| 250 nm

| CMOS

| Hitachi, NEC

|-

| 3LM

| 32,000

| 1994

| 350 nm

| CMOS

| NEC

|

|-

| {{?}}

| {{?}}

| 1995

| 160 nm

| CMOS

| Hitachi

| rowspan="2" |

|-

| {{?}}

| {{?}}

| 1996

| 150 nm

| CMOS

| Mitsubishi

|-

| TSMC 180{{nbsp}}nm

| {{?}}

| 1998

| 180 nm

| CMOS

| TSMC

| {{cite web |title=0.18-micron Technology |url=https://www.tsmc.com/english/dedicatedFoundry/technology/0.18um.htm |publisher=TSMC |access-date=30 June 2019}}

|-

| CS80

| {{?}}

| 1999

| 180 nm

| CMOS

| Fujitsu

| [http://www.fujitsu.com/downloads/MICRO/fma/pr/PressKit/65nmProcessTechnology.pdf 65nm CMOS Process Technology]

|-

| {{?}}

| {{?}}

| 1999

| 180 nm

| CMOS

| Intel, Sony, Toshiba

|

|-

| CS85

| {{?}}

| 1999

| 170 nm

| CMOS

| Fujitsu

| Diefendorff, Keith (15 November 1999). "Hal Makes Sparcs Fly". Microprocessor Report, Volume 13, Number 5.

|-

| Samsung 140{{nbsp}}nm

| {{?}}

| 1999

| 140 nm

| CMOS

| Samsung

|

|-

| {{?}}

| {{?}}

| 2001

| 130 nm

| CMOS

| Fujitsu, Intel

|

|-

| Samsung 100{{nbsp}}nm

| {{?}}

| 2001

| 100 nm

| CMOS

| Samsung

|

|-

| {{?}}

| {{?}}

| 2002

| 90 nm

| CMOS

| Sony, Toshiba, Samsung

|

|-

| CS100

| {{?}}

| 2003

| 90 nm

| CMOS

| Fujitsu

|

|-

| Intel 90{{nbsp}}nm

| 1,450,000

| 2004

| 90 nm

| CMOS

| Intel

| {{cite web |last1=Cutress |first1=Ian |title=Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review |url=https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review/3 |website=AnandTech |access-date=19 June 2019}}

|-

| Samsung 80{{nbsp}}nm

| {{?}}

| 2004

| 80 nm

| CMOS

| Samsung

| {{cite news|url=https://www.samsung.com/semiconductor/insights/news-events/samsung-shows-industrys-first-2-gigabit-ddr2-sdram/|title=Samsung Shows Industry's First 2-Gigabit DDR2 SDRAM|date=20 September 2004|work=Samsung Semiconductor|access-date=25 June 2019|publisher=Samsung}}

|-

| {{?}}

| {{?}}

| 2004

| 65 nm

| CMOS

| Fujitsu, Toshiba

| {{cite news |last1=Williams |first1=Martyn |title=Fujitsu, Toshiba begin 65nm chip trial production |url=https://www.infoworld.com/article/2667082/fujitsu--toshiba-begin-65nm-chip-trial-production.html |access-date=26 June 2019 |work=InfoWorld |date=12 July 2004}}

|-

| Samsung 60{{nbsp}}nm

| {{?}}

| 2004

| 60 nm

| CMOS

| Samsung

|

|-

| TSMC 45{{nbsp}}nm

| {{?}}

| 2004

| 45 nm

| CMOS

| TSMC

|

|-

| Elpida 90{{nbsp}}nm

| {{?}}

| 2005

| 90 nm

| CMOS

| Elpida Memory

| Elpida's presentation at Via Technology Forum 2005 and Elpida 2005 Annual Report

|-

| CS200

| {{?}}

| 2005

| 65 nm

| CMOS

| Fujitsu

| {{Cite web |url=http://www.fujitsu.com/us/news/pr/fma_20050920-1.html |title=Fujitsu Introduces World-class 65-Nanometer Process Technology for Advanced Server, Mobile Applications |access-date=June 20, 2019 |archive-date=September 27, 2011 |archive-url=https://web.archive.org/web/20110927115254/http://www.fujitsu.com/us/news/pr/fma_20050920-1.html |url-status=dead }}

|-

| Samsung 50{{nbsp}}nm

| {{?}}

| 2005

| 50 nm

| CMOS

| Samsung

| {{cite web |title=History |url=https://www.samsung.com/us/aboutsamsung/company/history/ |website=Samsung Electronics |publisher=Samsung |access-date=19 June 2019}}

|-

| Intel 65{{nbsp}}nm

| 2,080,000

| 2006

| 65 nm

| CMOS

| Intel

|

|-

| Samsung 40{{nbsp}}nm

| {{?}}

| 2006

| 40 nm

| CMOS

| Samsung

|

|-

| Toshiba 56{{nbsp}}nm

| {{?}}

| 2007

| 56 nm

| CMOS

| Toshiba

|

|-

| Matsushita 45{{nbsp}}nm

| {{?}}

| 2007

| 45 nm

| CMOS

| Matsushita

|

|-

| Intel 45{{nbsp}}nm

| 3,300,000

| 2008

| 45 nm

| CMOS

| Intel

| {{Cite web|url=https://spectrum.ieee.org/intel-now-packs-100-million-transistors-in-each-square-millimeter|title=Intel Now Packs 100 Million Transistors in Each Square Millimeter|website=IEEE Spectrum: Technology, Engineering, and Science News|date=March 30, 2017 |access-date=2018-11-14}}

|-

| Toshiba 43{{nbsp}}nm

| {{?}}

| 2008

| 43 nm

| CMOS

| Toshiba

|

|-

| TSMC 40{{nbsp}}nm

| {{?}}

| 2008

| 40 nm

| CMOS

| TSMC

| {{cite web |title=40nm Technology |url=https://www.tsmc.com/english/dedicatedFoundry/technology/40nm.htm |publisher=TSMC |access-date=30 June 2019}}

|-

| Toshiba 32{{nbsp}}nm

| {{?}}

| 2009

| 32 nm

| CMOS

| Toshiba

| {{cite news|url=http://www.toshiba.co.jp/about/press/2009_02/pr1102.htm|title=Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology|date=11 February 2009|work=Toshiba|access-date=21 June 2019}}

|-

| Intel 32{{nbsp}}nm

| 7,500,000

| 2010

| 32 nm

| CMOS

| Intel

|

|-

| {{?}}

| {{?}}

| 2010

| 20 nm

| CMOS

| Hynix, Samsung

| {{cite web |title=History: 2010s |url=https://www.skhynix.com/eng/about/history2010.jsp |website=SK Hynix |access-date=8 July 2019 |archive-date=April 29, 2021 |archive-url=https://web.archive.org/web/20210429202547/https://www.skhynix.com/eng/about/history2010.jsp |url-status=dead }}

|-

| Intel 22{{nbsp}}nm

| 15,300,000

| 2012

| 22 nm

| CMOS

| Intel

|

|-

| IMFT 20{{nbsp}}nm

| {{?}}

| 2012

| 20 nm

| CMOS

| IMFT

| rowspan="2" | {{cite news |last1=Shimpi |first1=Anand Lal |title=SandForce Demos 19nm Toshiba & 20nm IMFT NAND Flash |url=https://www.anandtech.com/show/5960/sandforce-demos-19nm-toshiba-20nm-imft-nand-flash |access-date=19 June 2019 |work=AnandTech |date=June 8, 2012}}

|-

| Toshiba 19{{nbsp}}nm

| {{?}}

| 2012

| 19 nm

| CMOS

| Toshiba

|-

| Hynix 16{{nbsp}}nm

| {{?}}

| 2013

| 16 nm

| FinFET

| SK Hynix

|

|-

| TSMC 16{{nbsp}}nm

| 28,880,000

| 2013

| 16 nm

| FinFET

| TSMC

| {{Cite web|url=https://fuse.wikichip.org/news/2261/tsmc-announces-6-nanometer-process/|title=TSMC Announces 6-Nanometer Process|last=Schor|first=David|date=2019-04-16|website=WikiChip Fuse|access-date=2019-05-31}}{{cite web |title=16/12nm Technology |url=https://www.tsmc.com/english/dedicatedFoundry/technology/16nm.htm |publisher=TSMC |access-date=30 June 2019}}

|-

| Samsung 10{{nbsp}}nm

| 51,820,000

| 2013

| 10 nm

| FinFET

| Samsung

| {{Cite web|url=https://fuse.wikichip.org/news/1443/vlsi-2018-samsungs-8nm-8lpp-a-10nm-extension/|title=VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension|date=2018-07-01|website=WikiChip Fuse|access-date=2019-05-31}}{{cite news|url=https://www.tomshardware.co.uk/NAND-128Gb-Mass-Production-3-bit-MLC,news-43458.html|title=Samsung Mass Producing 128Gb 3-bit MLC NAND Flash|date=11 April 2013|work=Tom's Hardware|access-date=21 June 2019|archive-date=June 21, 2019|archive-url=https://web.archive.org/web/20190621175628/https://www.tomshardware.co.uk/NAND-128Gb-Mass-Production-3-bit-MLC,news-43458.html|url-status=dead}}

|-

| Intel 14{{nbsp}}nm

| 37,500,000

| 2014

| 14 nm

| FinFET

| Intel

|

|-

| 14LP

| 32,940,000

| 2015

| 14 nm

| FinFET

| Samsung

|

|-

| TSMC 10{{nbsp}}nm

| 52,510,000

| 2016

| 10 nm

| FinFET

| TSMC

| {{cite web |title=10nm Technology |url=https://www.tsmc.com/english/dedicatedFoundry/technology/10nm.htm |publisher=TSMC |access-date=30 June 2019}}

|-

| 12LP

| 36,710,000

| 2017

| 12 nm

| FinFET

| GlobalFoundries, Samsung

| {{Cite web|url=https://fuse.wikichip.org/news/1497/vlsi-2018-globalfoundries-12nm-leading-performance-12lp/|title=VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP|last=Schor|first=David|date=2018-07-22|website=WikiChip Fuse|access-date=2019-05-31}}

|-

| N7FF

| 96,500,000

101,850,000{{cite web|url=https://semiwiki.com/semiconductor-manufacturers/intel/285192-can-tsmc-maintain-their-process-technology-lead/|title=Can TSMC maintain their process technology lead|website=SemiWiki|date=2020-04-29}}

| 2017

| 7 nm

| FinFET

| TSMC

| {{cite web |last1=Jones |first1=Scotten |title=TSMC and Samsung 5nm Comparison |url=https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/8157-tsmc-and-samsung-5nm-comparison/ |website=Semiwiki |date=May 3, 2019 |access-date=30 July 2019}}{{cite web |last1=Nenni |first1=Daniel |title=Samsung vs TSMC 7nm Update |url=https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/7926-samsung-vs-tsmc-7nm-update/ |website=Semiwiki |date=2019-01-02 |access-date=6 July 2019}}{{cite web |title=7nm Technology |url=https://www.tsmc.com/english/dedicatedFoundry/technology/7nm.htm |publisher=TSMC |access-date=30 June 2019}}

|-

| 8LPP

| 61,180,000

| 2018

| 8 nm

| FinFET

| Samsung

|

|-

| 7LPE

| 95,300,000

| 2018

| 7 nm

| FinFET

| Samsung

|

|-

| Intel 10{{nbsp}}nm

| 100,760,000

106,100,000

| 2018

| 10 nm

| FinFET

| Intel

| {{Cite web|url=https://fuse.wikichip.org/news/1371/a-look-at-intels-10nm-std-cell-as-techinsights-reports-on-the-i3-8121u-finds-ruthenium/|title=A Look at Intel's 10nm Std Cell as TechInsights Reports on the i3-8121U, finds Ruthenium|last=Schor|first=David|date=2018-06-15|website=WikiChip Fuse|access-date=2019-05-31}}

|-

| 5LPE

| 126,530,000

133,560,000

134,900,000{{cite web|url=https://semiwiki.com/semiconductor-manufacturers/samsung-foundry/259664-samsung-foundry-update-2019/|title=Samsung Foundry update 2019|website=SemiWiki|date=2019-08-06}}

| 2018

| 5 nm

| FinFET

| Samsung

| {{citation| url =https://semiwiki.com/semiconductor/intel/7544-7nm-5nm-and-3nm-logic-current-and-projected-processes/| title = 7nm, 5nm and 3nm Logic, current and projected processes | first = Scotten|last = Jones }}{{Cite web|url=https://www.anandtech.com/show/14231/samsung-completes-development-of-5-nm-euv-process-technology|title=Samsung Completes Development of 5nm EUV Process Technology|last=Shilov|first=Anton|website=AnandTech|access-date=2019-05-31}}

|-

| N7FF+

| 113,900,000

| 2019

| 7 nm

| FinFET

| TSMC

|

|-

| CLN5FF

| 171,300,000

185,460,000

| 2019

| 5 nm

| FinFET

| TSMC

| {{Cite web|url=https://fuse.wikichip.org/news/2207/tsmc-starts-5-nanometer-risk-production/|title=TSMC Starts 5-Nanometer Risk Production|last=Schor|first=David|date=2019-04-06|website=WikiChip Fuse|access-date=2019-04-07}}

|-

| Intel 7

| 100,760,000

106,100,000

| 2021

| 7 nm

| FinFET

| Intel

|

|-

| 4LPE

| 145,700,000

| 2021

| 4 nm

| FinFET

| Samsung

| {{cite web|url=https://news.samsung.com/global/samsung-foundry-innovations-power-the-future-of-big-data-ai-ml-and-smart-connected-devices|title=Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices|date=2021-10-07}}{{cite web|url=https://www.sammobile.com/news/qualcomm-snapdragon-8-gen-1-made-using-samsung-4nm-process/|title=Qualcomm confirms Snapdragon 8 Gen 1 is made using Samsung's 4nm process|date=2021-12-02}}{{cite web|url=https://9to5google.com/2022/01/14/heres-every-smartphone-confirmed-to-use-the-qualcomm-snapdragon-8-gen-1-chip/|title=List of Snapdragon 8 Gen 1 smartphones available since December 2021|work=9to5Google |date=2022-01-14 |last1=Wilde |first1=Damien }}

|-

| N4

| 196,600,000{{cite web|url=https://fuse.wikichip.org/news/6439/tsmc-extends-its-5nm-family-with-a-new-enhanced-performance-n4p-node/|title=TSMC Extends Its 5nm Family With A New Enhanced-Performance N4P Node|website=WikiChip|date=2021-10-26}}

| 2021

| 4 nm

| FinFET

| TSMC

| {{cite web|url=https://corp.mediatek.com/news-events/press-releases/mediatek-officially-launches-dimensity-9000-flagship-chip-and-announces-adoption-by-global-device-makers|title=MediaTek Launches Dimensity 9000 built on TSMC N4 process|date=2021-12-16}}

|-

| N4P

| 196,600,000

| 2022

| 4 nm

| FinFET

| TSMC

| {{cite web|url=https://pr.tsmc.com/english/news/2874|title=TSMC Expands Advanced Technology Leadership with N4P Process (press release)|website=TSMC|date=2021-10-26}}

|-

| 3GAE

| 202,850,000

| 2022

| 3 nm

| MBCFET

| Samsung

| {{citation| url =https://www.tomshardware.com/news/samsung-3nm-gaafet-production-2021,38426.html | title = Samsung Plans Mass Production of 3nm GAAFET Chips in 2021 | first = Lucian |last = Armasu | date = 11 January 2019| work = www.tomshardware.com }}{{cite web|title=Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins|url=https://www.anandtech.com/print/17474/samsung-starts-3nm-production-the-gaafet-era-begins|website=AnandTech|date=2022-06-30}}

|-

| N3

| 314,730,000

| 2022

| 3{{nbsp}}nm

| FinFET

| TSMC

| {{cite news |title=TSMC Plans New Fab for 3nm |url=https://www.eetimes.com/document.asp?doc_id=1330971 |access-date=26 September 2019 |work=EE Times |date=12 December 2016}}{{Cite web|url=https://www.anandtech.com/show/17013/tsmc-update-3nm-in-q1-2023-3nm-enhanced-in-2024-2nm-in-2025|title=TSMC Roadmap Update: 3nm in Q1 2023, 3nm Enhanced in 2024, 2nm in 2025|date=2021-10-18|website=www.anandtech.com|language=en-us}}

|-

| N4X

| {{?}}

| 2023

| 4{{nbsp}}nm

| FinFET

| TSMC

| {{cite web|url=https://pr.tsmc.com/english/news/2895|title=TSMC Introduces N4X Process (press release)|website=TSMC|date=2021-12-16}}{{cite web|url=https://www.tsmc.com/english/news-events/blog-article-20211216|title=The Future Is Now (blog post)|website=TSMC|date=2021-12-16}}{{cite web|url=https://www.anandtech.com/print/17123/tsmc-unveils-n4x-node-high-voltages-for-high-clocks|title=TSMC Unveils N4X Node|website=AnandTech|date=2021-12-17}}

|-

| N3E

| {{?}}

| 2023

| 3{{nbsp}}nm

| FinFET

| TSMC

|

|-

| 3GAP

| {{?}}

| 2023

| 3 nm

| MBCFET

| Samsung

|

|-

| Intel 4

| 160,000,000{{Cite web|last=Smith|first=Ryan|title=Intel 4 Process Node In Detail: 2x Density Scaling, 20% Improved Performance|url=https://www.anandtech.com/print/17448/intel-4-process-node-in-detail-2x-density-scaling-20-improved-performance|date=2022-06-13|website=AnandTech}}

| 2023

| 4 nm

| FinFET

| Intel

| {{Cite news|last=Alcorn|first=Paul|date=24 March 2021|title=Intel Fixes 7nm, Meteor Lake and Granite Rapids Coming in 2023|work=Tom's Hardware|url=https://www.tomshardware.com/news/intel-fixes-7nm-meteor-lake-and-granite-rapids-coming-in-2023|access-date=1 June 2021}}{{Cite web|last=Cutress|first=Dr Ian|title=Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!|url=https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros|access-date=2021-07-27|website=www.anandtech.com}}{{Cite web|last=Cutress|first=Dr Ian|url=https://www.anandtech.com/show/17259/intel-discloses-multigeneration-xeon-scalable-roadmap-new-ecore-only-xeons-in-2024|title=Intel Discloses Multi-Generation Xeon Scalable Roadmap: New E-Core Only Xeons in 2024|date=2022-02-17|website=www.anandtech.com}}

|-

| Intel 3

| {{?}}

| 2023

| 3 nm

| FinFET

| Intel

|

|-

| Intel 20A

| {{?}}

| 2024

| 2 nm

| RibbonFET

| Intel

|

|-

| Intel 18A

| {{?}}

| 2025

| sub-2 nm

| RibbonFET

| Intel

|

|-

| 2GAP

| {{?}}

| 2025

| 2 nm

| MBCFET

| Samsung

|

|-

| N2

| {{?}}

| 2025

| 2 nm

| GAAFET

| TSMC

| {{cite web|url=https://www.anandtech.com/print/17356/tsmc-roadmap-update-n3e-in-2024-n2-in-2026-major-changes-incoming|title=TSMC roadmap update|website=AnandTech|date=2022-04-22}}

|-

| Samsung 1.4 nm

| {{?}}

| 2027

| 1.4 nm

| {{?}}

| Samsung

| {{cite web

|url=https://news.samsung.com/global/samsung-electronics-unveils-plans-for-1-4nm-process-technology-and-investment-for-production-capacity-at-samsung-foundry-forum-2022

|title=Samsung Electronics Unveils Plans for 1.4nm Process Technology and Investment for Production Capacity at Samsung Foundry Forum 2022

|website=Samsung Global Newsroom

|date=2022-10-04}}

|}

Gate count

In certain applications, the term gate count is preferred over the term transistor count. It refers to the number of logic gates built with transistors and other electronic devices needed to implement a design.[https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.022305 Gate-count estimates for performing quantum chemistry on small quantum computers][https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/does-gate-count-matter-lwc2019.pdf Does gate count matter? Hardware effciency of logic-minimization techniques for cryptographic primitives][https://ieeexplore.ieee.org/abstract/document/5537061 Quantum Algorithm for Spectral Measurement with a Lower Gate Count][https://ieeexplore.ieee.org/abstract/document/10391119 Quantum Gate Count Analysis]

See also

Notes

{{notelist}}

References

{{reflist|30em}}